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Abstract 

Background:  As patient exposure to ionizing radiation raises concern about malignancy risks, this study evaluated 
the effect of ionizing radiation on patients undergoing myocardial perfusion imaging (MPI) using the comet assay, a 
method for detection of DNA damage.

Methods:  Patients without cancer, acute or autoimmune diseases, recent surgery or trauma, were studied. Gated 
single-photon myocardial perfusion imaging was performed with Tc-99m sestamibi. Peripheral blood was collected 
before radiotracer injection at rest and 60–90 min after injection. Single-cell gel electrophoresis (comet assay) was 
performed with blood lymphocytes to detect strand breaks, which determine a “comet tail” of variable size, visually 
scored by 3 observers in a fluorescence microscope after staining (0: no damage, no tail; 1: small damage; 2: large 
damage; 3: full damage). A damage index was calculated as a weighted average of the cell scores.

Results:  Among the 29 individuals included in the analysis, age was 65.3 ± 9.9 years and 18 (62.1%) were male. The 
injected radiotracer dose was 880.6 ± 229.4 MBq. Most cells (approximately 70%) remained without DNA fragmenta-
tion (class 0) after tracer injection. There were nonsignificant increases of classes 1 and 2 of damage. Class 3 was the 
least frequent both before and after radiotracer injection, but displayed a significant, 44% increase after injection.

Conclusion:  While lymphocytes mostly remained in class 0, an increase in class 3 DNA damage was detected. This 
may suggest that, despite a probable lack of biologically relevant DNA damage, there is still a need for tracer dose 
reductions in MPI.
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Background
Medical imaging- and, particularly, cardiac imaging- 
grew steadily from late 1980s to early 2000s, raising con-
cern about patients´ exposure to ionizing radiation and 
carcinogenesis [1–3]. The 2019 National Council on 
Radiation Protection and Measurements (NCRP) Report, 
which updated medical radiation exposure information 

with data collected between 2006 and 2016, showed that 
Nuclear Medicine still accounted for 15% of the radia-
tion burden, even though a decrease was noted [4]. While 
current practice is generally aligned with patient-cen-
tered imaging and radiation safety, the effects of ionizing 
radiation from imaging studies still merit attention.

To understand the potentially harmful effects of ioniz-
ing radiation from medical imaging, several studies have, 
for a long time, tried to make correlations between radia-
tion exposure in medical, occupational and accidental 
contexts and cytogenetic alterations. However, radiation 
doses vary largely among studies and are sometimes very 
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large when compared to actual medical imaging [5–8]. 
More recent studies are unable to fill all the knowledge 
gaps in this field, either due to limited number of sub-
jects or specific conditions (e.g., pediatric populations) 
[9, 10]. Additionally, many variables influence radiation 
sensitivity, including cell sensitivity to induction of DNA 
damage, differences in DNA repair, in cell growth and in 
proportions of cells in different phases of the cell cycle 
[11]. Therefore, there is an open field for the continuous 
evaluation of the effects of ionizing radiation on human 
DNA.

This study aimed to evaluate the occurrence of DNA 
damage in patients undergoing myocardial perfusion 
imaging (MPI) using the comet assay (alkaline single-cell 
gel electrophoresis). The assay is based on the lysis of the 
cell membrane, followed by the induction of electropho-
retic migration in an agarose matrix [12], resulting in 
the transport of DNA fragments out of the nucleus. The 
image of DNA migration obtained resembles a comet 
with a head and a tail, hence the term comet assay [12, 
13]. Using microscope evaluation, it is possible to observe 
and grade the proportion of DNA strands or fragments 
which migrated, classifying the degree of damage and 
turning this relatively easy and low-cost procedure an 
interesting option to detect DNA lesions in individual 
cells. Thus, the study may add data to the continuum 
of knowledge gained on that subject, with a focus on a 
largely employed diagnostic imaging method.

Methods
Patients ≥ 18  years undergoing MPI at a single Nuclear 
Medicine laboratory were considered eligible for the 
study. Exclusion criteria were current or prior malignant 
neoplasm; autoimmune diseases; significant trauma, 
major surgery or exposure to radiation (diagnostic, 
therapeutic or occupational) in the past 3 months; acute 
infectious diseases or any acute disease with significant 
compromise of organs or systems (e.g. acute myocardial 
infarction, pulmonary embolism etc.).

The study was approved by the Ethics Commit-
tee of the Instituto Nacional de Cardiologia (# CAAE 
6716971.6.0000.5272), and all patients provided written 
informed consent before participation in the study.

Myocardial perfusion imaging
Gated single-photon emission computed tomography 
(SPECT) MPI was performed with Tc-99m sestamibi 
(8 MBq/kg) in a 2-day protocol. For this study, to avoid 
possible stress-induced effects on the DNA, patients 
were evaluated only in the rest phase of the MPI study, 
with the stress phase performed on a subsequent date to 
avoid any residual DNA damage from prior radiotracer 
injection. The first peripheral blood sample (4  ml) was 

collected before tracer injection, and the second, imme-
diately before the patient left the Nuclear Cardiology lab-
oratory after image acquisition (60–90  min after tracer 
injection). Images were acquired in a 2-head gamma 
camera (Infinia Hawkeye 4, General Electric Healthcare, 
WI, USA).

Comet assay
The comet assay was performed according to the proto-
col described by Singh et al. [13]. Agarose-covered slides 
were prepared in duplicates (two with blood collected 
before, and two with blood collected after tracer injec-
tion). Each slide received a mixture of 5.0  µL of blood 
and 120.0 µL of low melting agarose, was covered with a 
coverslide, then refrigerated for five minutes for solidifi-
cation, and thereafter the coverslides were removed. The 
slides were incubated in a lysis solution (1%Triton X-100, 
10% dimethyl sulfoxide, 2.5  M NaCl, 100  mM ethylen-
ediaminetetraacetic acid [EDTA], 10  mM Tris) for two 
hours, kept refrigerated and protected from light. Periph-
eral blood lymphocytes, which became nucleoid struc-
tures after lysis, were studied.

The alkaline unwinding, electrophoresis and neutrali-
zation steps were performed as described by Hartmann 
and Speit [14], with minor modifications. The slides were 
removed from the lysis solution and placed in the elec-
trophoresis chamber, which was then filled with freshly 
made alkaline buffer (300 mM NaOH and 1 mM EDTA, 
pH 12.6). The cells were exposed to alkali for 40 min to 
allow for DNA unwinding and the expression of alkali-
labile sites. Subsequently, the DNA was submitted to 
electrophoresis for 30 min at 300 mA and 25 V in an ice 
bath. All the above steps (preparation of slides, lysis and 
electrophoresis) were conducted without direct light in 
order to prevent additional DNA damage.

Positive controls were performed with 200 ml of whole 
human blood, incubated for 2  h at 37  °C with 50  ml 
of methyl methanesulfonate (final concentrations of 
0.08  mM and 0.016  mM). The two concentrations were 
used to demonstrate different levels of damage and to 
ascertain the assay sensitivity.

After electrophoresis, the slides were placed in a hori-
zontal position and washed three times (5 min each) with 
0.4 M Tris buffer, pH 7.5, to neutralize the excess alkali. 
Finally, slides were fixed with absolute ethanol, stained 
with GelRed 1:500 (Biotium) and analyzed using a fluo-
rescence microscope (Zeiss Axioplan with AxioCam 
MRc5 camera).

The degree of DNA damage (strand breaks) was classi-
fied according to the size and intensity of the tails of the 
comets, into 4 classes: 0 (no damage- no tail), 1 (small 
damage, small tail), 2 (larger damage, large tail), and 3 
(complete damage, with a small comet head and most of 
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the DNA in the tail) (Fig. 1). The analysis was performed 
by 3 observers, who evaluated 100 cells in each slide; the 
mean of the scores from the 3 observers was used to cal-
culate the damage index (DI), as shown below (where 
a = number of cells scored 0 by observer 1, and so on):

Damage class 0 1 2 3

Observer 1 a D G J

Observer 2 b E H K

Observer 3 c F I l

Final score A (mean of a, 
b, c)

B (mean of 
d,e,f )

C (mean of 
g,h,i)

D 
(mean 
of j, k, l)

Damage index (DI) = (A × 0) + (B × 1) + (C × 2) + (D × 3)

The mean of the DI from the duplicate slides was used 
as the final value for each patient. Additionally, the fre-
quency of the damage classes (0–3) was calculated from 
the total number of evaluated cells.

One hundred and twenty slides were evaluated, corre-
sponding to the 30 patients with two slides from blood 

samples collected before tracer injection and two slides 
from the blood samples collected after tracer injection. 
One of the slides (sample 12) was removed from the final 
data analysis due to processing error.

Statistical analysis
Variables with a normal distribution were demonstrated 
as mean and standard deviation; otherwise, they were 
demonstrated as medians interquartile ranges. Categori-
cal variables were compared with chi-square, and contin-
uous variables were compared with the Wilcoxon´s test. 
A value of p < 0.05 was considered statistically significant. 
Statistical analyses were performed using SPSS™ (version 
22).

Results
Patient population
Among the 29 individuals included in the analysis, age 
was 65.3 ± 9.9 years (47–85 years), 18 (62.1%) were male, 
28 (96.6%) were hypertensive, 13 (44.8%) were diabetic, 
14 (48.3%) were dyslipidemic, 16 (55.2%) were former 

Fig. 1  Fluorescence microscopy images (× 400) showing examples of patterns of DNA damage in the comet assay. Left panel: Nucleoid structures 
depicting class 0 of damage (no tail) and class 1 (small tail). Middle panel: class 2 of damage (larger tail). Right panel: class 3 of damage (profound 
fragmentation, very large tail)
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smokers, 7 (24.1%) had prior myocardial infarction, 13 
(44.8%) had a history of myocardial revascularization 
(percutaneous or surgical), and 5 (17.2%) had stable, angi-
ographically confirmed coronary artery disease undergo-
ing medical treatment. The injected radiotracer dose was 
880.6 ± 229.4 MBq.

Comet assay
Overall, the medians of the DI before and after tracer 
injection were 22.7 and 27.8, respectively (p < 0.001) 
(Fig. 2 A). Figure 2B shows the DI of each patient.

Table  1 depicts the frequency of the damage classes 
before and after tracer injection. Most of the cells 
(approximately 70%) remained without DNA fragmen-
tation (class 0) after tracer injection. There were nonsig-
nificant increases of classes 1 and 2 of damage. Class 3 
was the least frequent both before and after radiotracer 
injection, but displayed a significant, 44% increase after 
injection.

Discussion
Several types of stress, either environmental or organic, 
have genotoxic effects [15].  Ionizing radiation may pro-
mote oxidative stress, induce DNA strand breaks and 
affect cell components, even a few hours after irradiation 
[16, 17]. In medical imaging, radiation effects are consid-
ered stochastic, and mainly of two kinds, malignancy or 
heritable disease [18]. These effects are dose-dependent 
and follow a linear no-threshold model [19]. However, 
there is no direct evidence of cancer risk from cardiac 
imaging, but only projections from the epidemiological 
studies [20]. On the opposite end of this, studies at the 
“bench” level try to provide different types of evidence to 
help elucidate this issue.

The comet assay (single-cell gel electrophoresis) is one 
of the methods of choice for the evaluation and measure-
ment of DNA damage. It is a simple, fast, precise, low-
cost technique, in which cells are incorporated into an 
agarose matrix and then have their membranes lysed for 
the generation of nucleoid structures. Thereafter, DNA 
is untwined and undergoes electrophoresis. If there 
are bond breaks, the highly negative molecules move 
towards the anode [21, 22]. After staining and through 
visualization in a fluorescence microscope, a comet shape 
appears, with the nucleus in the head of the comet and 
the tail consisting of DNA strands or fragments which 
migrated to the anode. The relative intensity of the tail 
increases according to the intensity of damage caused by 
any agent, either ionizing radiation or chemical agents, 
for example [23].

In this study, even before exposure to ionizing radia-
tion, 24% of the cells had evidence of some DNA dam-
age, what recalls the variety of other factors that may 
lead to damage, such as smoking, diabetes, and indeed 
all currently recognized cardiovascular risk factors [24–
26]. Importantly, even though there was an increase of 
the damage index and of classes 1–3 of damage, most 
cells remained in class 0. Shirazi et al. [9], also using the 
comet assay, showed that patients who received Tc-99m 

Fig. 2  Damage index before and after radiotracer injection. A Means, medians and interquartile ranges. B Values of damage index from each 
patient

Table 1  Frequencies of damage classes before and after tracer 
injection

Damage class Before (%) After (%) p value

0 76.45 70.27 0.4

1 20.01 25.06 0.4

2 2.69 3.45 0.06

3 0.85 1.23 0.046
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sestamibi or thallium-201 injections for MPI had evi-
dence of DNA damage, compared to controls; however, 
repeated evaluations in the same patients (before/after 
radiotracer injection) were not available, and therefore a 
clear inference on the effect of ionizing radiation cannot 
be made. In the study by Varol et al. [10], among 27 chil-
dren who underwent Tc-99m DMSA scintigraphy, DNA 
damage increased after the test, returning to normal 
levels after a week. Rief et al. [27] showed, by immuno-
fluorescence, that strand breaks appeared after Tc-99m 
sestamibi injection for MPI and disappeared after 24  h. 
In the current study, a decrease of DNA damage with 
time could not be demonstrated, as patients were not re-
evaluated later.

Additionally, even though DNA damage may occur, 
there are counteractive, self-protective mechanisms that 
contribute to reduce radiation effects. In fact, in response 
to DNA damage, cells activate repair genes [15]. Cheng 
et al. [28] have demonstrated that, after exposure to dif-
ferent types of ionizing radiation, the lymphocyte expres-
sion of mRNA of several repair genes was increased 
compared to controls. Won et al. [29] observed the activa-
tion of DNA repair pathways in patients who underwent 
MPI, by evaluating the phosphorylation of histone 2AX, 
protein p53 or serine/threonine protein kinase (ATM) in 
peripheral blood T lymphocytes by flow cytometry and 
immunohistochemistry, as well as the mRNA expression 
of repair genes such as BCL2 associated X, damage spe-
cific DNA binding protein 2, or Tp53 (a tumor-suppress-
ing gene). Therefore, the biological consequences of DNA 
damage may be reduced by these mechanisms, helping 
minimize concerns about the effects of ionizing radia-
tion used in MPI. Finally, new imaging protocols, using 
stress-only strategies, or new imaging hardware and soft-
ware, which allow the use of very small radiotracer doses, 
may lead to further reductions in radiation-induced DNA 
damage from MPI.

Limitations
As the collection of the second blood sample was rela-
tively “early” regarding the half-life of Tc-99m sestamibi, 
the extent of DNA damage induced by the tracer might 
have been underestimated. This timing was due to the 
presence of the patients in the Nuclear Medicine labora-
tory, which typically lasts for up to 90 min. Nonetheless, 
as Rief et  al. have described after performing multiple 
blood sample analyses, strand breaks can be detected as 
early as 5 min after radiotracer injection, without major 
difference when compared to the 1-h sample [27]. There-
fore, we believe that our data may be representative of 
near-maximal radiation effects on the DNA. Addition-
ally, as pointed by Azqueta et al. [30], DNA repair mech-
anisms can also occur very quickly, and experiments 

assessing DNA damage should take care to avoid repair 
of strand breaks; so, in this context, a shorter timing may 
also be desirable. Furthermore, due to the cross-sectional 
nature of this study, a return of damage levels to base-
line could not be assessed, as other blood samples were 
not collected later. Finally, the study was performed with 
relatively high tracer doses, and therefore the amount of 
DNA damage might have been overestimated and may 
currently be substantially less with hardware improve-
ment and new test protocols.

Conclusions
In this patient sample, DNA damage was demonstrated 
in lymphocytes from patients undergoing MPI. However, 
most cells remained in class 0 damage after radiotracer 
injection. Further studies, including the evaluation of 
DNA repair, may help elucidate the genotoxic effects of 
MPI.
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