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Characterization of atherosclerotic plaques 
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Abstract 

Background:  Growth differentiation factor (GDF)-15 is linked to inflammation, cancer, and atherosclerosis. GDF-15 is 
expressed in most tissues but is extremely induced under pathological conditions. Elevated serum levels are sug-
gested as a risk factor and a marker for cardiovascular diseases. However, the cellular sources and the effects of GDF-
15 on the cardiovascular system have not been completely elucidated including progression, and morphology of 
atherosclerotic plaques. Thus, this work aimed to characterize the influence of GDF-15 deficiency on the morphology 
of atherosclerotic plaques in blood vessels with low-oxygen blood and low blood pressure as the pulmonary trunk 
(PT), in hypercholesterolemic ApoE−/− mice.

Methods:  GDF-15−/− ApoE−/− mice were generated by crossbreeding of ApoE−/−- and GDF-15−/− mice. After feed-
ing a cholesterol-enriched diet (CED) for 20 weeks, samples of the brachiocephalic trunk (BT) and PT were dissected 
and lumen stenosis (LS) was measured. Furthermore, changes in the cellularity of the PT, amounts of apoptosis-, 
autophagy-, inflammation- and proliferation-relevant proteins were immunohisto-morphometrically analyzed. Addi-
tionally, we examined an atherosclerotic plaque in a human post mortem sample of the pulmonary artery.

Results:  After CED the body weight of GDF-15−/−ApoE−/− was 22.9% higher than ApoE−/−. Double knockout mice 
showed also an 35.3% increase of plasma triglyceride levels, whereas plasma cholesterol was similar in both geno-
types. LS in the BT and PT of GDF-15−/−ApoE−/− mice was significantly reduced by 19.0% and by 6.7% compared to 
ApoE−/−. Comparing LS in PT and BT of the same genotype revealed a significant 38.8% (ApoE−/−) or 26.4% (GDF-
15−/−ApoE−/−) lower LS in the PT. Immunohistomorphometry of atherosclerotic lesions in PT of GDF-15−/−ApoE−/− 
revealed significantly increased levels (39.8% and 7.3%) of CD68 + macrophages (MΦ) and α-actin + smooth muscle 
cells than in ApoE−/−. The density of TUNEL + , apoptotic cells was significantly (32.9%) higher in plaques of PT of 
GDF-15−/−ApoE−/− than in ApoE−/−. Analysis of atherosclerotic lesion of a human pulmonary artery showed sm-α-
actin, CD68+, TUNEL+, Ki67+, and APG5L/ATG​+ cells as observed in PT. COX-2+ and IL-6+ immunoreactivities were 
predominantly located in endothelial cells and subendothelial space. In BT and PT of GDF15−/−ApoE−/− mice the 
necrotic area was 10% and 6.5% lower than in ApoE−/−. In BT and PT of GDF15−/−ApoE−/− we found 40% and 57% 
less unstable plaques than ApoE−/− mice.
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Background
The heart as the major component of the cardiovascu-
lar system (CVS), pumps blood into the pulmonary and 
systemic circulation. The right part of the heart receives 
deoxygenated blood from the peripheral tissues through 
the cava veins and pumps it into the pulmonary trunk 
(PT) by low-pressure pulmonary circulation. It is well 
known that the lumen of, e.g. carotid and coronary arter-
ies may be stenosed due to atherosclerosis and their nor-
mal bloodstream is affected. However, the mechanisms 
of development of atherosclerotic lesions in the system 
of pulmonary arteries, i.e. low blood pressure vessels and 
low partial pressure of oxygen are still unclear. In general, 
atherosclerosis is an inflammatory disease, character-
ized by the chronic accumulation of inflammatory cells, 
storage of lipids and fibrous component in the innermost 
layer of the arterial wall [1]. Increased serum low-density 
lipoprotein (LDL) cholesterol in the form of modified/
oxidized LDL (oxLDL) is believed to play a key role dur-
ing all stages of the disease by regulating the expression 
of chemokines and proinflammatory cytokines in the 
arterial wall [1]. Pulmonary artery atherosclerosis is a 
frequent autopsy finding, associated with different clini-
cal conditions, and an important predictor of aortic ath-
erosclerosis, ventricular hypertrophy and pulmonary 
embolization [2, 3]. In this context, pulmonary embolism 
(PE) represents the occlusion of the pulmonary artery 
branches by a thrombus (blood clot) that has traveled 
from elsewhere through the bloodstream. PE is a com-
mon, lethal disease with considerably high morbidity 
and mortality [4]. Atherosclerotic lesions in the arterial 
tree often occur especially at bifurcations, i.e. at sites 
exposed to turbulent blood flow leading to mechanical 
shear stress on the vessel wall that affects the endothe-
lial cell homeostasis by e.g. pro-inflammatory activation 
[3]. Interestingly, lesions do not develop in veins under 
normal environment of low pressure and high flow, but 
when veins are used as arterial bypass, e.g. aortocoro-
nary venous bypass, they may develop atherosclerotic 
lesions, probably because they are subjected to high pres-
sure [5, 6]. The precise mechanisms leading to the devel-
opment and progression of atherosclerotic lesions still 
remain largely unknown, but the regulation by growth 
factors may have an impact in lesion development. This 
is further supported by the observation that growth 
factor concentrations are frequently increased under 

pathological conditions and therefore giving informa-
tion on the severity of the disease [7]. However, there are 
limited data on the use of biomarkers in predicting mor-
bidity in populations of patients e.g. with atherosclerosis 
or acute PE. In this context, growth differentiation fac-
tor-15 (GDF-15) is linked to e.g. cardiovascular diseases 
and is related to mortality in older adults [8, 9]. Recent 
data indicate that in patients with acute PE, elevated con-
centrations of GDF-15 amongst others, are helpful to 
identify patients at risk of death during the acute phase 
of PE [10]. Under normal conditions, GDF-15 is only 
weakly expressed in most tissues [11], which are pro-
tected from inflammation and lesion development [12]. 
GDF-15 is a distant and divergent member of the trans-
forming growth factor (TGF)-β superfamily [11, 13–15] 
with characteristics that most recently suggested GDF-15 
as a potent biomarker for cardiac events and/or athero-
sclerotic diseases [16, 17]. Previously, we have shown that 
GDF-15 is a factor implicated in several pathophysiologi-
cal processes including autophagy, inflammation, chronic 
vascular diseases, cancer, ischemia, and atherosclero-
sis [18–21]. However, GDF-15 is strongly upregulated 
under conditions associated with cellular stress such as 
tissue hypoxia/hyperoxia, inflammation, and oxidative 
stress [22–25]. Moreover, GDF-15 significantly contrib-
utes to subclinical coronary heart disease (CHD) inde-
pendently of established cardiovascular disease (CVD) 
risks [26] and has been frequently associated with CVD 
[27]. Interestingly, hypoxia contributes to the formation 
of many pathologies of the blood vessel wall, like athero-
sclerosis, aortic aneurysms, pulmonary artery stenosis, 
and chronic venous disease [25, 28, 29]. In this context, 
elevated GDF-15 levels have been recently found dur-
ing early chronic obstructive pulmonary disease (COPD) 
[29–32]. Moreover, GDF-15 has a potentially protective 
role for endothelial cells by promoting the activation 
of HIF-1 (hypoxia-inducible factor-1), which has been 
found in human pulmonary microvascular endothelial 
cells and umbilical vein endothelial cells (HUVEC) under 
hypoxia [33, 34]. Hypoxia of the vascular wall may be 
caused by inadequate oxygenation or increased cellular 
oxygen demand triggered by shear stress and increased 
hydrostatic pressure [35]. Thus, induction of GDF-15 
expression by hypoxia and shear stress in combination 
with its effects on cell proliferation and apoptosis sug-
gests a functional role in pulmonary endothelial cells 

Conclusions:  Atherosclerotic lesions occur in both, BT and PT, however, the size is smaller in PT, possibly due to the 
effect of the low-oxygen blood and/or lower blood pressure. GDF-15 is involved in atherosclerotic processes in BT and 
PT, although different mechanisms (e.g. apoptosis) in these two vessels seem to exist.
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and thereby in the pathobiology of complex vascu-
lar lesions in pulmonary arterial hypertension (PAH) 
[33, 36].  However, the cellular tissue sources, as well as 
detailed functional effects of GDF-15 in the CVS, have 
not been completely elucidated. Several human studies 
associate GDF-15 levels with CVD as, acute myocardial 
infarction [37], hypertensive patients [38] and hyperten-
sive left ventricular hypertrophy [39]. However, after pro-
longed hyperoxia and consequent lung injury, GDF-15 
mRNA expression was also markedly induced and found 
up-regulated in the lungs of patients with PAH [22, 33]. 
Moreover, plasma GDF-15 levels in hypertensive patients 
with left ventricular hypertrophy (LVH) were higher than 
those of hypertensive patients without LVH [40]. Addi-
tionally, in hypertensive patients a positive correlation 
between plasma GDF-15 levels and LVH was found, sug-
gesting that GDF-15 may be involved in the development 
of LVH hypertension [40]. A recent study has also dem-
onstrated elevated serum levels of GDF-15 in patients 
with idiopathic pulmonary arterial hypertension (IPAH) 
[41].

In summary, GDF-15 seems to be involved in orches-
trating atherosclerotic lesion progression in arteries [20, 
42]. Thus, this work aimed to characterize the influence 
of GDF-15 deficiency on the development, progression, 
and morphology of atherosclerotic plaques in blood ves-
sels with low-oxygen blood and low blood pressure as the 
PT, in hypercholesterolemic ApoE-knockout mice. Addi-
tionally, it was examined whether atherosclerotic changes 
exist in a human post mortem sample of the pulmonary 
artery.

Methods
Animals
GDF-15 knockout/lacZ knock in (GDF-15−/−) mice [43] 
were crossbred with ApoE knockout (ApoE−/−) mice 
(Charles River, Sulzfeld, Germany), were housed 4 to 5 
in each cage under the same conditions, with dark–light 
cycles of 12  h and constant temperature of 24 ± 2  °C 
with ad libitum access to food and water in cages with a 
minimum area of 100 cm2 per animal according the GV-
SOLAS (Committee for Animal Welfare Laboratory ani-
mal husbandry, August 2014. Link: http://​www.​gv-​solas.​
de/​filea​dmin/​user_​upload/​pdf_​publi​kation/​Tierh​altung/​
hal_​20140​8Tier​gerec​hte-​Haltu​ng-​Maus.​pdf ) with appro-
priate environmental enrichment. An approval or per-
mission from the farm owner to use the animals was not 
necessary.

Thus, male GDF-15−/−/ApoE−/−- and ApoE−/−-mice, 
strain C57BL/6 were used for all investigations. All ani-
mal experiments were approved by the Regierungsprä-
sidium Karlsruhe (35–9185.81/G-99/06) and the local 

authorities at the University of Heidelberg and were done 
in compliance with the regulations for animal studies at 
the University of Heidelberg. This investigation conforms 
to the Guide for the Care and Use of Laboratory Animals 
(8th edition), 2011 [44]. All animal studies were per-
formed in compliance with the German laws relating to 
the conduct of animal experimentation. Our manuscript 
adheres to the ARRIVE guidelines (http://​www.​nc3rs.​
org. uk/page.asp?id = 1357) for the reporting of animal 
experiments.

Animal study and blood samples
After 9 weeks, the male mice were fed for 20 weeks with 
or without cholesterol-enriched diet (CED, TD.88137; 
Harlan Teklad, Madison, WI), 15.2% kcal protein, 42.7% 
kcal carbohydrates and 42.0% kcal fat (0.2% cholesterol). 
The groups of 5 mice were randomly assigned. Body 
weight and blood samples were taken before and after 
CED. Animals were deeply narcotized by inhalation 
with diethyl ether saturated air in a narcosis chamber 
until plane III or IV of deep tolerance stage III of Gue-
del was reached, according to GV-SOLAS recommen-
dation (https://​www.​uwind​sor.​ca/​animal-​care-​commi​
ttee/​sites/​uwind​sor.​ca.​animal-​care-​commi​ttee/​files/​
module-​10.​pdf ). A 15 ml falcon tube with a swab, soaked 
with diethyl ether, was used as a head mask to guaran-
tee a deep narcosis stage during the perfusion procedure. 
The abdomen, thorax and the right cardiac auricle were 
opened quickly (within 30 s). The outflowing blood was 
collected from the thoracic cavity, at this time point, 
death occurred. The vascular system was perfused with 
a solution consisting of 38°-39 °C warmed phosphate PBS 
with 5 Ul/ml heparin (Liquemin® 25,000 Ul/5 ml, Roche, 
Grenzach, Germany) afterward the brachiocephalic 
trunk (BT) and pulmonary trunk (PT) were removed.

The blood samples were heparinized (0.25 I.U./ml, 
Roche) and plasma was separated after 10 min centrifu-
gation (650 × g). Plasma lipids (total cholesterol and tri-
glycerides) were analysed using via enzymatic endpoint 
method (Randox Lab., Crumlin, UK) and GPO-PAP 
method (glycerol- 3-phosphate oxidase–peroxidase; Ran-
dox Lab.), respectively, according to the manufacturer’s 
instructions.

Genotyping
Genomic DNA was isolated, according to the manufac-
turer’s instructions (DNA Extraction Solution, Epicentre 
Biotechnologies, Madison, USA). Transgenic positive 
animals were identified by polymerase chain reaction 
(PCR) of genomic tail DNA, using intron spanning oligo-
nucleotides [20].

http://www.gv-solas.de/fileadmin/user_upload/pdf_publikation/Tierhaltung/hal_201408Tiergerechte-Haltung-Maus.pdf
http://www.gv-solas.de/fileadmin/user_upload/pdf_publikation/Tierhaltung/hal_201408Tiergerechte-Haltung-Maus.pdf
http://www.gv-solas.de/fileadmin/user_upload/pdf_publikation/Tierhaltung/hal_201408Tiergerechte-Haltung-Maus.pdf
http://www.nc3rs.org
http://www.nc3rs.org
https://www.uwindsor.ca/animal-care-committee/sites/uwindsor.ca.animal-care-committee/files/module-10.pdf
https://www.uwindsor.ca/animal-care-committee/sites/uwindsor.ca.animal-care-committee/files/module-10.pdf
https://www.uwindsor.ca/animal-care-committee/sites/uwindsor.ca.animal-care-committee/files/module-10.pdf
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Morphometry and immunohistology
For morphometric and immunohistological investiga-
tions, the BT and PT from mouse genotypes were fixed 
in 4% (v/v) paraformaldehyde (PFA) / Phosphate Buffered 
Saline (PBS), as well all post mortem sample of the left 
pulmonary artery (Additional file  1: Fig. S1) extracted 
from donated bodies of the Institute for Anatomy, fixed 
in 4% paraformaldehyde / 96% ethanol. The use and 
examination of the pulmonary arteries were approved by 
the local Ethics committee of the Medical Faculty of the 
Philipps University of Marburg (AZ: Study 80/21).

After fixation, the vessels were washed with several 
changes of PBS and dehydrated by an ascending series 
of alcohols (50%, 70%, 90%, 100%, and isopropanol). 
The alcohol was then removed from the tissue by stor-
ing it in cedar oil for several days. The material was then 
left in hot paraffin (60° C) for 5–6 h and after hardening 
subsequently cut using a microtome. The extent of ath-
erosclerotic plaques was morphometrically measured by 
computer-assisted morphometry. Immunohistochem-
istry was routinely performed according to methods 
described earlier [20, 45].

Sodium citrate retrieval was performed using a micro-
wave at 600  W (2  min) and 10  min by 360  W (CD68; 
Ki67; APG5L/ATG, COX-2 and IL6), or using proteo-
lytic digestion Pepsin/0.01 M HCL (0.4%) by RT 20 min 
(α-Actin). Immunoreactions were achieved with the fol-
lowing antibodies: Polyclonal (pc) rabbit anti-mouse 
smooth muscle (sm-) α-actin, pc rabbit anti-mouse 
APG5L/ATG, pc rabbit anti-mouse Ki67, COX-2 and 
IL-6 (Abcam, Cambridge, UK); monoclonal (mc) mouse 
anti-human CD68 (Dako, Hamburg, Germany), as well 
as mc rat anti-mouse CD68 (AbD Serotec, Düsseldorf, 
Germany).

Single staining was performed after incubation of the 
sections with the primary antibody and thereafter with 
biotinylated rabbit anti-Maus (Dianova GmbH, Ham-
burg, Germany), goat anti-rabbit horseradish peroxidase 
(HRP)-conjugated (Linaris GmbH, Mannheim, Ger-
many); sheep anti-Digoxigenin-HRP conjugated. Vec-
tastain ABC-Kit (Vector Laboratories Inc., Burlingame, 
USA) and 3,3′-diaminobenzidine (DAB, Merck/Sigma-
Aldrich Chemie GmbH, Munich, Germany) were used as 
detection system.

Necrotic cores (Nc) were defined as the lesion area 
absent of nuclei [47, 48] with modifications. To classify 
lesions as stable and unstable some characteristic plaque 
features were evaluated: Quantification of Nc (unstable 
lesion with large Nc was defined as occupying > 10% and 
stable < 10% of the total surface plaque, because necrotic 
areas of the lesions of the PT reached a minimum area of 
8.0% and a maximum area of 14.5%, the mean between 
both extremes was taken as a limit, i.e. 10% (exactly 

11.2% ± 1.2). Consequently, using the 10% Nc and disrup-
tion/rupture of the internal elastic lamina (media degen-
eration), the number of stable and unstable plaques was 
quantified in BT and PT to get accordingly informations 
concerning comparison of BT and PT.

Detection of DNA fragmentation (TUNEL)
DNA fragmentation, a characteristic of apoptotic cells, 
was analysed on 4% PFA-fixed cryo cross sections by the 
TUNEL (TdT-mediated dUTP nick end labeling) tech-
nique, using the ApopTag kit (Oncor, Heidelberg, Ger-
many) as previously described [48].

Statistical analyses
All statistical analyses were performed with SigmaPlot 
12® (Systat Software Inc., San José, USA) by compar-
ing ApoE−/− and GDF15−/−ApoE−/− mice or BT vs PT. 
Statistical significance was determined by the unpaired 
2-tailed Student’s t-test. The Mann–Whitney U rank-
sum W test was applied when data failed normality and/
or equal variance test. Thus, Shapiro–Wilk normality test 
and Brown–Forsythe equal variance test were applied. 
When appropriate, statistical significance was deter-
mined by one-way analysis of variance (ANOVA). Results 
are presented as a means + standard error of the mean 
(SEM). P values of less than 0.05 (p < 0.05) were consid-
ered as statistically significant.

Results
Body weight and plasma lipid
After 20 weeks CED the body weight of adult mice GDF-
15−/−ApoE−/− was significantly (p < 0.001) 22.9% higher 
than that of ApoE−/− animals, whereas the tibia length 
was similar in both genotypes (Fig.  1A, B). To assess, 
whether the gain of weight in the absence of GDF-15 
relates to lipid metabolism, total plasma cholesterol, 
and triglyceride levels were determined: After 20  weeks 
CED, plasma triglyceride significantly (p < 0.05) increased 
by 35.3% in GDF-15−/−ApoE−/− mice compared with 
ApoE−/− mice, whereas plasma cholesterol levels were 
similar in both genotypes (Fig. 1C and D).

Cellular composition/morphology of atherosclerotic 
plaques
Stenosis of blood vessels due to development of athero-
sclerotic plaques is a hallmark of atherosclerosis; thus, 
we investigated the effect of the GDF-15 deficiency on 
the development and progression of the atherosclerotic 
lesions in the PT and BT. After 20 weeks CED, the lumen 
stenosis in the BT of GDF-15−/−ApoE−/− mice was sig-
nificantly (p < 0.001) reduced by 19.0% compared to 
ApoE−/− mice and the lumen stenosis in the PT of GDF-
15−/−ApoE−/− mice was decreased by 6.7% compared to 
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ApoE−/− mice (Fig.  2A, B). Interestingly, comparison of 
the lumen stenosis between PT and BT within each gen-
otype showed a significant (p < 0.001) 38.8% (ApoE−/−) or 
26.4% (GDF-15−/−ApoE−/−) lower lumen stenosis in the 
PT compared with BT (Fig. 2A, B).

Additionally, we explored the necrotic core (Nc) for-
mation in sections of BT and PT. We found in BT of 
GDF15−/−ApoE−/− mice that decreased lumen steno-
sis was accompanied by a significant reduction of the 
Nc area (10%, p < 0.001) compared to ApoE−/− (Fig.  2B, 
C); these morphological effects were also seen in PT 
with a significantly (p < 0.005) 6.5% reduced Nc area in 
GDF15−/−ApoE−/− compared to ApoE−/− mice (Fig. 2B, 
C). Moreover, when comparing BT vs PT, the percent-
age of Nc area in BP of ApoE−/− mice was significantly 
(p < 0.04) 5.3% lower with no significant differences 
between Nc area in BT and PT of GDF-15−/−ApoE−/− 
mice (Fig.  2C). Consequently, plaque vulnerability was 
analyzed (Additional file  2: Fig. S2): We found that in 
BT of GDF15−/−ApoE−/− mice percentage of unsta-
ble lesions was 40% lower than in BT of ApoE−/− mice; 
moreover, in PT of GDF15−/−ApoE−/− mice percent-
age of unstable plaques was 57% lower than in ApoE−/− 
mice (Additional file  2: Fig. S2). When comparing BT 
with PT, stable plaques are 23% more frequent in PT of 
GDF15−/−ApoE−/− than in BT (Additional file 2: Fig. S2).

(Immuno)histochemical characterization of atherosclerotic 
plaques
We determined the percentage of CD68+ MΦ in ath-
erosclerotic lesions of the PT (Fig. 3). After 20 weeks of 

CED a significantly (p < 0.05) 39.8% higher percentage of 
CD68+ MΦ were found in plaques of GDF-15−/−ApoE−/− 
mice compared with ApoE−/− mice (Fig. 3A). The plaques 
of the PT in the mice of both genotypes showed compact 
structures and foamy morphology (Fig.  3B). Interest-
ingly, blue/green colored proteoglycan is found as the 
predominant component in the neointima in lesions 
of ApoE−/− and GDF-15−/−ApoE−/− mice (Fig.  3C). A 
larger extension of the Nc areas can also be observed in 
the lesions of ApoE−/− animals (Fig. 3C). The percentage 
of smooth muscle cells (SMC) is also an indicator of sta-
ble versus unstable plaques. In this context we found in 
atherosclerotic plaques in the PT of GDF-15−/−ApoE−/− 
mice after 20 weeks CED that the percentage of α-actin+ 
SMC was significantly (P < 0.05) increased by 7.3% com-
pared with ApoE−/− mice (Fig.  4A). The sm-α-actin 
immunoreactivity and the MOVAT stain showed a cap-
like localization in atherosclerotic plaques of both geno-
types (Fig.  4B, C). Moreover, autophagy and apoptosis 
may also influence plaque stability. Thus, we investigated 
the density of APG5L/ATG​+ cells in atherosclerotic 
lesions in the PT after 20 weeks of CED and found that 
the percentage of APG5L/ATG​+ cells was 17.1% lower, 
whereas density of TUNEL+ cells was significantly 
(p < 0.05) 32.9% higher in GDF-15−/−ApoE−/− than in 
ApoE−/− mice (Fig.  5A-D). Additionally, after 20  weeks 
of CED in atherosclerotic plaques of the PT the cell den-
sity and percentage of proliferative Ki67+ cells were simi-
lar in both genotypes (Fig.  6A-C). We also investigated 
the localization of inflammatory cells and we found low 
immunoreactivities of COX-2 and IL-6 in the lesions of 

Fig. 1  Effect of 20 weeks CED on body weight (A), tibia length (B), total (C) plasma cholesterol (Chol.) and (D) triglycerides (Trig.) of ApoE−/− and 
GDF15−/−ApoE−/− mice. Data are expressed as mean + SEM, n = 4–5
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Fig. 2  Effect of GDF-15 deficiency on lumen stenosis and necrotic core (Nc) areas in brachiocephalic trunk (BT) and pulmonary trunk (PT) of 
ApoE−/−- and GDF15−/−ApoE−/− mice after 20 weeks CED. A Open chest photos: A, auricula; AA, aortic arch; CC, common carotid artery; NX, vagus 
nerve; SA, subclavian artery; T, trachea. Red arrows: atherosclerotic plaques. Scale bar: 1000 µm. Percentage of lumen stenosis (B) and Nc area (C). 
Data are expressed as mean + SEM, n = 4–10
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PT. However, when COX-2 and IL-6 positive reactions 
were observed, the location was found predominantly in 
the endothelial lining and the subendothelial space of PT 
in GDF-15−/−ApoE−/− and ApoE−/− mice, but not within 
the atherosclerotic plaque (Additional file 3: Fig. S3).

(Immuno)histochemical characterization of atherosclerotic 
lesions in the human pulmonary artery
Because we asked whether these observations of athero-
sclerotic plaques in the PT only occur in mice, we fur-
ther investigated human blood vessels with deoxygenated 

Fig. 3  Effect of GDF-15 deficiency on morphology (MΦ, foam cells, collagen) of atherosclerotic plaques in the pulmonary trunk (PT). 
Immunohistomorphometric analyses of atherosclerotic lesions in the PT of ApoE−/− and GDF15−/−ApoE−/− mice after 20 weeks of CED. A 
CD68 + -cells in atherosclerotic plaques, B, C representative CD68+ immuno-stained cross sections and (D, E) Movat´s stain, L: Lumen, Nc: Necrotic 
core; TA: Tunica adventitia. Co: Collagen (yellow); Fc: Foam cells; Gs: Ground substance (light blue); Black arrow: CD68+ MΦ. Red arrow: elastic lamina 
rupture. Data are expressed as mean + SEM; scale bar: 100 µm, n = 4–5
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blood (pulmonary artery) including morphological exam-
inations. In the human pulmonary artery (Additional 
file  1: Fig. S1), HE staining of atherosclerotic plaque 
showed the characteristic morphological alterations of 
the intima layer observed in other vessels with athero-
sclerotic lesions (Fig.  7A). The plaque mainly contained 
foam cells and a loose tissue matrix surrounding the cells 
and necrotic cores (Fig.  7A). Immunohistological inves-
tigations of the human atherosclerotic pulmonary artery 

using sm-α-actin antibodies showed, a cap-like coating of 
the plaque by SMC and fibrous cells (Fig. 7B). SMC also 
diffusely distributed within the plaque (Fig. 7B). Moreo-
ver, human atherosclerotic pulmonary artery showed 
CD68-immunoreactive MΦ (brown), demarcated from 
the remaining area (light blue) of the plaque and the ves-
sel wall (Fig. 7C). Within the atherosclerotic plaque, MΦ 
revealed the characteristic form of foam cells. Addition-
ally, TUNEL+ apoptotic cells, as well as proliferating 
Ki67+- or APG5L/ATG​+ (autophagy) cells were observed 
to be distributed within the atherosclerotic lesion 
(Fig. 7D–F).

Discussion
Atherosclerosis is characterized by a multifactorial 
pathophysiology that affects different organs, particu-
larly the heart, brain, peripheral artery system and, thus, 
is associated with the development of CVD. In humans, 
atherosclerotic lesions usually are found at the origins 
of tributaries, bifurcations, and curvatures of arter-
ies [49]. The nature of the disease could be explained 
by local disturbances in the blood flow leading to shear 
stress. The high and the low-shear areas have been con-
sidered as primary sites of atheroma formation in the 
arterial tree [50–52]. However, it has been frequently 
observed that atherosclerotic lesions do not develop in 
the veins in their normal environment of low pressure 
and a high flow. Interestingly, it has been shown that the 
veins develop atherosclerotic lesions when they are used 
as arterial bypass grafts where they are subjected to high 
pressure [5, 6]. Similarly, atherosclerotic lesions develop 
in the pulmonary arteries under pulmonary hypertension 
[33, 53]. Related to this, in general, high blood pressure 
is a well-recognized risk factor in CVD, a phenomenon 
that fits well in the hypothesis of “arterial wall stress” 
where the stress is produced not by blood flow but by 
blood pressure. In a similar way, low level of oxygen in 
the blood may contribute to the pathogenesis of various 
diseases of the vascular wall [28]. In this context, ath-
erosclerosis in the pulmonary arteries, its branches, 
and after pulmonary hypertension are rarely affected by 
atherosclerosis and are not common in human [54, 55]. 
Most recently it has been shown that pulmonary artery 
calcification was significantly greater in patients with 
suspicion of stable angina pectoris compared to healthy 

Fig. 4  Effect of GDF 15 deficiency on the morphology (SMC, 
collagen) of atherosclerotic plaques in the pulmonary trunk (PT). 
Immunohistomorphometric analyses of atherosclerotic lesions in 
the PT of ApoE−/− and GDF15−/−ApoE−/− mice after 20 weeks of 
CED. A smooth muscle cells (α-actin +) in atherosclerotic plaques. 
B representative α-actin+ immuno-stained cross sections and C  
Movat´s stain. L: Lumen, Nc: Necrotic core; TA: Tunica adventitia. Co: 
Collagen (yellow); Fc: Foam cells; Gs: Ground substance (light blue); 
Nc: Necrotic core. Black arrow: SMC cap; black broken arrows: SMC 
within tunica media. Data are expressed as mean + SEM; scale bar: 
100 µm; n = 4–5

Fig. 5  Effect of GDF-15 deficiency on the morphology (apoptosis, autophagy) of atherosclerotic plaques in the pulmonary trunk (PT). 
Immunohistomorphometric / histochemical analyses of atherosclerotic lesions in the PT of ApoE−/− and GDF15−/−ApoE−/− mice after 20 weeks 
of CED. A APG5L/ATG (autophagy); B TUNEL (apoptosis); representative pictures of immuno-/histochemistry reactions for C APG5L/ATG 
immuno-stained cross sections and D TUNEL+. Black arrow: APG5L/ATG​ + or TUNEL+; L: lumen; Nc: necrotic core; TA: tunica adventitia. Data are 
expressed as mean + SEM; scale bar 100 µm, n = 4–5

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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control by using quantitative 18F-sodium fluoride posi-
tron emission tomography/computed tomography 
(NaF-PET/CT), a method that has been most recently 
suggested to be of clinical use in the early detection of 
pulmonary artery atherosclerosis [56]. In this regard, 
characterization of morphological differences between 
the lesions in pulmonary arteries and other vessels of the 
circulatory system may be of interest for early diagnosis 
and the use of different therapies. Recently, a sample of 
the pulmonary artery taken during the anatomy prepara-
tion course (Additional file 1: Fig. S1) has shown typical 
characteristics of advanced atherosclerotic lesions, with a 
cap-like coating of the plaque by SMC and fibrous cells, 
with SMC also diffusely distributed and extended foam 
cells within the plaque. Atherosclerotic processes analo-
gously occurring in advanced human lesions are also seen 
in the BT of ApoE−/− mice [57]. We found that long-term 
feeding of ApoE−/− mice with CED is accompanied by up 

regulation of GDF-15 in atherosclerotic lesions, whereas 
GDF-15 deficiency reduced lumen stenosis in the BT as 
well as 18FDG uptake in the aortic arch [20]. However, 
not much is known about the influence of GDF-15 on the 
development of lesions in the pulmonary arteries or the 
PT. In this context, GDF-15 is involved in orchestrating 
atherosclerotic lesion progression by regulating apoptotic 
cell death and IL-6–dependent inflammatory responses 
to vascular injury [20]. GDF-15 deficiency inhibits signif-
icantly the lumen stenosis in the BT and the aortic arch 
compared with ApoE−/− mice [20] as well as (by trend) in 
the PT, according to the present investigations. To char-
acterize the morphological plaque composition in the PT, 
we performed (immuno)histochemical investigations. It 
is generally accepted that atherosclerotic lesions contain-
ing a high number of M2 MФ are more stable [58, 59]. 
In mouse, at the early stages of atherosclerotic plaques 
M2 MФ are present whereas M1 MФ are the most fre-
quent phenotype in the advanced lesions [60, 61]. In this 
respect, our results show an increase of CD68+ in the 
GDF-15−/−ApoE−/− compared to the ApoE−/− mice in 
the PT supporting our previous work in which we have 
already demonstrated a similar effect in the BT [20].

However, we found that the percentage of the Nc area 
is lower in GDF-15−/−ApoE−/− than in ApoE−/− mice in 
BT and PT, a sign of instability in both kind of vessels. 
The presence of a lower density of MФ in the lesions 
of ApoE−/− animals may be due to the fact that the Nc 
areas in this group are larger than in GDF-15−/−ApoE−/− 
mice. These similar observations in both kind of vessels 
(PT and BT) indicate independence of the blood oxy-
genation and/or the pressure and appear to be affected 
by GDF-15 (deficiency) after CED. In this context, innu-
merable evidence confirms that endothelial dysfunc-
tion is a characteristic of patients with hypertension [62, 
63]. Inflammation is a common mechanism related to 
endothelial dysfunction and there is a close relationship 
between oxidative stress and inflammation [64]. Conse-
quently, we have investigated COX-2 and IL-6 immuno-
reactivities in the PT, as well as in the BT [20]. Unlike to 
our publication concerning BT [20] we here found a low 
COX-2 and IL-6 immunoreactivities in the lesions of PT 
were predominantly localized in endothelial cells and the 
subendothelial space of PT in GDF-15−/−ApoE−/− and 
ApoE−/− mice, but not within atherosclerotic plaque as 
we have found earlier in BT [20]. It is well known that 
the endothelial lining maintains normal with no or low 
expression of proinflammatory factors under normal 
homeostatic conditions. The well-known cardiovascular 
risk factors including smoking, aging, hypercholester-
olemia, hypertension, etc. are associated with alterations 
in endothelial function. These characteristic findings and 
the lower degree of lumen stenosis observed in PT in 

Fig. 6  Effect of GDF-15 deficiency on the morphology (cell number, 
proliferation) of atherosclerotic plaques in the pulmonary trunk 
(PT). Immunohistomorphometric / histochemical analyses of 
atherosclerotic lesions in the PT of ApoE−/− and GDF15−/−ApoE−/− 
mice after 20 weeks of CED. A Cell density and B Ki67 (proliferation). 
C representative Ki67+ immuno-stained cross sections; data are 
expressed as mean + SEM; scale bar: 100 µm; n = 4–5
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comparison with BT could be related to the lower blood 
pressure in the PT. Thus, it is tempting to speculate that 
these circumstances inhibit the growth of lesions, leading 
to an improved stability in PT than in BT after 20 weeks 
of CED.

Recent evidence shows that SMCs contribute to the 
formation of the majority of atheroma foam cells in 

ApoE−/− mice fed with a Western diet or standard chow 
for longer periods [65]. Sm-α-actin is an isoform typical 
of SMC, present in high amounts in vascular SMC and 
serves as a differentiation marker of SMC [66]. In pre-
vious publication, we showed no difference in the per-
centage of sm-α-actin–positive cells in atherosclerotic 
lesions in the BT in both genotypes [20], unlike what we 

Fig. 7  Exemplary post-mortem human necropsy of atherosclerotic pulmonary artery: A HE, B sm-α-actin+, (smooth muscle); C CD68+ 
(macrophages); D TUNEL (apoptosis); E Ki67 (proliferation), F APG5L/ATG (autophagy) and G negative control (absence of the primary antibody). Cell 
nuclei were counterstained with hematoxylin. L: Lumen, Nc: Necrotic core, Tm: Tunica media. Black arrow: positive immunoreactivity; magnification: 
scale bar 50 µm; negative control scale bar 100 µm
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found in the PT. In atherosclerotic plaques in the PT of 
GDF15−/−ApoE−/− mice we observed an increase of 
CD68+ MΦ and sm-α-actin+ cells. However, since foam 
cells may originate from both, monocytes/MΦ or SMC, 
a characterization and identification of the origin of the 
foam cells can provide more information on the effect 
of GDF-15 (deficiency) concerning the effect of the 
oxygenation level or the blood pressure on the plaque 
development. Survival and death of MФ are important 
factors that affect the lesion development and progres-
sion. In this regard, we have previously shown that oxLDL 
induces GDF-15 expression and apoptosis in human MФ 
[44, 45]. Subsequently, we have shown for the first time 
that a consequence of GDF-15 deficiency results in inhi-
bition of lumen stenosis in the BT of GDF15−/−ApoE−/− 
mice after 20  weeks CED [20]. These effects were 
observed, regardless of inhibition of apoptosis as well as 
autophagy and an increase in cell density but without 
effect on proliferation [20]. However, compared with BT, 
in the PT we observed a similar effect on autophagy but 
not on apoptosis. In atherosclerotic plaques in the PT of 
GDF15−/−ApoE−/− mice, it is likely that the increased 
apoptotic processes are responsible for the reduction of 
lumen stenosis, but without effecting cell density and, as 
in the BT, cell proliferation. This suggests that the PT has 
a different mechanism of lesion remodeling compared to 
the BT and the aortic arch, however, GDF-15 seem to be 
involved in this mechanism, too. In chronic inflamma-
tory lesions, often under low oxygen concentrations, MΦ 
are abundant and adapted to this condition [67]. Accord-
ing to this, we found more CD68+ immunoreactivity in 
the PT of ApoE−/− or GDF15−/−ApoE−/− mice than 
in BT [20]. It has been described in human atheroscle-
rotic lesions, that the hypoxic regions, e.g. the necrotic 
cores, are rich in foam cells and MΦ [68]. In this con-
text, it is well known that in humans and animal mod-
els the growth of atherosclerotic plaques is accompanied 
by hypoxia, which promotes atherosclerosis [69, 70]. For 
many cell types, a major effect of hypoxia is the induction 
of apoptosis [71]. Hypoxia is a known stimulus of inflam-
mation, angiogenesis, and apoptosis for MΦ [72]. MΦ 
begin to adopt a glycolytic metabolism allowing them 
to adapt readily when exposed to low oxygen conditions 
[67]. In this regard, it is proposed that certain populations 
of monocyte/MΦ survive better under conditions of low 
oxygen, thereby contributing to their increased numbers 
at sites of chronic inflammation as tumors, myocardial 
infarcts, and atherosclerotic plaques [67, 73]. This could 
be an explanation for an increased percentage of apop-
totic cells and CD68 + MФ in plaques of the PT than in 
the BT in both genotypes of mice. Despite the finding of 
an enhanced percentage of CD68 + MФ in the PT com-
pared to the BT, apoptosis levels are higher in the PT, 

suggesting that these apoptotic cells represent another 
type of cells, e.g. SMC or polarized MΦ. In vivo, in ath-
erosclerotic lesions, the polarization of MΦ in M1  and 
M2 populations are increased during plaque progression, 
where also apoptotic cells are localized in rupture-prone 
areas and necrotic cores [72]. According to this, we found 
in lesions of the PT an increase of apoptosis in GDF-15 
deficient mice accompanied by a reduction of the lumen 
stenosis. In this respect, hypoxia can induce survival or 
death by apoptosis or necrosis, depending on the cellu-
lar and metabolic environment [74, 75]. Related to this, 
GDF15 expression can increase in response to diverse 
extracellular stress signals, such as hypoxia/anoxia and 
inflammation [7], as described in cardiomyocytes, where 
GDF15 protects against apoptosis and protects the heart 
against ischemia/reperfusion [76]. The expression of 
GDF15 in cancer cell lines results in cell growth arrest 
and increased apoptosis, which suggests that GDF-15 
may have antitumorigenic activity [7]. This may resemble 
the physiological hypoxic environment within atheroscle-
rotic lesions, however, we found an increase of apoptosis 
in plaques of GDF-15−/−ApoE−/− mice. Thus, it may be 
assumed that the balance or imbalance between prolif-
eration, cell arrest, and apoptosis are critical factors in 
determining the plaque stadium and the development 
trend to a stable, unstable, or rupture-prone lesion. The 
specific response of the MΦ, polarization, apoptosis, 
necrosis, inflammation, perhaps depends on the abil-
ity of cells to adapt their metabolism to the plaque envi-
ronment, e.g. hypoxia [73, 74]. However, studies related 
to atherosclerotic regression models propose that MΦ 
apoptosis is the major pathway for its removal from the 
plaque, although, recent studies have suggested that MΦ 
can proliferate in the arterial wall and the plaque. [77, 
78].

Nevertheless, here we show for the first time a possible 
difference in the pattern of remodeling of the atheroscle-
rotic lesion between the BT and PT in ApoE−/−, as well 
as in GDF-15−/−ApoE−/− mice fed with CED and the 
importance of GDF-15 in this phenomenon. Inhibition 
of apoptosis may be anti-atherogenic and may thus be 
suggested as a therapeutic strategy to control plaque pro-
gression in the PT. Moreover, we have already shown that 
GDF-15 deficiency results in the activation of proapop-
totic and at the same time, the induction of antiapoptotic 
genes in peritoneal MФ incubated with oxLDL in  vitro 
[20]. These data are consistent with our in vivo findings 
in the BT, showing a reduction in TUNEL- or APG5L/
ATG-positive cells in atherosclerotic plaques of GDF-
15−/−ApoE−/− mice [20]. These data confirm the assump-
tion that GDF-15 may be important in MФ death and the 
remodeling of atherosclerotic lesions as has been also 
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postulated by others [79–81] and that GDF-15 signaling 
may be a useful novel target for therapeutic intervention.

Atherosclerotic lesions in the pulmonary artery are 
frequently found in individuals with cardiopulmonary 
mechanisms of death, such as PE [55]. An early progno-
sis of PE is a crucial clinical challenge, which would allow 
choosing the appropriate treatment and reducing the 
mortality rate. In this context, GDF-15 has been identi-
fied as a predictor of CVD and related also to acute PE 
[82]. According to this, the serum level of GDF-15 was 
found to be significantly higher in patients with PE com-
pared with controls [83, 84]. In this regard, we unexpect-
edly found in the human pulmonary artery from our 
anatomy course, a few numbers of GDF-15+ cells distrib-
uted, mainly in the tunica media (data not shown). This 
observation could be interpreted that the origin of cir-
culating GDF-15 in patients with PE is probably not the 
pulmonary arteries.

GDF-15 expression can increase in response to diverse 
cellular stress signals, such as hypoxia/anoxia, inflamma-
tion, acute tissue injuries and tumoral processes [7]. In 
this respect, increased expression GDF-15—as observed 
in lungs of smokers and patients with COPD  contributes 
to cigarette smoke -induced pulmonary inflammation 
[85]. GDF-15 increases during COPD exacerbation but 
the role in stable COPD is unknown [26]. In this context, 
GDF-15 can be used as a systemic marker in patients 
with COPD, regardless of other cardiovascular risk fac-
tors [26]. Therefore, GDF-15 may be a powerful new 
biomarker not only for cardiovascular but also for car-
diopulmonary vascular disorders as well as a therapeutic 
target.

Conclusion
The size of the atherosclerotic lesions is smaller in PT 
than BT, possibly due to the effect of the low-oxygen 
blood and/or lower blood pressure. GDF-15 is involved 
in atherosclerotic processes in BT and PT, although dif-
ferent mechanisms in these two vessels seem to exist. In 
future studies measurements of the blood pressure as well 
as the blood oxygenation levels need to be performed to 
investigate a possible association between lumen stenosis 
and/or GDF-15 in low blood pressure vessels; characteri-
zation of MΦ subpopulations in atherosclerotic plaques 
should be done as well.”

Limitations
Unfortunately, the blood pressure as well as the oxy-
genation levels were not evaluated in this study and 
thus, makes it not possible to investigate an associa-
tion between lumen stenosis and/or GDF-15 in low 
blood pressure vessels. Moreover, regrettably the 

characterization of MΦ subpopulations was not per-
formed, too.
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