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Abstract

Background: Chest pain is one of the most common complaints among patients presenting to the emergency
department (ED). Causes of chest pain can be benign or life threatening, making accurate risk stratification a critical
issue in the ED. In addition to the use of established clinical scores, prior studies have attempted to create
predictive models with heart rate variability (HRV). In this study, we proposed heart rate n-variability (HRnV), an
alternative representation of beat-to-beat variation in electrocardiogram (ECG), and investigated its association with
major adverse cardiac events (MACE) in ED patients with chest pain.

Methods: We conducted a retrospective analysis of data collected from the ED of a tertiary hospital in Singapore
between September 2010 and July 2015. Patients > 20 years old who presented to the ED with chief complaint of
chest pain were conveniently recruited. Five to six-minute single-lead ECGs, demographics, medical history,
troponin, and other required variables were collected. We developed the HRnV-Calc software to calculate HRnV
parameters. The primary outcome was 30-day MACE, which included all-cause death, acute myocardial infarction,
and revascularization. Univariable and multivariable logistic regression analyses were conducted to investigate the
association between individual risk factors and the outcome. Receiver operating characteristic (ROC) analysis was
performed to compare the HRnV model (based on leave-one-out cross-validation) against other clinical scores in
predicting 30-day MACE.
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Results: A total of 795 patients were included in the analysis, of which 247 (31%) had MACE within 30 days. The
MACE group was older, with a higher proportion being male patients. Twenty-one conventional HRV and 115 HRnV
parameters were calculated. In univariable analysis, eleven HRV and 48 HRnV parameters were significantly
associated with 30-day MACE. The multivariable stepwise logistic regression identified 16 predictors that were
strongly associated with MACE outcome; these predictors consisted of one HRV, seven HRnV parameters, troponin,
ST segment changes, and several other factors. The HRnV model outperformed several clinical scores in the ROC
analysis.

Conclusions: The novel HRnV representation demonstrated its value of augmenting HRV and traditional risk factors
in designing a robust risk stratification tool for patients with chest pain in the ED.

Keywords: Heart rate variability (HRV), Heart rate n-variability (HRnV), Electrocardiogram, Chest pain, Risk
stratification, Emergency department

Background
Chest pain, which may be caused by life-threatening
myocardial infarction (MI) or benign musculoskeletal
pain, is one of the most common presenting complaints
in the emergency department (ED) [1–3]. Majority of
chest pain patients are subjected to extensive diagnostic
tests to rule out acute coronary syndrome (ACS), result-
ing in oftentimes, prolonged and costly ED admission,
with only a small proportion of these patients eventually
receiving a diagnosis of ACS [3]. This can strain
crowded EDs and reduce availability of resources for pa-
tients who need urgent medical attention. Hence, early
identification of chest pain patients who are at high-risk
of developing adverse cardiac events has been a pressing
issue to contend with in the ED. Several established clin-
ical scores have been used for risk stratifying chest pain
patients in the ED [4, 5], including the History, ECG,
Age, Risk factors and Troponin (HEART) [6], the
Thrombolysis in Myocardial Infarction (TIMI) [7], and
the Global Registry of Acute Coronary Events (GRACE)
[8] scores. Of these scores, the HEART score is the most
accurate and widely used [5, 9–12], with recent studies
focusing on the development of risk score-based clinical
pathways for rapid, yet safe discharge of low-risk pa-
tients [1, 3, 13, 14].
In a recent review of clinical scores for ED patients

with chest pain [5], heart rate variability (HRV) has
demonstrated its capability in building predictive
models for accurate risk stratification [15–17]. HRV is
a widely adopted tool for evaluating changes in car-
diac autonomic regulation, and has been shown to be
strongly associated with the autonomic nervous sys-
tem (ANS) [18–20]. HRV analysis characterizes the
beat-to-beat variation in an electrocardiogram (ECG)
by utilizing time and frequency domains, and nonlin-
ear analyses [19]. Reduced HRV has been found to be
a significant predictor of adverse cardiac outcomes
[21]. Given the complexity of quantifying HRV repre-
sentation, several tools such as the PhysioNet

Cardiovascular Signal Toolbox [22] and Kubios HRV
[23] have been developed to standardize HRV
analyses.
Based on the principle of parameter calculation on

normal R-R intervals (RRIs; in this paper, RRIs are
equivalent to normal-to-normal [NN] intervals, in which
abnormal beats have been removed), HRV analysis gen-
erates only one set of parameters from a fixed length of
ECG record. This limits the amount of information that
can be extracted from raw ECG signals. In this paper,
we proposed a novel representation of beat-to-beat vari-
ation, named as heart rate n-variability (HRnV) [24] to
characterize RRIs from a different perspective. With the
use of HRnV measures, multiple sets of parameters can
be calculated from the same ECG record, which signifi-
cantly increases the amount of extracted information.
Our study is the first clinical application and evaluation
of the HRnV representation in risk stratification of chest
pain patients in the ED. We hypothesized that HRnV,
while closely related to conventional HRV, can provide
supplementary information associated with adverse car-
diac events. We also investigated the potential use of
HRnV parameters to develop risk prediction tools.

Methods
Study design and setting
We conducted a retrospective analysis of data collected
in our previous study on risk stratification of chest pain
patients in the ED [9]. A convenience sample of patients
was recruited at the ED of Singapore General Hospital, a
tertiary hospital with around-the-clock primary percu-
taneous coronary intervention capabilities and a median
door-to-balloon time of 101 min [25], between Septem-
ber 2010 and July 2015. At ED triage, patients are classi-
fied using the Patient Acuity Category Scale (PACS),
with PACS 1 patients being the most critically ill and re-
quiring immediate medical attention and PACS 4 pa-
tients being non-urgent cases. In this study, patients >
20 years old who presented to the ED with chief
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complaint of chest pain and with PACS of 1 or 2 were
included. Patients were excluded from the study if they
had ST-elevation myocardial infarction (STEMI) or an
obvious non-cardiac etiology of chest pain diagnosed by
the primary emergency physician. Patients were also ex-
cluded if their ECGs had high level of noise or if they
were in non-sinus rhythm; these criteria were applied to
ensure the quality of HRV and HRnV analyses. Ethical
approval was obtained from the Centralized Institutional
Review Board (CIRB, Ref: 2014/584/C) of SingHealth,
the largest public healthcare system in Singapore that in-
cludes the Singapore General Hospital as a key partner.
Patient consent was waived for this study.

Data collection
During the data collection period, five to six-minute
single-lead (lead II) ECG recordings were retrieved from
the X-Series Monitor (ZOLL Medical Corporation,
Chelmsford, MA). The first set of vital signs and tropo-
nin values from the recruited patients were extracted
from the hospital’s electronic health records (EHR). In
this study, high-sensitivity troponin-T was used, and an

abnormal value was defined as > 0.03 ng/mL [26]; it was
further stratified into three groups and coded as 0 if the
value was ≤0.03 ng/mL, 1 if the value was between 1 and
3 times the normal limit, and 2 if the value was > 3 times
the normal limit. Additionally, patients’ first 12-lead
ECGs were interpreted by two independent clinical re-
viewers. Pathologic ST-elevation, ST-depression, T-wave
inversions, and Q-waves were recorded. Patient demo-
graphics, medical history, and information required for
computing the HEART, TIMI, and GRACE scores were
retrospectively reviewed and obtained from EHR.

Proposed HRnV representation of beat-to-beat variation
in ECG
HRnV: a novel measure with non-overlapping RRIs
Prior to introducing the new HRnV measure, we define a
new type of RRI called RRnI, where 1 ≤ n ≤N, and N≪N̂ ;
N̂ is the total number of RRIs. The definition of RRnI is
illustrated in Fig. 1a. When n = 1, RRnI is equivalent to
conventional RRI. When n > 1, every n adjacent RRI is
connected to form a new sequence of RRnIs. By using

Fig. 1 a Illustration of R-R intervals (RRIs) and the definition of RRnI where 1≤ n ≤ N and N≪N̂. N̂ is the total number of RRIs; b Illustration of RRIs

and the definition of RRnIm where 1≤ n ≤ N, 1≤m≤ N − 1, and N≪N̂. N̂ is the total number of RRIs and m indicates the non-overlapping portion
between two consecutive RRnIm sequences
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this strategy, we can create a maximum number of (N − 1)
new RRnI sequences from conventional single RRI se-
quence. With these newly generated RRnI sequences, the
calculation of HRnV parameters is straightforward and can
be accomplished by applying established quantitative
methods including time and frequency domain analyses
and nonlinear analysis [18, 19]. In describing this new
measure, we use the term “HRnV” prior to parameter
names to indicate that these parameters are calculated from
RRnI sequences. As noted in the above, HRnV is a novel
measure based on newly generated, non-overlapping RRnIs.
The computed HRnV parameters include but are not lim-
ited to the following: the average of RRnIs (HRnV mean
NN), standard deviation of RRnIs (HRnV SDNN), square
root of the mean squared differences between RRnIs (HRnV
RMSSD), the number of times that the absolute difference
between two successive RRnIs exceeds 50ms (HRnV
NN50), HRnV NN50 divided by the total number of RRnIs
(HRnV pNN50), the integral of the RRnI histogram divided
by the height of the histogram (HRnV triangular index), low
frequency power (HRnV LF power), high frequency power
(HRnV HF power), approximate entropy (HRnV ApEn),
sample entropy (HRnV SampEn), and detrended fluctuation
analysis (HRnV DFA), among others. Notably, two new pa-
rameters NN50n and pNN50n are created, where 50 × n
ms is set as the threshold to assess the difference between
pairs of consecutive RRnIs.

HRnVm: a novel measure with overlapping RRIs
Like RRnI that is used in HRnV, to define HRnVm measure,
we introduce another type of RRI called RRnIm, where 1 ≤
n ≤N, 1 ≤m ≤N − 1, and N≪N̂ . In the RRnIm sequence, m
is used to indicate the level of overlap between consecu-
tive RRnIm sequences. As illustrated in Fig. 1b, (n −m)
RRIs form the overlapping portions. When m = n, RRnIm
becomes RRnI; therefore, the upper limit of m is N − 1. By
controlling the overlap among these newly generated
RRnIm sequences, we can create a maximum number of
(N × (N − 1)/2) RRnIm sequences (excluding the RRnI se-
quence) from conventional single RRI sequence. For each
of the newly created RRnIm sequences, we apply time and
frequency domain analyses, and nonlinear analysis to cal-
culate HRnVm parameters. We add the term “HRnVm”
prior to the parameters to denote that they are computed
from RRnIm sequences. For example, the average RRnIm
intervals and the sample entropy are written as HRnVm

mean NN and HRnVm SampEn, respectively. The HRnVm

measure extracts more information than HRnV, by adopt-
ing a strategy of controlling sequence overlap.

HRnV analysis and parameter calculation
We developed the HRnV-Calc software suite (https://
github.com/nliulab/HRnV) to calculate HRnV parameters.

The HRnV-Calc software integrates functions from the
PhysioNet Cardiovascular Signal Toolbox [22] to perform
standardized ECG signal processing and QRS complex de-
tection. Given the short ECG records in this study, the
upper limit of n was set as three; thus, six sets of parame-
ters were calculated, namely HRV, HR2V, HR2V1, HR3V,
HR3V1, and HR3V2.

Clinical outcomes
The primary endpoint in this study was a composite out-
come of major adverse cardiac events (MACE) [27], in-
cluding all-cause death, acute myocardial infarction
(AMI), and revascularization (coronary artery bypass
graft [CABG] or percutaneous coronary intervention
[PCI]) within 30 days of ED presentation.

Statistical analysis
Continuous variables were presented as mean and stand-
ard deviation and compared between two categories of
the primary outcome (MACE) using two-sample t-test.
Categorical variables were presented as frequency and
percentage and compared between two categories of the
primary outcome (MACE) using chi-square test. A sta-
tistically significant difference was defined as p < 0.05.
To evaluate the HRnV parameters and other risk factors,
we conducted univariable and multivariable analyses and
subsequently developed simple prediction models using
traditional logistic regression. In building the HRnV pre-
diction model, we selected candidate variables with p <
0.2 in the univariable analysis and fed them into the
multivariable stepwise logistic regression. To evaluate
the predictive performance, we used leave-one-out
cross-validation (LOOCV) to conduct the analysis.
Receiver operating characteristic (ROC) analysis [28]

was performed to compare prediction performances
among the HRnV model, HEART, TIMI and GRACE
scores. The area under the ROC curve (AUC), sensitiv-
ity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV) were reported as predictive
measures. Data preparation, descriptive analysis, and
predictive model development were performed in R ver-
sion 3.6.0 (R Foundation, Vienna, Austria); ROC analysis
was conducted in MATLAB R2019a (MathWorks, Na-
tick, MA).

Results
A total of 795 patients were selected from the originally
recruited 922 patients [9]. Twenty-eight patients were
excluded for ECG recording issues, four were excluded
for obvious non-cardiac chest pain, and 95 were ex-
cluded for irregular rhythm/artifacts. Among the in-
cluded 795 patients, 247 (31%) had the primary outcome
of 30-day MACE. Table 1 shows patient baseline charac-
teristics. Patients with the primary outcome were older
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(mean age 61 years vs. 59 years, p = 0.035), with a higher
proportion being males (76.1% vs. 64.6%, p = 0.002).
There was no statistically significant difference between
MACE and non-MACE groups in terms of patient ethni-
city. Factors such as history of diabetes and current
smoking status were significantly more prevalent in the
group with MACE.
Descriptive analyses of HRV and HRnV parameters

are tabulated in Table 2. In this clinical case study, N
was set as 3, thus HR2V, HR2V1, HR3V, HR3V1 and
HR3V2 parameters were calculated. Among time domain
parameters such as mean NN, SDNN and RMSSD, the
HRnV and HRnVm values were generally incremental
with an increase in n. Notably, HR2V NN50 and HR3V
NN50 were much lower than conventional HRV NN50.
Moreover, NN50n and pNN50n are parameters specific-
ally applicable to the HRnV representation. Like time
domain parameters, the same trend of changes in fre-
quency domain parameters were observed. The magni-
tude of increment in VLF power and LF power was
larger than that of HF power with increasing n. One ex-
ception, however, was the normalized HF power, where
HRnV and HRnVm parameters were smaller than that of
HRV. In nonlinear analysis, there were marked differ-
ences in Poincaré SD2 values between HRV and HRnV

parameters. HR2V SampEn and HR3V SampEn were
considerably larger compared to SampEn parameters of
HRV, HR2V1, HR3V1, and HR3V2, as their confidence in-
tervals (CIs) were wide. The wide CI was due to insuffi-
cient data points of less than 200 [19], as our ECG
recordings were only five to six minutes long. HR2V1,
HR3V1 and HR3V2 were free from this issue as they were
calculated from overlapping RRnIm sequences where
more data points were available.
Table 3 presents the results of univariable analyses of

HRnV and HRnVm parameters. Eleven out of 21 conven-
tional HRV parameters were statistically significant.
Additionally, 13 HR2V, six HR3V, 11 HR2V1, seven
HR3V1 and 11 HR3V2 parameters were also significant.
Overall, additional 115 HRnV parameters were derived,
among which 48 showed statistical significances between
patients with 30-day MACE and those without. Among
all HRV and HRnV parameters, mean NN, SDNN,
RMSSD, NN50, pNN50, HF power, Poincaré SD1 and
SD2 were statistically significant in at least five out of six
measures (i.e., HRV, HR2V, HR2V1, HR3V, HR3V1, and
HR3V2). Furthermore, skewness, LF power, SampEn, and
ApEn, which did not demonstrate statistical significance
in conventional HRV analysis, were statistically signifi-
cant in HRnV representation. Table 4 presents the

Table 1 Patient baseline characteristics

Total (n = 795) MACE (n = 247) Non-MACE (n = 548) p-value

Age, mean (SD) 59.63 (12.88) 61.06 (11.38) 58.99 (13.47) 0.035

Male gender, n (%) 542 (68.2) 188 (76.1) 354 (64.6) 0.002

Race, n (%) 0.623

Chinese 492 (61.9) 159 (64.4) 333 (60.8)

Indian 129 (16.2) 34 (13.8) 95 (17.3)

Malay 150 (18.9) 46 (18.6) 104 (19.0)

Other 24 (3.0) 8 (3.2) 16 (2.9)

Medical history, n (%)

Ischemic heart disease 343 (43.1) 115 (46.6) 228 (41.6) 0.22

Diabetes 278 (35.0) 106 (42.9) 172 (31.4) 0.002

Hypertension 509 (64.0) 161 (65.2) 348 (63.5) 0.707

Hypercholesterolemia 476 (59.9) 151 (61.1) 325 (59.3) 0.683

Stroke 58 (7.3) 15 (6.1) 43 (7.8) 0.458

Cancer 29 (3.6) 7 (2.8) 22 (4.0) 0.537

Respiratory disease 31 (3.9) 5 (2.0) 26 (4.7) 0.102

Chronic kidney disease 87 (10.9) 26 (10.5) 61 (11.1) 0.32

Congestive heart failure 38 (4.8) 9 (3.6) 29 (5.3) 0.407

History of PCI 199 (25.0) 68 (27.5) 131 (23.9) 0.316

History of CABG 71 (8.9) 26 (10.5) 45 (8.2) 0.355

History of AMI 133 (16.7) 48 (19.4) 85 (15.5) 0.288

Active smoker 197 (24.8) 73 (29.6) 124 (22.6) 0.003

MACE Major adverse cardiac events, SD Standard deviation, PCI Percutaneous coronary intervention, CABG Coronary artery bypass graft, AMI Acute
myocardial infarction
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results of the multivariable analyses of HRnV and
HRnVm parameters by adjusting for age and sex. After
adjustment, several parameters such as NN50 of HR3V
and HR3V2, and triangular index of HRV, HR2V, and
HR3V2, became statistically non-significant, while pa-
rameters such as ApEn of HR2V, HR2V1, and HR3V2 be-
came statistically significant.
Table 5 lists the 16 variables that were selected

through multivariable stepwise logistic regression,
among which there were one conventional HRV param-
eter and seven HRnV parameters. In addition to trad-
itional predictors of adverse cardiac outcomes such as
ST segment changes and troponin, HR2V ApEn (OR =
0.095; 95% CI 0.014–0.628), HR2V1 ApEn (OR = 19.700;
95% CI 2.942–131.900) and HR3V skewness (1.560; 95%
CI 1.116–2.181) also demonstrated strong predictive
power in assessing the risk of 30-day MACE. Figure 2
shows the ROC curves and Table 6 presents the results
of ROC analysis in evaluating the predictive performance
of the HRnV model (based on LOOCV), HEART, TIMI,

and GRACE scores. The HRnV model achieved the
highest AUC value and outperformed HEART, TIMI,
and GRACE scores in terms of specificity, PPV, and
NPV at the optimal cut-off scores, defined as the points
nearest to the upper-left corner of the ROC curves.

Discussion
HRV has generated significant research interest in the
past decades [18, 19, 29], with majority of studies focus-
ing on development of advanced nonlinear techniques to
derive novel parameters [30, 31]. There is, however, a
paucity of research on alternative approaches to analyze
RRIs. Vollmer [32] used relative RRIs to describe the
relative variation of consecutive RRIs, with which HRV
was analyzed. Likewise, we proposed a novel HRnV rep-
resentation, providing more HRnV parameters than con-
ventional HRV analysis. In this paper, we introduced
two measures of HRnV, namely HRnV and HRnVm.
HRnV was calculated based on non-overlapping RRnI se-
quences, while HRnVm was computed from overlapping

Table 2 Descriptive analyses of heart rate variability (HRV) and heart rate n-variability (HRnV) parameters

HRV HR2V HR2V1 HR3V HR3V1 HR3V2

Mean NN (s) 829.40 (169.49) 1656.65 (339.85) 1658.81 (338.99) 2484.80 (509.33) 2488.22 (508.50) 2485.02 (509.84)

SDNN (s) 38.16 (25.49) 62.28 (45.45) 68.81 (47.00) 82.06 (62.47) 97.79 (67.46) 87.77 (64.52)

RMSSD (s) 30.04 (23.07) 32.61 (26.68) 33.79 (25.67) 34.83 (28.86) 36.27 (26.50) 34.98 (27.43)

Skewness −0.65 (2.34) −0.41 (1.66) −0.59 (1.95) − 0.29 (1.29) −0.55 (1.69) − 0.38 (1.42)

Kurtosis 14.59 (26.83) 7.33 (13.58) 10.17 (17.90) 5.15 (8.13) 8.06 (12.92) 5.98 (9.75)

Triangular index 7.68 (4.19) 10.38 (5.10) 12.60 (6.45) 11.47 (5.29) 16.25 (7.94) 13.06 (6.04)

NN50 (count) 21.08 (33.98) 14.46 (20.35) 29.35 (40.03) 11.57 (15.05) 35.29 (44.34) 17.41 (22.51)

pNN50 (%) 6.31 (11.08) 8.66 (13.18) 8.75 (12.97) 10.31 (14.27) 10.38 (13.95) 10.28 (14.20)

NN50n (count) – 4.16 (9.72) 8.45 (18.76) 1.37 (3.72) 4.37 (10.72) 2.08 (5.48)

pNN50n (%) – 2.60 (6.67) 2.64 (6.47) 1.32 (3.95) 1.39 (3.86) 1.33 (3.87)

Total power (ms2) 2518.30 (4797.05) 7797.46 (16,947.44) 9156.26 (17,970.75) 13,904.78 (37,182.24) 18,714.67 (37,620.26) 15,706.11 (34,845.52)

VLF power (ms2) 985.18 (1991.52) 3401.42 (6569.37) 3922.74 (7987.46) 6503.53 (14,205.11) 8772.26 (17,986.63) 7567.79 (14,666.32)

LF power (ms2) 732.36 (1841.88) 2626.83 (7593.16) 2782.48 (7212.62) 5091.49 (18,402.20) 5740.99 (15,243.38) 5397.76 (16,001.18)

HF power (ms2) 527.27 (1232.69) 1328.86 (4033.96) 1361.53 (3433.55) 1661.69 (7237.55) 1762.45 (4851.11) 1761.05 (6477.63)

LF power norm (nu) 56.76 (19.20) 66.82 (18.17) 66.42 (17.35) 76.53 (15.32) 77.65 (14.55) 77.93 (14.95)

HF power norm (nu) 43.24 (19.20) 33.18 (18.17) 33.58 (17.35) 23.47 (15.32) 22.35 (14.55) 22.07 (14.95)

LF/HF 1.99 (1.93) 3.24 (2.95) 3.04 (2.73) 5.60 (5.21) 5.79 (4.99) 6.06 (5.18)

Poincaré SD1 (ms) 21.27 (16.34) 23.12 (18.93) 23.92 (18.18) 24.72 (20.50) 25.68 (18.77) 24.80 (19.46)

Poincaré SD2 (ms) 48.82 (33.29) 84.47 (62.15) 93.88 (64.58) 112.87 (86.62) 135.55 (94.02) 121.20 (89.72)

SampEn 1.57 (0.51) 83.84 (2324.24) 1.33 (0.48) 248.48 (4020.64) 1.06 (0.41) 1.14 (0.45)

ApEn 0.99 (0.20) 0.72 (0.18) 0.91 (0.17) 0.60 (0.15) 0.84 (0.17) 0.70 (0.15)

DFA, α1 0.99 (0.31) 1.24 (0.29) 1.23 (0.27) 1.41 (0.27) 1.42 (0.23) 1.42 (0.25)

DFA, α2 0.95 (0.22) 0.98 (0.35) 0.98 (0.22) 0.86 (0.65) 1.01 (0.22) 1.02 (0.36)

HRV Heart rate variability, mean NN Average of R-R intervals, SDNN Standard deviation of R-R intervals, RMSSD Square root of the mean squared differences
between R-R intervals; NN50, the number of times that the absolute difference between 2 successive R-R intervals exceeds 50 ms; pNN50, NN50 divided by the
total number of R-R intervals; NN50n, the number of times that the absolute difference between 2 successive RRnI/RRnIm sequences exceeds 50 × n ms; pNN50n,
NN50n divided by the total number of RRnI/RRnIm sequences; VLF Very low frequency, LF Low frequency, HF High frequency, SD Standard deviation, SampEn
Sample entropy, ApEn Approximate entropy, DFA Detrended fluctuation analysis
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Table 3 Univariable analysis of HRnV and HRnVm parameters

HRV HR2V HR3V

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Mean NN 0.999 (0.998–1.000) 0.023* 0.999 (0.999–1.000) 0.023* 1.000 (0.999–1.000) 0.023*

SDNN 0.992 (0.986–0.999) 0.023* 0.996 (0.992–1.000) 0.028* 0.997 (0.995–1.000) 0.060

RMSSD 0.990 (0.982–0.998) 0.010* 0.992 (0.985–0.998) 0.011* 0.994 (0.988–0.999) 0.030*

Skewness 1.059 (0.991–1.132) 0.088 1.079 (0.981–1.186) 0.118 1.139 (1.006–1.290) 0.040*

Kurtosis 1.006 (1.000–1.011) 0.038* 1.009 (0.998–1.019) 0.113 1.011 (0.993–1.029) 0.242

Triangular index 0.961 (0.925–0.998) 0.039* 0.967 (0.938–0.997) 0.032* 0.978 (0.950–1.007) 0.133

NN50 0.993 (0.987–0.998) 0.008* 0.989 (0.981–0.998) 0.012* 0.988 (0.977–0.999) 0.031*

pNN50 0.978 (0.962–0.995) 0.009* 0.984 (0.971–0.997) 0.014* 0.987 (0.976–0.999) 0.027*

NN50n – – 0.982 (0.964–1.001) 0.065 0.952 (0.905–1.002) 0.059

pNN50n – – 0.974 (0.946–1.002) 0.069 0.951 (0.903–1.001) 0.054

Total power 1.000 (1.000–1.000) 0.031* 1.000 (1.000–1.000) 0.021* 1.000 (1.000–1.000) 0.072

VLF power 1.000 (1.000–1.000) 0.132 1.000 (1.000–1.000) 0.070 1.000 (1.000–1.000) 0.133

LF power 1.000 (1.000–1.000) 0.077 1.000 (1.000–1.000) 0.023* 1.000 (1.000–1.000) 0.063

HF power 1.000 (0.999–1.000) 0.002* 1.000 (1.000–1.000) 0.014* 1.000 (1.000–1.000) 0.074

LF power norm 1.001 (0.994–1.009) 0.738 0.999 (0.99–1.007) 0.733 0.994 (0.985–1.004) 0.248

HF power norm 0.999 (0.991–1.007) 0.738 1.001 (0.993–1.01) 0.733 1.006 (0.996–1.015) 0.248

LF/HF 1.034 (0.959–1.116) 0.381 1.014 (0.964–1.066) 0.592 1.001 (0.973–1.031) 0.923

Poincaré SD1 0.986 (0.975–0.997) 0.010* 0.988 (0.979–0.997) 0.011* 0.991 (0.983–0.999) 0.029*

Poincaré SD2 0.995 (0.990–1.000) 0.032* 0.997 (0.994–1.000) 0.032* 0.998 (0.996–1.000) 0.063

SampEn 0.813 (0.604–1.095) 0.173 0.730 (0.545–0.977) 0.035* 1.000 (1.000–1.000) 0.932

ApEn 1.645 (0.752–3.598) 0.213 2.319 (1.003–5.357) 0.049* 1.241 (0.463–3.327) 0.667

DFA, α1 0.953 (0.585–1.552) 0.846 1.031 (0.611–1.741) 0.908 0.968 (0.560–1.672) 0.907

DFA, α2 1.532 (0.773–3.034) 0.221 1.202 (0.782–1.848) 0.401 1.184 (0.934–1.500) 0.163

HR2V1 HR3V1 HR3V2

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Mean NN 0.999 (0.999–1.000) 0.023* 1.000 (0.999–1.000) 0.023* 1.000 (0.999–1.000) 0.023*

SDNN 0.996 (0.993–1.000) 0.034* 0.997 (0.995–1.000) 0.042* 0.997 (0.995–1.000) 0.034*

RMSSD 0.991 (0.984–0.998) 0.010* 0.992 (0.986–0.999) 0.016* 0.993 (0.986–0.999) 0.016*

Skewness 1.061 (0.980–1.149) 0.144 1.072 (0.978–1.176) 0.139 1.098 (0.982–1.227) 0.100

Kurtosis 1.007 (0.999–1.015) 0.082 1.006 (0.994–1.017) 0.333 1.010 (0.995–1.025) 0.195

Triangular index 0.981 (0.958–1.005) 0.119 0.982 (0.963–1.001) 0.065 0.974 (0.949–0.999) 0.040*

NN50 0.995 (0.991–0.999) 0.018* 0.996 (0.993–1.000) 0.052 0.992 (0.985–0.999) 0.035*

pNN50 0.984 (0.972–0.997) 0.020* 0.988 (0.977–1.000) 0.049* 0.988 (0.976–0.999) 0.035*

NN50n 0.989 (0.979–1.000) 0.043* 0.982 (0.964–1.000) 0.054 0.974 (0.943–1.007) 0.118

pNN50n 0.969 (0.939–0.999) 0.046* 0.947 (0.895–1.002) 0.058 0.960 (0.914–1.009) 0.109

Total power 1.000 (1.000–1.000) 0.048* 1.000 (1.000–1.000) 0.072 1.000 (1.000–1.000) 0.029*

VLF power 1.000 (1.000–1.000) 0.139 1.000 (1.000–1.000) 0.145 1.000 (1.000–1.000) 0.074

LF power 1.000 (1.000–1.000) 0.084 1.000 (1.000–1.000) 0.092 1.000 (1.000–1.000) 0.027*

HF power 1.000 (1.000–1.000) 0.005* 1.000 (1.000–1.000) 0.010* 1.000 (1.000–1.000) 0.022*

LF power norm 1.000 (0.991–1.008) 0.937 0.995 (0.985–1.006) 0.382 0.995 (0.986–1.005) 0.356

HF power norm 1.000 (0.992–1.009) 0.937 1.005 (0.994–1.015) 0.382 1.005 (0.995–1.015) 0.356

LF/HF 1.024 (0.970–1.080) 0.387 1.003 (0.973–1.033) 0.863 0.999 (0.971–1.029) 0.966

Poincaré SD1 0.987 (0.978–0.997) 0.010* 0.989 (0.980–0.998) 0.016* 0.989 (0.981–0.998) 0.016*
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RRnIm sequences. HRnV was not developed to replace
the conventional HRV but to augment it. It enables the
creation of additional parameters from raw ECGs, and
thus empowers the extraction of supplementary
information.
In our clinical case study, we investigated the predict-

ive value of HRnV parameters in assessing the risk of
30-day MACE for chest pain patients in the ED. In
addition to 21 HRV parameters, 115 HRnV parameters
were derived, of which 48 were found to be statistically
significant in their association with the primary out-
come. Notably, even with a small n (three in our study),
newly generated HRnV parameters greatly boosted the
number of candidate predictors. When longer ECG re-
cords are available, more HRnV parameters can be cal-
culated. With HRnV parameters, HRV parameters, vital
signs, and several established risk factors, we conducted
multivariable logistic regression analysis and selected
age, diastolic BP, pain score, ST-elevation, ST-
depression, Q wave, cardiac history, troponin, HRV
NN50, and seven HRnV parameters. In addition to trad-
itional risk factors such as ST segment changes, HR2V
ApEn, HR2V1 ApEn, and HR3V skewness were found to
be strong predictors for 30-day MACE. Compared to the
HEART, TIMI, and GRACE scores, the HRnV model
achieved the highest AUC, specificity, PPV, and NPV
values at the optimal cut-off points in ROC analysis.
This demonstrated the clinical utility of HRnV in deter-
mining the risk of 30-day MACE for ED patients with
chest pain.
Due to the wide differential diagnosis for chest pain,

accurate stratification is vital, particularly for preventing
low-risk patients from obtaining expensive and unneces-
sary medical testing and intervention [3]. Although the
TIMI and GRACE scores have been validated for risk
prediction of patients with chest pain in the ED [4, 33,
34], some criteria used in these scores may be inappro-
priate for undifferentiated chest pain cohorts in the ED,
as they were originally developed for post-acute myocar-
dial infarction patients [1]. In comparison, the HEART
score was derived from a population of ED patients with
chest pain, and has been extensively validated worldwide

[10, 13, 27, 35]. It has demonstrated its utility in identi-
fying both low-risk patients for possible early discharge
and high-risk patients for urgent intervention. Built
upon established scores, several chest pain pathways [14,
36–38] have been implemented and tested, particularly
for the management of low-risk patients. Than et al. [38]
evaluated a TIMI score-based accelerated diagnostic
protocol (ADP) with a reported sensitivity of 99.3% and
NPV of 99.1%. Similarly, a systematic review by
Laureano-Phillips et al. [39] reported that the HEART
score achieved both sensitivity and NPV of 100% in sev-
eral validation studies. Furthermore, a cost-effectiveness
study conducted in Brisbane, Australia reported eco-
nomic benefits by adopting an ADP in the ED, with re-
duction in expected cost and length of stay amongst
patients with chest pain [40].
Most established clinical scores use conventional risk

factors such as biomarkers, medical history, and present-
ing vital signs. However, patient history can sometimes
be subjective and blood tests, such as troponin, require
waiting time. HRV, as a noninvasive measure, can be
easily calculated from ECGs; it is an objective tool to as-
sess the activities of the ANS [19]. It also has the advan-
tage of requiring only several minutes to acquire (five to
six minutes in our protocol), which is much faster than
serum biomarkers. Over the past decades, HRV has been
widely investigated in a broad range of clinical applica-
tions, particularly in cardiovascular research. Apart from
being associated with sudden cardiac death [18], HRV
also showed significant correlations with adverse clinical
outcomes in prehospital setting [41] and with MACE
outcomes in ED patients with chest pain [17]. HRV pa-
rameters have been integrated with other risk factors
into machine learning algorithms to predict adverse out-
comes [42, 43]. These promising results motivated the
use of HRV to develop objective and computerized risk
stratification tools for chest pain patients [44, 45]. In an
updated review of clinical scores for chest pain, Liu et al.
[5] summarized several studies which aimed to develop
alternative techniques for risk stratification.
This study aimed to present novel HRnV representa-

tion and its measures and investigate their association

Table 3 Univariable analysis of HRnV and HRnVm parameters (Continued)

Poincaré SD2 0.997 (0.995–1.000) 0.039* 0.998 (0.996–1.000) 0.045* 0.998 (0.996–1.000) 0.037*

SampEn 0.854 (0.623–1.171) 0.328 0.802 (0.553–1.161) 0.242 0.709 (0.500–1.005) 0.053

ApEn 2.065 (0.842–5.064) 0.113 1.207 (0.499–2.922) 0.677 2.558 (0.906–7.222) 0.076

DFA, α1 0.888 (0.514–1.537) 0.672 1.039 (0.547–1.971) 0.907 1.004 (0.549–1.835) 0.991

DFA, α2 1.557 (0.782–3.098) 0.208 1.554 (0.780–3.093) 0.210 1.169 (0.764–1.789) 0.472

HRV Heart rate variability, OR Odds ratio, CI Confidence interval, mean NN Average of R-R intervals, SDNN Standard deviation of R-R intervals, RMSSD Square root
of the mean squared differences between R-R intervals, NN50 The number of times that the absolute difference between 2 successive R-R intervals exceeds 50ms,
pNN50, NN50 divided by the total number of R-R intervals; NN50n, the number of times that the absolute difference between 2 successive RRnI/RRnIm sequences
exceeds 50 × n ms; pNN50n, NN50n divided by the total number of RRnI/RRnIm sequences; VLF Very low frequency, LF Low frequency, HF High frequency, SD
Standard deviation, SampEn Sample entropy, ApEn Approximate entropy, DFA Detrended fluctuation analysis
* p < 0.05

Liu et al. BMC Cardiovascular Disorders          (2020) 20:168 Page 8 of 14



Table 4 Multivariable analysis of HRnV and HRnVm parameters by adjusting for age and sex

HRV HR2V HR3V

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Mean NN 0.999 (0.998–1) 0.005* 0.999 (0.999–1.000) 0.005* 1.000 (0.999–1.000) 0.005*

SDNN 0.993 (0.986–0.999) 0.035* 0.996 (0.992–1.000) 0.040* 0.998 (0.995–1.000) 0.093

RMSSD 0.990 (0.982–0.998) 0.011* 0.992 (0.985–0.999) 0.016* 0.994 (0.988–1.000) 0.047*

Skewness 1.064 (0.995–1.138) 0.068 1.082 (0.983–1.191) 0.109 1.140 (1.005–1.293) 0.042*

Kurtosis 1.005 (1.000–1.011) 0.047* 1.008 (0.997–1.019) 0.139 1.011 (0.993–1.030) 0.238

Triangular index 0.967 (0.93–1.006) 0.093 0.971 (0.940–1.002) 0.070 0.982 (0.953–1.013) 0.256

NN50 0.993 (0.988–0.999) 0.013* 0.991 (0.982–0.999) 0.030* 0.990 (0.979–1.001) 0.078

pNN50 0.979 (0.963–0.996) 0.015* 0.986 (0.972–0.999) 0.033* 0.989 (0.977–1.001) 0.063

NN50n – – 0.983 (0.964–1.002) 0.081 0.954 (0.906–1.005) 0.077

pNN50n – – 0.975 (0.947–1.004) 0.086 0.952 (0.903–1.004) 0.069

Total power 1.000 (1.000–1.000) 0.042* 1.000 (1.000–1.000) 0.026* 1.000 (1.000–1.000) 0.104

VLF power 1.000 (1.000–1.000) 0.167 1.000 (1.000–1.000) 0.082 1.000 (1.000–1.000) 0.152

LF power 1.000 (1.000–1.000) 0.093 1.000 (1.000–1.000) 0.033* 1.000 (1.000–1.000) 0.105

HF power 1.000 (0.999–1.000) 0.003* 1.000 (1.000–1.000) 0.016* 1.000 (1.000–1.000) 0.101

LF power norm 1.002 (0.994–1.011) 0.589 0.999 (0.990–1.007) 0.769 0.994 (0.984–1.003) 0.202

HF power norm 0.998 (0.989–1.006) 0.589 1.001 (0.993–1.010) 0.769 1.006 (0.997–1.016) 0.202

LF/HF 1.039 (0.961–1.124) 0.336 1.013 (0.962–1.066) 0.620 0.999 (0.970–1.028) 0.928

Poincaré SD1 0.986 (0.975–0.997) 0.011* 0.989 (0.980–0.998) 0.016* 0.992 (0.983–1.000) 0.047*

Poincaré SD2 0.995 (0.990–1.000) 0.050* 0.997 (0.994–1.000) 0.046* 0.998 (0.996–1.000) 0.098

SampEn 0.852 (0.630–1.152) 0.297 0.752 (0.559–1.010) 0.058 1.000 (1.000–1.000) 0.956

ApEn 1.669 (0.754–3.693) 0.207 2.668 (1.139–6.246) 0.024* 1.507 (0.555–4.096) 0.421

DFA, α1 0.991 (0.593–1.654) 0.971 1.072 (0.622–1.848) 0.802 0.962 (0.550–1.682) 0.891

DFA, α2 1.499 (0.750–2.993) 0.252 1.204 (0.782–1.853) 0.400 1.193 (0.941–1.512) 0.146

HR2V1 HR3V1 HR3V2

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Mean NN 0.999 (0.999–1.000) 0.005* 1.000 (0.999–1.000) 0.005* 1.000 (0.999–1.000) 0.005*

SDNN 0.996 (0.993–1.000) 0.052 0.998 (0.995–1.000) 0.064 0.997 (0.995–1.000) 0.049*

RMSSD 0.992 (0.985–0.998) 0.015* 0.993 (0.986–0.999) 0.023* 0.993 (0.987–0.999) 0.023*

Skewness 1.066 (0.984–1.156) 0.118 1.079 (0.983–1.185) 0.108 1.099 (0.982–1.229) 0.099

Kurtosis 1.007 (0.999–1.015) 0.096 1.005 (0.994–1.017) 0.377 1.010 (0.994–1.025) 0.218

Triangular index 0.985 (0.960–1.010) 0.234 0.985 (0.965–1.005) 0.137 0.977 (0.951–1.003) 0.088

NN50 0.996 (0.991–1.000) 0.047* 0.997 (0.993–1.001) 0.130 0.993 (0.986–1.001) 0.084

pNN50 0.986 (0.973–1.000) 0.046* 0.990 (0.979–1.002) 0.111 0.989 (0.978–1.001) 0.076

NN50n 0.990 (0.980–1.000) 0.059* 0.982 (0.963–1.001) 0.064 0.975 (0.943–1.008) 0.142

pNN50n 0.971 (0.941–1.002) 0.063 0.947 (0.893–1.004) 0.067 0.962 (0.915–1.012) 0.131

Total power 1.000 (1.000–1.000) 0.064 1.000 (1.000–1.000) 0.096 1.000 (1.000–1.000) 0.035*

VLF power 1.000 (1.000–1.000) 0.173 1.000 (1.000–1.000) 0.180 1.000 (1.000–1.000) 0.086

LF power 1.000 (1.000–1.000) 0.100 1.000 (1.000–1.000) 0.108 1.000 (1.000–1.000) 0.037*

HF power 1.000 (1.000–1.000) 0.006* 1.000 (1.000–1.000) 0.014* 1.000 (1.000–1.000) 0.025*

LF power norm 1.000 (0.991–1.009) 0.960 0.995 (0.984–1.005) 0.324 0.995 (0.985–1.005) 0.329

HF power norm 1.000 (0.991–1.009) 0.960 1.005 (0.995–1.016) 0.324 1.005 (0.995–1.015) 0.329

LF/HF 1.023 (0.968–1.081) 0.428 0.999 (0.969–1.030) 0.940 0.996 (0.967–1.026) 0.786

Poincaré SD1 0.988 (0.979–0.998) 0.015* 0.990 (0.981–0.999) 0.023* 0.990 (0.981–0.999) 0.023*
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with clinical outcomes. Although HRnV parameters
showed promising performance in identifying high-risk
chest pain patients, this study was not intended to create
a ready-to-use clinical tool. Instead, we demonstrated
the feasibility of utilizing HRnV parameters to augment
conventional HRV and risk factors in designing a predic-
tion tool/score. These HRnV parameters can be readily
calculated without the collection of supplementary data.
In this study, with five to six-minute ECG recording and
n = 3, five-fold more HRnV parameters were calculated
compared to HRV alone. When longer ECG recordings

are available and parameter n is larger, more HRnV pa-
rameters can be derived. To build a HRnV-based risk
stratification tool, a systematic approach is needed to de-
rive a point-based, consistent score to ease its clinical
application and practical implementation.
As a natural extension of conventional HRV, HRnV

representation creates the opportunity to generate add-
itional parameters. This representation could also serve
as a smoother for RRIs, making them less sensitive to
sudden changes caused by abnormal heart beats (e.g.
very short or very long RRI). However, since HRnV is a
novel representation of beat-to-beat variations in ECG,
many technical issues need to be addressed in future re-
search. For instance, as shown in Table 2, SampEn be-
came larger when the available number of data points
was less than 200 [19], suggesting that additional re-
search is required to investigate its applicability to short
ECG records. Moreover, parameters NN50n and
pNN50n are newly introduced in HRnV representation
only. They characterize the number of times that the ab-
solute difference between two successive RRnI sequences
exceeds 50 × n ms, by assuming that the absolute differ-
ence may be magnified when the corresponding RRnI is
n times longer than RRI. Thus, in-depth investigations
are required in the selection of appropriate thresholds.
More importantly, physiological interpretations of the
HRnV parameters and their normal values [29] need to
be determined through numerous research. One example is
the identification of frequency bands that correlate with
certain physiological phenomenon. In the current analysis,
the conventional cut-off values were adopted (i.e., ≤0.04Hz
as very low frequency range; 0.04–0.15Hz as low frequency
range; 0.15–0.4Hz as high frequency range). With the in-
crease in n, frequency domain analysis may need to be
changed accordingly.
Beyond its use in risk stratification of ED patients with

chest pain, HRnV can potentially be used in other clinical
domains, where conventional HRV has been extensively
investigated [46–49]. With the augmented RRnI and
RRnIm sequences, HRnV could possibly capture more dy-
namic changes in cardiac rhythms than HRV. This cap-
ability enables the extraction of additional information

Table 4 Multivariable analysis of HRnV and HRnVm parameters by adjusting for age and sex (Continued)

Poincaré SD2 0.997 (0.995–1.000) 0.059 0.998 (0.997–1.000) 0.068 0.998 (0.996–1.000) 0.052

SampEn 0.870 (0.632–1.197) 0.393 0.842 (0.578–1.227) 0.371 0.716 (0.504–1.019) 0.064

ApEn 2.520 (1.009–6.298) 0.048* 1.413 (0.575–3.471) 0.451 3.461 (1.201–9.971) 0.021*

DFA, α1 0.898 (0.508–1.587) 0.710 1.068 (0.555–2.058) 0.843 1.005 (0.543–1.838) 0.988

DFA, α2 1.507 (0.751–3.025) 0.249 1.500 (0.746–3.014) 0.255 1.172 (0.764–1.798) 0.467

HRV Heart rate variability, OR Odds ratio, CI Confidence interval, mean NN average of R-R intervals, SDNN Standard deviation of R-R intervals, RMSSD Square root of
the mean squared differences between R-R intervals, NN50, the number of times that the absolute difference between 2 successive R-R intervals exceeds 50 ms;
pNN50, NN50 divided by the total number of R-R intervals; NN50n, the number of times that the absolute difference between 2 successive RRnI/RRnIm sequences
exceeds 50 × n ms; pNN50n, NN50n divided by the total number of RRnI/RRnIm sequences; VLF Very low frequency, LF Low frequency, HF High frequency, SD
Standard deviation, SampEn Sample entropy, ApEn Approximate entropy, DFA Detrended fluctuation analysis
* p < 0.05

Table 5 Multivariable analysis with stepwise logistic regression
(backward selection) on all variables

Variable Adjusted OR 95% CI

Age 1.021 1.002–1.041

Diastolic BP 1.018 1.003–1.034

Pain score 1.082 1.003–1.168

ST-elevation 6.449 2.762–15.059

ST-depression 4.827 2.511–9.277

Q wave 3.383 1.668–6.860

Cardiac historya 7.838 5.192–11.832

Troponin 4.406 3.218–6.033

HRV NN50 0.981 0.970–0.991

HR2V skewness 0.806 0.622–1.045

HR2V SampEn 0.600 0.348–1.035

HR2V ApEn 0.095 0.014–0.628

HR2V1 ApEn 19.700 2.942–131.900

HR3V RMSSD 1.024 1.008–1.040

HR3V skewness 1.560 1.116–2.181

HR3V2 HF power 1.000 1.000–1.000

BP Blood pressure, HRV Heart rate variability, OR Odds ratio, CI Confidence
interval; mean NN, average of R-R intervals; RMSSD, square root of the mean
squared differences between R-R intervals; NN50, the number of times that
the absolute difference between 2 successive R-R intervals exceeds 50 ms; LF
Low frequency, HF High frequency, SampEn Sample entropy, ApEn
Approximate entropy
aCardiac history was a numeric value that was derived from the narrative in
the hospital charts. Its value was zero if the patient history contained
characteristics of atypical cardiac chest pain; Its value was two if the history
contained characteristics of typical cardiac chest pain; Its value was one if the
history contained characteristics of both atypical and typical cardiac chest pain
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Fig. 2 The receiver operating characteristic (ROC) curves produced by heart rate n-variability (HRnV) model (performance was based on leave-
one-out cross-validation), the History, ECG, Age, Risk factors and Troponin (HEART) score, the Thrombolysis in Myocardial Infarction (TIMI) score,
and the Global Registry of Acute Coronary Events (GRACE) score

Table 6 Comparison of performance of the HRnV model (based on leave-one-out cross-validation), HEART, TIMI, and GRACE scores
in predicting 30-day major adverse cardiac events (MACE)

AUC (95% CI) Cut-off Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

HRnV Model 0.888 (0.860–0.917) 0.3611a 77.3% (72.1–82.5%) 81.8% (78.5–85.0%) 65.6% (60.2–71.1%) 88.9% (86.1–91.6%)

– 0.0352 99.2% (98.1–100.0%) 39.6% (35.5–43.7%) 42.5% (38.5–46.6%) 99.1% (97.8–100.0%)

HEART 0.841 (0.808–0.874) 5a 78.9% (73.9–84.0%) 72.8% (69.1–76.5%) 56.7% (51.4–61.9%) 88.5% (85.5–91.4%)

– 3 99.6% (98.8–100.0%) 35.8% (31.8–39.8%) 41.1% (37.2–45.1%) 99.5% (98.5–100.0%)

TIMI 0.681 (0.639–0.723) 2a 63.6% (57.6–69.6%) 58.4% (54.3–62.5%) 40.8% (35.9–45.7%) 78.0% (74.0–82.1%)

– 0 98.4% (96.8–100.0%) 19.3% (16.0–22.7%) 35.5% (31.9–39.1%) 96.4% (92.9–99.9%)

GRACE 0.665 (0.623–0.707) 107a 64.0% (58.0–70.0%) 60.8% (56.7–64.9%) 42.4% (37.3–47.4%) 78.9% (75.0–82.8%)

– 60 98.8% (97.4–100.0%) 8.0% (5.8–10.3%) 32.6% (29.3–36.0%) 93.6% (86.6–100.0%)

AUC Area under the curve, CI Confidence interval, PPV Positive predictive value, NPV Negative predictive value, HEART History, ECG, Age, Risk factors and Troponin,
TIMI Thrombolysis in Myocardial Infarction, GRACE Global Registry of Acute Coronary Events
aOptimal cut-off values, defined as the points nearest to the upper-left corner on the ROC curves

Liu et al. BMC Cardiovascular Disorders          (2020) 20:168 Page 11 of 14



from limited raw ECGs. This study utilized HRnV param-
eters as independent risk factors and analyzed them with
traditional biostatistical methods. There are multiple ways
to use HRnV parameters, e.g. each set of HRnV parame-
ters can be analyzed individually and subsequently com-
bined with an ensemble learning [50] (a special type of
machine learning algorithm) architecture to reach a deci-
sion. However, artificial intelligence and machine learning
methods generally create black-box predictive models,
making interpretation a challenge [51].

Limitations
This study has several limitations. First, we did not de-
velop a scoring tool for practical clinical use. The pri-
mary aim of this study was to demonstrate the feasibility
of using HRnV parameters and common risk factors to
build predictive models. Second, the HRnV model was
evaluated with LOOCV strategy due to the small sample
size. Ideally, separate patient cohorts are needed to train
and test prediction models. When a new scoring tool is
developed, it is necessary to conduct external validations
on cohorts with diverse patient characteristics. Further-
more, properly designed clinical pathways are needed as
well. Third, the patients included in this study were
mainly from the high acuity group, resulting in a higher
30-day MACE rate (i.e., 31%) compared to other similar
studies [10, 39]. As a result, the generalizability of the
HRnV model developed in this study may be uncertain
in other patient cohorts. Fourth, the calculated HRnV
and HRV parameters depended on the choice of tools
and methods for ECG signal analysis. Thus, the values of
these parameters may vary across studies. Last, the
physiology of HRnV and interpretations of its measures
are mostly unknown; calculation of some parameters
also needs to be standardized. All these require future
collaborative research efforts between clinicians and sci-
entists to address.

Conclusions
In this study, we proposed a novel HRnV representation
and investigated the use of HRnV and established risk
factors to develop a predictive model for risk stratifica-
tion of patients with chest pain in the ED. Multiple
HRnV parameters were found to be statistically signifi-
cant predictors, which effectively augmented conven-
tional HRV, vital signs, troponin, and cardiac risk factors
in building an effective model with good discrimination
performance. The HRnV model outperformed the
HEART, TIMI, and GRACE scores in the ROC analysis.
It also demonstrated its capability in identifying low-risk
patients, which could potentially be used to build a new
clinical pathway. Moving forward, we suggest further de-
velopment of a point-based, ready-to-use HRnV risk

stratification tool. Although some issues remain to be
addressed, we hope to stimulate a new stream of re-
search on HRnV. We believe that future endeavors in
this field will lead to the possibility of in-depth evalu-
ation of the associations between HRnV measures and
various human diseases.
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