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Abstract

Background: Predicting difficult airway is challengeable in patients with limited airway evaluation. The aim of this
study is to develop and validate a model that predicts difficult laryngoscopy by machine learning of neck
circumference and thyromental height as predictors that can be used even for patients with limited airway
evaluation.

Methods: Variables for prediction of difficulty laryngoscopy included age, sex, height, weight, body mass index,
neck circumference, and thyromental distance. Difficult laryngoscopy was defined as Grade 3 and 4 by the
Cormack-Lehane classification. The preanesthesia and anesthesia data of 1677 patients who had undergone general
anesthesia at a single center were collected. The data set was randomly stratified into a training set (80%) and a
test set (20%), with equal distribution of difficulty laryngoscopy. The training data sets were trained with five
algorithms (logistic regression, multilayer perceptron, random forest, extreme gradient boosting, and light gradient
boosting machine). The prediction models were validated through a test set.

Results: The model’s performance using random forest was best (area under receiver operating characteristic
curve = 0.79 [95% confidence interval: 0.72–0.86], area under precision-recall curve = 0.32 [95% confidence interval:
0.27–0.37]).

Conclusions: Machine learning can predict difficult laryngoscopy through a combination of several predictors
including neck circumference and thyromental height. The performance of the model can be improved with more
data, a new variable and combination of models.
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Background
The difficult airway is challenging for ventilation by face-
mask or a supraglottic airway, laryngoscopy, and/or in-
tubation and poses difficulty in securing an emergency
surgical airway. Difficult laryngoscopy (DL) was defined
as the inability to visualize parts of the vocal cords after
several conventional laryngoscopy attempts by a trained
anesthesiologist [1]. Although video laryngoscopes are
widely used in difficult airway management, there are
cases where a video laryngoscope cannot be used, and
intubation of the trachea may fail even if the larynx is
visible [2, 3]. When there is active bleeding or vomitus
in the oral cavity or around the laryngopharynx area, it
may be difficult to use a video laryngoscope. Direct
laryngoscopy technique is a basic and important tech-
nique for tracheal intubation.
Various methods of predicting difficult airway have

been reported when direct laryngoscopy technique was
used [4–9]. However, there are limited methods for
evaluating the airway in unconscious patients, patients
with difficult communication, or patients with limited
movement of the neck and mouth. Neck circumference
(NC) and thyromental height (TMHT) can be measured
regardless of the patient’s ability to communicate and
move neck and mouth. This study aims to evaluate DL
using NC and TMHT and develop and validate a predic-
tion model using machine learning rather than conven-
tional methods.

Materials and methods
This study was conducted after approval by the Institu-
tional Review Board / Ethics Committee of Chuncheon
Sacred Heart Hospital, Hallym University (IRB No.
2020–09-011), All authors have confirmed the research
guidelines and regulations of the committee that ap-
proved the study, and all studies have been conducted in
accordance with the relevant guidelines and regulations.
This study did not include vulnerable participants, in-
cluding under 18 years of age, and informed consent was
obtained from all subjects. The data of patients who had
undergone general anesthesia at Hallym University
Chuncheon Sacred Heart Hospital between January 18,
2019, and September 25, 2020, were collected from prea-
nesthesia and anesthesia records.
Exclusion criteria are as follows:

� Under 18 years old
� Regional anesthesia
� Major external facial or neck abnormalities
� Laryngeal abnormalities or tumors
� Laryngeal mask used
� Mask ventilation only
� Video laryngoscope used
� Fiberoptic scope used

� Missing data
� Endotracheal intubation or tracheostomy stated

before anesthesia

Predictors of difficult laryngoscopy
DL prediction included age, sex, height, weight, body
mass index, NC, and TMHT. NC was defined as the cir-
cumference at the level of the thyroid cartilage [8].
TMHT was defined as the height between the anterior
border of the thyroid cartilage (on the thyroid notch just
between the two thyroid laminae) and the anterior
border of the mentum (on the mental protuberance of
the mandible), with the patient lying supine with her/his
mouth closed [4].

Intubation and difficult laryngoscopy
Tracheal intubation procedures were performed through
a standardized method by seven attending anesthesiolo-
gists and five resident anesthesiologists. Standard Macin-
tosh metallic single-use disposable laryngoscope blades
(INT; Intubrite Llc, Vista, CA, USA) were used. Direct
laryngoscopy views were classified following the
Cormack-Lehane grades: Grade 1 =most of the glottic
opening is visible; Grade 2 = only the posterior portion
of the glottis or only arytenoid cartilages are visible;
Grade 3 = only the epiglottis but no part of the glottis is
visible; Grade 4 = neither the glottis nor the epiglottis is
visible. Cormack-Lehane 3 and 4 indicated DL and were
combined into the difficult class. Cormack-Lehane 1 and
2 were combined into the non-difficult laryngoscopy
(NDL) class.

Machine learning and statistics
The dataset was created with the result of DL and the
factors for its prediction. The dataset was randomly di-
vided into a training set (80%) and a test set (20%), but
each dataset had the same NDL and DL class ratio. A
prediction model was created through the training set
with a machine learning algorithm. The prediction
model was validated through the test set. In general,
since the DL class is much smaller than the NDL class,
there is an imbalance of training data. In this study, DL
class oversampling was used through a synthetic minor-
ity oversampling technique (SMOTE) [10] to solve the
data imbalance problem. The parameters used in
SMOTE and algorithms are summarized in supplemen-
tary Table 1.
The training set was normalized by Min-Max scaling

after applying SMOTE. The test set was normalized ac-
cording to the Min-Max scaling of the training set. All
training sets were trained with five algorithms. The algo-
rithms included logistic regression (LR), multilayer per-
ceptron (MLP), BRF, extreme gradient boosting (XGB),
and light gradient boosting machines (LGBM) [11–14].
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The predictive models learned with five algorithms were
validated through the test set. Because the dataset is un-
balanced, each model’s validation results were evaluated
by the area under the curve of the receiver operating
characteristic curve (AUROC) and the area under the
curve of the precision-recall curve (AUPRC) [15]. The
threshold with the optimal balance between false posi-
tive and true positive rates was determined as maximum
geometric mean of sensitivity (recall) and specificity.
The sensitivity, specificity, recall and accuracy were cal-
culated at the determined threshold. The confidence
interval (CI) was calculated as follows:

CI ¼ x� Z
s
ffiffiffi

n
p

(x : mean, Z: Z value (1.96 at 95%), s: standard devi-
ation, n: number of observation)
Developing and validating all models were processed

by Anaconda (Python version 3.7, https ://www.
anaconda.com; Anaconda Inc., Austin, TX, USA), the
XGBoost package version 0.90 (https://xgboost .
readthedocs.io), the LGBM package version 2.2.3
(https://lightgbm.readthedocs.io/en/latest/Python-Intro.
html), and the imbalanced-learn package version 0.5.0
(SMOTE, BRF; https://imbalanced-learn.readthedocs.io),
scikit-learn 0.24.1(MLP, LR; https://scikit-learn.org/
stable/index.html). The data set factors were analyzed by
SPSS (IBM Corporation, Armonk, NY, USA). Continu-
ous data are expressed with the median and interquartile
range, and categorical data are expressed as number and
percentage. Continuous predictors were compared with
the Mann-Whitney test and categorical predictors by the
chi-squared test. All P-values were two-sided, and a P-
value < 0.05 was considered indicative of statistical
significance.

Results
From January 18, 2019 to September 25, 2020, 7765 pa-
tients underwent surgery under general anesthesia and

tracheal intubation, excluding local anesthesia, and 1677
patients were eligible in the study. The predictors of DL
are summarized in Table 1. Altogether 1467 patients
had NDL, and 210 patients had DL. Age, male, TMHT,
and NC had significant differences between the NDL
and DL groups. The train dataset included 1341 patients
(NDL: 1173, DL: 168) and the test dataset included 336
patients (NDL: 294, DL: 42).
The AUROC (95% confidence interval [CI]) of TMHT

and NC as a single predictor before dividing into train-
ing set and test set were 0.45 (0.41–0.50) and 0.57
(0.53–0.61), respectively. The AUROCs showing the per-
formance of the machine learning model for DL predic-
tion are presented in Fig. 1. In the evaluation of the
model through the receiver operating characteristic
curve, the model using the BRF algorithm showed the
best performance with AUROC (95% CI) of 0.79 (0.72–
0.86), and the model using MLP and LR showed the
worst performance with AUROC (95% CI) of 0.63
(0.55–0.71). The AUPRCs showing the performance of
the machine learning model for DL prediction are pre-
sented in Fig. 2. In the evaluation of the model through
the precision-recall curve, the model using the BRF algo-
rithm showed the best performance with AUPRC (95%
CI) of 0.32 (0.27–0.37), and the model using MLP
showed the worst performance with AUPRC (95% CI) of
0.17 (0.13–0.21). The sensitivity, specificity, and accuracy
of the DL prediction models are summarized in Table 2.
The BRF model had the highest sensitivity (90%), and
the LGBM model had the highest specificity (91%) and
accuracy (83%).

Discussion
TMHT and NC did not show good results as single pre-
dictors of DL. Five machine learning algorithms (BRF,
XGB, LGBM, MLP, LR) were applied to predict DL
using seven predictors, including TMHT and NC, which
can be measured even in limited airway assessment.
AUROC and AUPRC, which evaluate the model’s per-
formance, showed the best performance in the model to
which BRF was applied but did not show excellent

Table 1 The predictors of difficult laryngoscopy in the dataset

No difficult laryngoscopy
(n = 1467)

Difficult laryngoscopy
(n = 210)

P

Age, median (IQR), years 57 (43, 66) 61 (49, 68) 0.004

Male, number (%) 793 (54.1) 132 (62.9) 0.016

Height, median (IQR), cm 162.7 (156.1, 169.7) 164.9 (157.0, 170.1) 0.162

Weight, median (IQR), kg 66.5 (57.8, 75.0) 66.8 (59.0, 78.8) 0.264

Body mass index, median (IQR), kg/m2 24.9 (22.8, 27.4) 25.1 (23.2, 27.3) 0.425

Thyromental distance, median (IQR), cm 5.5 (4.7, 6.4) 5.4 (4.4, 6.2) 0.032

Neck circumference, median (IQR), cm 36.8 (34.1, 39.2) 37.8 (35.4, 40.0) 0.001

IQR interquartile range
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performance. Sensitivity was highest in the model to
which BRF was applied. Specificity and accuracy were
the highest in the model to which LGBM was applied.
In many studies, the NC has been associated with

difficult airway intubation in obese patients [8, 16,
17]. Thyromental height has also been reported as a
predictor of difficult airway management [4, 16–20].
These findings support that the NC and TMHT may
be predictors of DL. Several studies showed promising
results, even with a single predictor [4, 16–22]. How-
ever, the previous studies are different from those of
ours. The vast majority of the studies on prediction
of difficult airway using NC is on obese patients so
data in non-obese are insufficient [8, 16, 17]. There
were also differences in the primary outcome (difficult
intubation vs. DL) [8, 18, 20–22]. There may be dif-
ferences in some TMHT studies because the patient
population is of different races from the patient
population in our study. Some studies have targeted
specific patient populations such as coronary bypass
patients, elderly and endotracheal intubation double-

lumen tubes [16, 18, 20]. In some TMHT studies, like
ours, the primary outcome was DL. In their study,
TMHT as a predictor showed excellent performance
in predicting DL [4, 17]. However, it is difficult to
generalize because they were not a large-scale study
and conducted for a specific race. In clinical practice,
it is difficult to predict DL with a single predictor, in-
cluding TMHT. Numerous studies have reported
methods of predicting difficult airway, but no reliable
way of predicting difficult airway exists yet [23–26].
Using multiple tests to predict difficulty in airway
management may be a better predictor than any sin-
gle test used in isolation [27].
Machine learning is being used to analyze the import-

ance of clinical parameters and their combinations for
prognosis, e.g. prediction of disease progression, extrac-
tion of medical knowledge for outcome research, therapy
planning and support, and overall patient management
[28]. Therefore, it may be necessary to apply machine
learning even in difficult airway predictions. The models
that predict difficult airways using machine learning has

Fig. 1 The area under the receiver operating characteristic curve of the machine learning models for difficult laryngoscopy in the test set. AUC
(area under curve [95% confidence interval])
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been reported in a few studies [29, 30]. Langerson and
colleagues showed that the computer-based boosting
method is superior to other conventional methods in
predicting difficult tracheal intubation. Their results
show that machine learning can be effective in predict-
ing difficult airways. However, the predictors used by
them included body mass index, age, Mallampati class,
thyromental distance, mouth opening, macroglossia, sex,
receding mandible, and snoring, so it cannot be applied
to patients with limited airway assessment as in our
study [30]. Moustafa and colleagues also reported a
method of predicting DL using machine learning, as in
our study. They used nine predictors and showed an
AUROC of 0.79, which is the same as our study results.

However, it is difficult to compare the model’s perform-
ance with our products because their results are the re-
sults of training with only 100 patients and do not
include the model’s validation results through the test
set. In addition, since predictors include interincisor dis-
tance, thyromental distance, sternomental distance,
modified Mallampati score, upper lip bite test, and joint
extension, it cannot be applied to patients with limited
airway evaluation [29].
This study’s strength is that machine learning algo-

rithms were used in the development of models to pre-
dict DL, and the models were validated through a test
set. However, there are some limitations to this study.
First, the model for predicting DL developed in this

Fig. 2 The area under the precision-recall curve of the machine learning models for difficult laryngoscopy in the test set. AUC (area under curve
[95% confidence interval])

Table 2 Sensitivity (recall) and specificity and accuracy according to difficult laryngoscopy prediction model

Threshold Sensitivity (95CI) Specificity (95CI) Presision (95CI) Accuracy (95CI)

BRF 0.54 0.90 (0.88–0.92) 0.58 (0.55–0.61) 0.23 (0.21–0.25) 60% (57–63)

XGB 0.23 0.54 (0.51–0.57) 0.78 (0.76–0.80) 0.25 (0.23–0.27) 69% (66–72)

LGBM 0.36 0.22 (0.20–0.24 0.91 (0.89–0.93) 0.28 (0.26–0.30) 83% (81–85)

MLP 0.37 0.49 (0.46–0.52) 0.60 (0.57–0.63) 0.19 (0.17–0.21) 61% (58–64)

LR 0.36 0.66 (0.63–0.69) 0.56 (0.53–0.59) 0.17 (0.15–0.19) 57% (54–60)

95CI 95% confidence interval, BRF balanced random forest, XGB extreme gradient boosting, LGBM light gradient boosting machines, MLP multilayer perceptron, LR
logistic regression
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study does not show excellent performance with
AUROC and especially AUPRC. Moreover, there is no
predictive model with high sensitivity, high specificity,
and accuracy. We did not calculate the number of sam-
ples required for the study. When applying machine
learning algorithms, a lot of data is required. Often more
data is required than is reasonably required by classical
statistics. In particular, nonlinear models require as
much data as possible. As few as thousands to tens of
thousands of samples may be required [31]. In this
study, unlike previous study with same algorithms [32],
it was conducted prospectively, and we tried to include
the maximum amount of training data in consideration
of the expected study period and the difficulty of obtain-
ing data. After oversampling with SMOTE, each class of
train set was 1173. However, to improve the perform-
ance of a predictive model, the model needs to learn
more data [33]. Second, the data used to train and valid-
ate the model can be difficult to apply to pediatric pa-
tients or other races because the data population is
adults and mostly Koreans. Asian populations have sta-
tistically different dimensions from Caucasian popula-
tions in terms of chin arch, face length, and nose
protrusion.

Conclusions
In this study, NC and TMHT, which can be used even
in patients with limited airway evaluation, were used as
predictors of DL. Data were learned through five ma-
chine learning algorithms to develop a DL prediction
model, and the prediction model was validated. The
overall model performance was not excellent, but some
predictive models showed high sensitivity, specificity, or
accuracy, depending on the model. More data can be
trained or new predictors can be added to increase per-
formance. To overcome each model’s weaknesses, a
method of applying an ensemble of a model with high
sensitivity and a model with high specificity can be
considered.
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