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Abstract 

Background  As one of the world’s most important beverage crops, tea plants (Camellia sinensis) are renowned 
for their unique flavors and numerous beneficial secondary metabolites, attracting researchers to investigate the for-
mation of tea quality. With the increasing availability of transcriptome data on tea plants in public databases, conduct-
ing large-scale co-expression analyses has become feasible to meet the demand for functional characterization of tea 
plant genes. However, as the multidimensional noise increases, larger-scale co-expression analyses are not always 
effective. Analyzing a subset of samples generated by effectively downsampling and reorganizing the global sample 
set often leads to more accurate results in co-expression analysis. Meanwhile, global-based co-expression analyses are 
more likely to overlook condition-specific gene interactions, which may be more important and worthy of exploration 
and research.

Results  Here, we employed the k-means clustering method to organize and classify the global samples of tea plants, 
resulting in clustered samples. Metadata annotations were then performed on these clustered samples to determine 
the “conditions” represented by each cluster. Subsequently, we conducted gene co-expression network analysis 
(WGCNA) separately on the global samples and the clustered samples, resulting in global modules and cluster-spe-
cific modules. Comparative analyses of global modules and cluster-specific modules have demonstrated that cluster-
specific modules exhibit higher accuracy in co-expression analysis. To measure the degree of condition specificity 
of genes within condition-specific clusters, we introduced the correlation difference value (CDV). By incorporating 
the CDV into co-expression analyses, we can assess the condition specificity of genes. This approach proved instru-
mental in identifying a series of high CDV transcription factor encoding genes upregulated during sustained cold 
treatment in Camellia sinensis leaves and buds, and pinpointing a pair of genes that participate in the antioxidant 
defense system of tea plants under sustained cold stress.

Conclusions  To summarize, downsampling and reorganizing the sample set improved the accuracy of co-expression 
analysis. Cluster-specific modules were more accurate in capturing condition-specific gene interactions. The introduc-
tion of CDV allowed for the assessment of condition specificity in gene co-expression analyses. Using this approach, 
we identified a series of high CDV transcription factor encoding genes related to sustained cold stress in Camellia 
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sinensis. This study highlights the importance of considering condition specificity in co-expression analysis and pro-
vides insights into the regulation of the cold stress in Camellia sinensis.

Keywords  Condition-specific gene interactions, Gene co-expression network analysis, K-means clustering, 
Correlation difference value, Sustained cold stress

Introduction
As one of the most popular non-alcoholic beverages 
worldwide, tea contains a wide range of secondary 
metabolites beneficial to human health, such as poly-
phenols, alkaloids, and theanine [1]. As such, the tea 
plant (Camellia sinensis) possesses a diverse range of 
germplasm resources [2]. Different cultivars of Camellia 
sinensis are each prized for certain desirable qualitiesin 
their own right and exhibit significant differences in plant 
morphology, leaf characteristics, growth habits, adapt-
ability, and secondary metabolites [3, 4]. Consequently, 
said tea cultivars have garnered much research interest 
in the post-genomic era to understand and improve tea 
traits.

With an increasing number of studies on the epige-
netic variations and compositional changes of secondary 
metabolites in tea plants under different experimental 
conditions [1, 4, 5], the omics dataset of Camellia sinen-
sis has also become increasingly extensive. This has led 
to the use of systems biology approaches on sequencing 
data hosted on public databases [6–8], such as gene co-
expression analysis, becoming a trend in analyzing omics 
data of Camellia sinensis, providing tea researchers with 
a more macroscopic and comprehensive perspective. 
Researchers have further downloaded large-scale tran-
scriptome data of tea plants and created a more system-
atic and comprehensive co-expression database TeaCoN 
(http://teacon.wchoda.com) [9].

Although the large sample size of publicly-derived 
Camellia sinensis transcriptomic data improves the sta-
tistical significance of relationships between genes and 
increases the reliability of inferring gene correlations, 
indiscriminately combining multiple samples may not be 
universally beneficial [10]. As datasets become larger and 
more diverse, the derived coexpression networks become 
less informative due to increased multidimensional noise 
[11]. One way to improve the utility of the network is 
downsampling. Downsampling subdivides samples either 
by manually grouping them based on experimental con-
ditions or by using automated methods such as k-means 
clustering [12–14]. However, manual grouping often 
lacks sufficient sample description to accurately classify 
them, so automated methods like k-means clustering are 
more effective [12].

Furthermore, co-expression networks at a large scale 
of samples may miss specific gene interactions formed 

under particular conditions [15]. Increasing evidence 
suggests that different gene networks operate in differ-
ent biological contexts [16, 17]. Therefore, it becomes 
increasingly important to compare and contrast coex-
pression networks under specific conditions [18–20]. 
Experimental results demonstrate that over one-third 
of genetic interactions are condition-specific [21]. Sev-
eral studies have also shown that the patterns of gene 
coexpression vary under different conditions [22–24]. 
Hence, when conducting coexpression analysis on large-
scale samples, incorporating sample auto-classification 
and mining condition-specific coexpressed genes can 
enhance the accuracy and informativeness of co-expres-
sion analysis.

In this study, all Camellia sinensis samples down-
loaded from NCBI were subjected to k-means clustering 
to obtain four clusters representing different“conditions” 
(experimental treatments, tissues, and cultivars). Clus-
ter metadata annotations were obtained through sample 
metadata annotation. Then, weighted gene co-expres-
sion network analysis (WGCNA) was performed on the 
expression profiles of both the global samples and the 
cluster samples to obtain their respective co-expression 
modules. Subsequently, the correlation difference value 
(CDV) was proposed to measure the degree of condition 
specificity of genes within condition-specific clusters. By 
comparing between clusters and within clusters, highly 
condition-specific clusters and biological functions were 
identified. By incorporating the CDV into gene regula-
tory networks and visualizing it, condition-specific genes 
and conserved genes can be distinguished, providing 
more information for the selection of key genes. Overall, 
this study aims to improve gene co-expression analysis 
methods for large-scale transcriptomic data of tea plants 
by performing condition-specific analysis and provid-
ing a more accurate understanding of the relationships 
between gene expression patterns and phenotypic traits.

Methods
Data sources and sample metadata annotation
By searching and filtering using the keyword “Camel-
lia sinensis” in the NCBI SRA database, a total of 760 
RNA-Seq raw reads were obtained. The initial annota-
tion of these RNA-Seq raw data were performed, select-
ing the relatively important metadata fields in the NCBI 
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SRA database for Camellia sinensis research, including 
cultivar, plant tissue, and experimental treatments. Sub-
sequently, the corresponding original papers for each 
RNA-Seq data were searched to retrieve annotation 
information (Table S1).

To facilitate differentiation from other experimental 
treatments, the control group and samples directly col-
lected without any treatment were uniformly labeled as 
“no treatment” in the experimental treatment column. 
The samples with missing annotations in the metadata 
fields of the NCBI SRA database and could not be found 
in the retrieved original papers were labeled as “missing”.

Expression quantification and gene functional annotation
Seven hundred sixty RNA-seq samples were processed 
using fastp tool [25] to obtain high-quality clean data by 
removing adapter sequences and low-quality reads using 
default parameters. Coding sequences (CDS) annotations 
of the “Shuchazao” Camellia sinesis cultivar (http://tpia.
teaplant.org) [26] were used as pseudoalignment refer-
ence, the processed reads were then used to quantify the 
gene expression, in transcripts per million (TPM) values, 
for all RNA-seq samples using Kallisto [27] (Table S2).

The CDS annotations of the tea plant cultivar 
“Shuchazao” were subjected to gene functional annota-
tion using the Mercator v4 6.0 [28] (Table S3).

K‑means clustering and cluster metadata annotation
Firstly, 16,094 genes were selected from the CDS of 
"Shuchazao" whose average expression levels were 
greater than 2 in 760 samples and were annotated with 
detailed biological functions by Mercator v4 6.0. Then, 
a gene expression profile was constructed using TPM 
values of 16,094 genes from 760 RNA-seq samples. The 
batch effects in the gene expression profile were reduced 
by normalizing the expression levels using the Standard-
Scaler tool from the sklearn.preprocessing package. The 
KMeans tool from the sklearn.cluster package was used 
for k-means clustering on all RNA-seq samples with a 
random seed set to 1024 (np.random.seed(1024)) and a 
target number of clusters set to 4 (n_clusters=4) [29]. The 
selection of 4 as the value of k in k-means clustering is 
based on the Silhouette plot, where 4 resulted in a better 
classification of the samples (Figure S1) [30].

Then, the TSNE tool from the sklearn.manifold pack-
age was applied to the standardized gene expression pro-
file to perform dimensionality reduction, retaining the 
top principal components Component 1 and Component 
2. Finally, the samples were visualized in the Component 
1 and Component 2 space to explore potential cluster-
ing structures and similarities among the samples, as 
described by [31].

To annotate the 4 clusters obtained from k-means clus-
tering, the hypergeom tool from the scipy.stats pack-
age was used to perform a hypergeometric test between 
each sample in each cluster and the samples associated 
with each cultivar term [32]. Then, the fdrcorrection tool 
from the statsmodels.stats.multitest package was used 
to correct the p-values of all cultivar terms correspond-
ing to each cluster, obtaining the false discovery rate 
(FDR) values [33]. Cultivar terms with FDR values less 
than or equal to 0.05 were selected as metadata annota-
tions for the samples in that cluster. The same approach 
was applied to obtain metadata annotations for the tis-
sue terms and experimental treatment terms (Figure S2; 
Table S4).

Weighted gene co‑expression network analysis (WGCNA)
The global expression profile and cluster expression pro-
files comprise the expression levels of 16,094 genes from 
global samples and samples from different clusters (clus-
ter samples), respectively. 

R package WGCNA was then employed to construct 
a co-expression network [34]. WGCNA was performed 
following the guidelines provided in the tutorial (https://​
horva​th.​genet​ics.​ucla.​edu/​html/​Coexp​ressi​onNet​work/​
Rpack​ages/​WGCNA/​Tutor​ials/) [35], where employing 
a stepwise approach to divide the modules based on the 
obtained soft threshold and utilized the DynamicTreecut 
package to cluster the modules.

The eigengenes of each module were calculated based 
on the expression profiles and module color codes. 
Eigengenes represent the main expression patterns of 
each module and can be used to describe the overall 
expression patterns of the module. Then, hierarchi-
cal clustering (average linkage) was applied to cluster 
the module eigengenes. A merging height threshold of 
0.25 was set, corresponding to a correlation threshold 
of 0.75, and called the mergeCloseModules function for 
automatic module merging. The merged modules were 
assigned new color codes, which served as the final mod-
ule color codes (Figure S2). For easy reference, the color 
modules were mapped to alphabetical letters (Table S5).

In this step, the co-expression modules obtained from 
the global expression profile are referred to as “global 
modules”, while the co-expression modules obtained 
from the cluster expression profiles are referred to 
as“cluster-specific modules”

Calculation of clustering similarity and gene condition 
specificity
The Fowlkes-Mallows score (FMS) and adjusted mutual 
information score (AMIS), which is used to analyze the 
similarity of co-expression modules in WGCNA under 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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different samples, was calculated using the fowlkes_mal-
lows_score and adjusted_mutual_info_score tool from 
the sklearn.metrics package [36, 37].

Then, for each cluster, the two kinds of gene-module 
consistency coefficient (GMC) were calculated for each 
gene - the GMC of the gene in the cluster-specific mod-
ule and the GMC of the gene in the global module based 
on corresponding cluster samples. The GMC of a gene 
is defined as the Pearson correlation coefficient (PCC) 
between the gene’s expression profile and the module 
eigengene expression profile of the co-expression module 
it belongs to [38]. The mathematical formula for GMC is 
as follows:

where gi and e.g.i represent the expression values of 
gene and module eigengene in the i-th sample, `g and 
`e.g. represent the average expression values of gene and 
module eigengene, and n is the number of samples. This 
study used the GMC of genes to investigate the consist-
ency of gene expression patterns within co-expression 
modules.

Furthermore, for each cluster, the correlation difference 
value (CDV) of each gene was calculated by subtracting 
the GMC of the gene in the cluster-specific module from 
the GMC of the gene in the global module. The mathe-
matical formula for CDV is as follows:

where ce.g.i and ge.g.i represent the expression values 
of eigengene in the cluster-specific module and global 
module in the i-th sample, `ceg and `geg represent the 
average expression values of eigengene in the cluster-spe-
cific module eigengene and global module, and m is the 
number of samples in the cluster. In this study, CDV was 
used to measure the condition-specificity of each gene. 
The genes with only GMC(Cluster) greater than or equal 
to 0.6 and GMC(Global) greater than or equal to 0.6 were 
used to calculate the CDV value.
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Functional enrichment analysis of co‑expression modules
To annotate the functions of modules, the hypergeomet-
ric tests [32] were performed using the hypergeom tool 
from the scipy.stats package for each gene in the module 
and each gene included in the mapman entries. To ensure 
the displayed mapman entries are as detailed as possi-
ble, covering all biological functions and with a substan-
tial number of genes, only mapman entries with detailed 
classification and containing more than 100 genes are 
selected. Then, the p-values of all mapman entries corre-
sponding to each module are corrected using the fdrcor-
rection tool from the statsmodels.stats.multitest package 
to obtain FDR values [33]. Mapman entries with FDR val-
ues less than or equal to 0.05 are considered functional 
annotations for the genes in that module (Table S6).

Construction of the gene regulatory network
Based on module correlation and module functional 
annotation, the module associated with the meta-
data annotation of the cluster was selected. R package 
GENIE3 was then employed to predict the regulatory 
relationships between genes within the module [39]. To 
construct the gene regulatory network, only gene pairs 
with a weight value greater than or equal to 0.06 were 
considered.

The constructed gene regulatory networks were 
imported into Cytoscape software [40] for visualization 
and analysis. Finally, the network was further custom-
ized with layout, labeling, and color coding to provide a 
clearer representation of the interactions between genes 
to understand the structure and function of the gene net-
work and to reveal important associations and regulatory 
mechanisms in biological processes.

Results
Metadata annotation of RNA‑Seq samples exhibits 
an imbalanced distribution characteristic
During the metadata annotation of 760 RNA-seq sam-
ples of Camellia sinensis, we observed that there was an 
imbalance in the sample distribution across each meta-
data category, including cultivars, tissues, and treat-
ments (Fig.  1; Table S1). Specifically, certain categories 
within tissues and treatments have a higher number of 
samples compared to others. For example, in the 760 
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Camellia sinensis RNA-seq samples, the “leaf and bud” 
samples accounted for 78.3% of the total, while the “no 
treatment” samples in the experimental treatments cat-
egory accounted for 46.3%, far exceeding the numbers 
of other categories (Fig.  1). Regarding cultivars, we saw 
a relatively balanced representation across different cat-
egories, but some cultivars have a higher proportion. For 
instance, “Shuchazao” accounts for 17.8%, “Longjing 43” 
accounts for 17.2%, and “Fuding Dabaicha” accounts for 
11.6% (Fig. 1).

K‑means clustering effectively classified global samples 
and significantly improved the accuracy of co‑expression 
analysis
K-means clustering is used to organize and classify the 
globally imbalanced samples in the metadata term. The 
metadata annotations of the clustered samples are then 
used as the “conditions” representing the specificity of 
the cluster samples.

In this study, the silhouette score was used to deter-
mine the value of K in k-means clustering. The method 
of selecting the appropriate K value using the silhouette 
score primarily considers two indicators: (1) For a par-
ticular K value, all clusters should have a silhouette score 
higher than the average score of the dataset, as repre-
sented by the red-dotted line on the x-axis. Clusters with 
K values of 3, 5, 6, 10, and 11 are eliminated because they 
do not meet this condition (Figure S1). (2) There should 
not be significant fluctuations in the cluster sizes. The 
width of the clusters corresponds to the number of sam-
ple points. Only K values of 2 and 4 exhibit relatively uni-
form widths (Figure S1). Here, we chose 4 as the K value.

After analyzing 760 Camellia sinensis RNA-seq sam-
ples using the k-means clustering algorithm, four clusters 
were obtained, with Cluster 1 to Cluster 4 accounting for 
30.9% (235 samples), 23.8% (181 samples), 32.1% (244 
samples), and 13.2% (100 samples) of the total samples, 
respectively (Fig.  2A) (Table  1). By performing t-Dis-
tributed Stochastic Neighbor Embedding (t-SNE) on the 
transcriptome data to reduce the dimensionality of the 

genes, the spatial distribution of these samples in Com-
ponent 1 and Component 2 was observed, where samples 
from the 4 clusters were separated (Fig. 2B).

By conducting enrichment analysis on the metadata 
of k-means clusters, metadata terms related to cultivars, 
tissues, and treatments were annotated to each k-means 
cluster, facilitating a better understanding of the char-
acteristics and functions of Camellia sinensis RNA-seq 
samples represented by each k-means cluster (Table  1). 
For example, Cluster 2 mainly includes leaves and buds of 
the “Longjing 43” and “Shuchazao” cultivar, with experi-
mental treatments focused on cold stress and shading. 
Such annotations are also called “conditions” represented 
by Cluster 2.

Weighted gene co-expression network analysis 
(WGCNA) was used to obtain global modules and clus-
ter-specific modules from global samples and cluster 
samples. 23 co-expression modules were obtained based 
on the global expression profile, indicating the pres-
ence of complex and diverse co-expression relationships 
among genes (Table S5). Different numbers of co-expres-
sion modules were obtained based on the cluster expres-
sion profiles. Specifically, 12, 23, 22, and 14 co-expression 
modules were obtained based on Cluster 1 to Cluster 
4 expression profiles, respectively (Table  1). The vary-
ing numbers of cluster-specific co-expression modules 
reflect changes in gene expression patterns under differ-
ent cultivars, tissues, and experimental treatments.

Two perspectives of analysis were performed to eluci-
date the extent of differences in co-expression modules 
obtained from global samples and cluster samples: simi-
larity analysis of module genes and internal consistency 
analysis of module expression profiles.

To investigate the similarity of co-expression modules 
obtained from global samples and cluster samples in 
WGCNA, the Fowlkes-Mallows score (FMS) was used as 
a metric. FMS is commonly used to compare the similar-
ity of clusters or co-expression modules obtained from 
different samples or conditions. The FMS score ranges 
from 0 to 1, where a value closer to 1 indicates a higher 

Fig. 1  Analysis of metadata for RNA-seq samples of Camellia sinensis. A Cultivar. B Tissue. C Experimental treatments
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similarity between the two data sets. Conversely, when 
FMS approaches 0, it indicates a low consistency between 
the two datasets. We observed that the FMS between the 
global module and cluster-specific modules ranges from 
0.55 to 0.85 (Fig. 2C). Specifically, the similarity between 
the global module and the cluster-specific modules of 
Cluster 2 is low (Fig.  2C). Additionally, the cluster-spe-
cific module of Cluster 2 shows low similarity with the 

majority of other clusters’ specific modules (Fig.  2C). 
This suggests a higher level of uniqueness for Cluster 2, 
suggesting that the condition of Cluster 2 might employ 
a transcriptional program different from the other 
conditions.

We used the gene-module consistency coefficient 
(GMC) to assess the similarity between the expres-
sion profiles of genes and the average expression profile 

Fig. 2  K-means clustering of Camellia sinensis RNA-seq samples and comparative analysis of global vs. cluster-specific co-expression modules. 
(A) Pie chart showing the proportion of k-means clusters. (B) Scatter plots of t-SNE show the spatial distribution of all Camellia sinensis RNA-seq 
samples on Component 1 and Component 2. Different clusters are distinguished using different colors, while the same cluster remains 
consistent across A and B. (C) Similarity analysis of global and cluster-specific co-expression modules. The intensity of colors in the heatmap 
represents the magnitude of the Fowlkes-Mallows score (FMS). (D) Comparison of the gene-module consistency coefficient (GMC) of all genes 
between the global module and the cluster-specific module for each cluster

Table 1  Metadata annotation table of k-means clusters

Clusters Cultivar Tissue Treatment # Modules # Samples

Cluster 1 Huangjinya leaf and bud shading, MeJA, Colletotrichum, withering, fluoride, salicylic acid, 
sucrose

12 235

Cluster 2 Longjing 43, Shuchazao leaf and bud cold stress, shading 23 181

Cluster 3 Echa 1, Jinxuan, Longjing 43 flower, stem cold stress, NAA, selenite, insect infestation, mechanical dam-
aged, UV-B, flowering period

22 244

Cluster 4 Anji Baicha, Fuding Dabaicha, 
Longjing Changye, Zhongcha 
108

root albino, selenite, As, Cd, Na2SeO3 14 100
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within a module. The GMC is essentially the correla-
tion coefficient between the expression profiles of genes 
and the eigengene within a module. It ranges from−1 to 
1, where a value greater than 0 indicates a positive cor-
relation and a value less than 0 indicates a negative cor-
relation. As expected, genes from the same module tend 
to have a GMC score larger than 0, as genes in the same 
module should be correlated (Fig. 2D). We observed that 
the median GMC of genes in the cluster-specific modules 
tends to be slightly higher than the GMC of genes in the 
global module, especially Cluster 2, which is significantly 
higher than the global module (Fig.  2D). This confirms 
that after classifying samples using k-means clustering, 
conducting co-expression analysis with cluster-specific 
samples generally improves accuracy, particularly for 
cluster samples that exhibit significant differences from 
the global samples, such as in Cluster 2.

Understanding the condition‑specificity of co‑expression 
modules from two perspectives
In traditional WGCNA, after obtaining co-expression 
modules, there is often a biological functional annotation 
of the modules. However, here, we not only annotate the 
modules with functional information, but also calculate 
the conditional specificity of each module to each func-
tion. In this study, correlation difference value (CDV) is 
proposed as a measure of gene condition specificity. CDV 
is calculated as the difference between the gene-module 
consistency coefficient (GMC) of a gene in the cluster-
specific module and its GMC in the global module. CDV 
values range from−2 to 2. A CDV value closer to 2 indi-
cates a higher level of gene condition specificity, while a 
value closer to 0 indicates a higher level of conservation, 
as the average expression of the gene is more similar to 
the expression profile of the global module.

To explain the biological function of condition-specific 
genes, we analyzed a series of CDV thresholds ranging 
from 0 to 1. For each threshold, genes with CDV val-
ues higher than the threshold were considered cluster-
specific, while genes with CDV values lower than the 
threshold were considered conserved. For each thresh-
old, we calculated the similarity between the global mod-
ule and the cluster-specific module after removing genes 
with values higher than the threshold (Fig.  3A). There-
fore, lines in the line plot can be understood as follows: 
when the threshold is close to 0, there is a high similar-
ity between the global module and the cluster-specific 
module. However, as the threshold increases from 0 to 1, 
genes with higher CDV values are included in both the 
global module and the cluster-specific module, resulting 
in a decrease in the similarity between them (Fig. 3B). In 
other words, genes with higher CDV values lead to lower 

similarity between the global module and the cluster-
specific module, indicating higher condition specificity, 
while genes with lower CDV values have minimal impact 
on the similarity between the global module and the clus-
ter-specific module. In Cluster 2, the similarity decreases 
most rapidly with increasing threshold, indicating that 
genes with high CDV values in Cluster 2 are more condi-
tion-specific (Fig. 3B).

Subsequently, the average CDV of genes with differ-
ent biological functions in the four clusters revealed 
that Cluster 2, which was found to be least similar to the 
global module, has a higher proportion of genes with 
high average CDV values associated with specific bio-
logical functions (Fig. 3C). This further underscores the 
relationship between CDV and condition specificity. We 
observed that in Cluster 2, genes with CDV values higher 
than 0.2 are mainly enriched in biological functions such 
as “transcriptional co-regulation”, “MAP kinase cascade 
signalling” and several “ubiquitin-proteasome system”-
related terms (Fig. 3C).

As discovered in the previous section, the Cluster 2 
specific module is the least similar to the global module 
and is most likely to uncover condition-specific modules 
and biological functions. We analyzed Cluster 2 from 
two perspectives: gene condition specificity and biologi-
cal function enrichment. By combining the average CDV 
(correlation difference value) heatmap, with the specific 
modules of Cluster 1 as the x-axis, and biological func-
tions as the y-axis, and the results of significant biologi-
cal function enrichment, we observed that the biological 
function with the highest average CDV are “MADS/AGL 
transcription factor”, “R2R3-MYB transcription factor 
family”, “secondary metabolism.terpenoids”, and “tran-
scriptional co-regulation”, the module with the highest 
average CDV are “darkgrey”, “skyblue”, and “steelblue” 
(Fig.  4). Genes with high CDV values in the “purple” 
module are significantly enriched in biological functions 
such as “AP2/ERF family.ERF subfamily”, “transcriptional 
co-regulation”, “ubiquitin-proteasome system.F-BOX 
substrate adaptor”, and “redox homeostasis.glutathione-
based redox regulation”, which has piqued our interest, 
prompting further investigation into this module (Fig. 4).

Combining condition specificity and gene regulatory 
network reveals a series of transcription factors important 
in sustained cold stress
To predict the regulatory relationships between genes 
in the “purple” module and identify condition-specific 
co-expressed genes that could potentially explain the 
specificity of Cluster 2 under certain conditions, we 
constructed a gene regulatory network for the “pur-
ple” module and annotated the genes with their CDV. 
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Fig. 3  Relationship between correlation difference value (CDV) and condition specificity, and average CDV of different biological functions 
in different clusters. A Illustrative graph demonstrating the change in module similarity as the threshold increases from 0.3 to 0.9. B The impact 
of genes with different CDV on the similarity of global modules and cluster-specific modules. C CDV heatmap for each bio-function in each cluster. 
Cells marked with asterisks (*) indicate significant enrichment, and the color of the cells represents the average CDV
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Fig. 4  Correlation difference value (CDV) and functional enrichment heatmap corresponding to various biological functions for each co-expression 
module in Cluster 2. Cells marked with asterisks (*) indicate significant enrichment, and the color of the cells represents the average CDV. The blank 
cells in the figure indicate that the co-expressed module does not contain genes in that biological term or only genes with no CDV values
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We observed that in the gene regulatory network of 
the “purple” module, there are 12 transcription fac-
tor encoding genes with CDV values greater than 0.4 
(Fig.  5A). They encode transcription factors including 
AP2/ERF-ERF, C3H, SET, IWS1, C2H2, GRAS, TUB, 
HSF, and MYB-related (Fig. 5A). Additionally, there are 
14 target genes regulated by transcription factors with 
CDV values greater than 0.6 (Fig.  5A). They encode 
proteins including PIP5K, PRPF3, RCF1, SEU/SLK, and 
glutathione S-transferase (Fig. 5A).

To further compare the differences between cluster-
specific co-expression modules and global co-expres-
sion modules, and to demonstrate the role of CDV 
values, we selected a high CDV gene and a low CDV 
gene from the gene regulatory network of the “purple” 
module and plotted their expression profiles. By com-
paring the expression profile of the eigengene in the 
module where the gene in Cluster 2 is located (yellow 
line) with the expression profiles of the eigengene in the 
module where the gene in global is located (green line), 
we found that the eigengene of Cluster 2 module effec-
tively capture the expression differences among sam-
ples within Cluster 2, while the eigengene of the global 
module do not represent the expression characteris-
tics of the samples well (Fig.  5BC). This indicates that 
k-means clustering significantly enhances the accuracy 
of cluster sample co-expression analysis. Furthermore, 
the expression profile of gene CSS0042951.1 with a 
higher CDV (0.8542) is more similar to the eigengene 
of Cluster 2 module, while the expression profile of 
gene CSS0047322.2 with a lower CDV (0.1518) is diffi-
cult to distinguish and is more similar to the eigengene 
of the global module rather than the eigengene of Clus-
ter 2 module, which intuitively demonstrates that genes 
with higher CDV values are more valuable for research 
(Fig. 5BC).

The eigengene expression profile of Cluster 2 in the 
“purple” module exhibits several very distinct peaks, 
corresponding to samples primarily concentrated in a 
sustained cold stress treatment experiment. We plotted 
the expression profiles of 12 transcription factor encod-
ing genes with CDV values greater than 0.4 in this 
experiment. We observed that with increasing duration 

of cold treatment (from 0  h to 48  h), the expression 
levels of the majority of high CDV transcription fac-
tor encoding genes significantly increased, regardless 
of whether it was in the tea tree first leaf (FL) or two 
leaves and a bud (TAB) samples (Fig.  5D). Only two 
AP2/ERF-ERF encoding genes showed a significant 
increase in expression levels in two leaves and a bud 
(TAB) samples (Fig. 5D).

Discussion
Tea plant (Camellia sinensis), being one of the world’s 
most important beverage crops, is known for its numerous 
secondary metabolites that contribute to the tea quality 
and health benefits. In order to characterize the biologi-
cal functions of genes in tea plants, previous research has 
utilized a large-scale SRA data downloaded from NCBI to 
construct a gene co-expression network database known 
as TeaCoN (http://​teacon.​wchoda.​com) [9].

However, when conducting co-expression analy-
sis, more samples does not necessarily mean better 
results [10]. Researchers analyzed a dataset of Escheri-
chia coli microarray data and found that subsets of the 
dataset performed better in inferring transcriptional 
regulatory networks [41]. The poor performance of 
the global network was attributed to increased mul-
tidimensional noise [11]. However, this issue can 
be mitigated by determining the optimal number of 
effective samples, for example, through a downsam-
pling method that automatically groups samples using 
k-means clustering [12, 13].

In this study, we observed that the metadata entries 
(experimental treatments, tissues, and cultivars) of the 
SRA samples downloaded from NCBI were imbalanced 
(Fig.  1). This phenomenon has also been observed in 
other large-scale co-expression analysis studies [9]. The 
imbalanced sampling of global samples makes it diffi-
cult to represent specific research questions that require 
specific experimental conditions [42]. Therefore, in this 
study, a k-means clustering method was employed to 
automatically classify and organize all samples based on 
their gene expression patterns, forming distinct clusters 
(Figure S1; Fig. 2AB). By annotating these clusters, each 
cluster can represent specific conditions (Table 1).

(See figure on next page.)
Fig. 5  Gene regulatory network and comparison analysis of expression profiles. A Gene regulatory network of genes in the “purple” module 
of Cluster 2. The color intensity of the edges represents the weight between two nodes, and the color variation of the node borders 
represents the level of correlation difference value (CDV). B Comparison of the expression profile of gene CSS0042951.1 with the expression 
profiles of the eigengenes of the Cluster 2 module and the Global module. C Comparison of the expression profile of gene CSS0047322.2 
with the expression profiles of the eigengenes of the Cluster 2 module and the Global module. D Expression levels of the high CDV transcription 
factor-encoding genes in the “purple” module of Cluster 2 under sustained low-temperature treatment in the first leaf (FL) and two leaves and a bud 
(TAB)

http://teacon.wchoda.com
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Fig. 5  (See legend on previous page.)
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Based on the comparative analysis from two perspec-
tives, we observed significant differences between the 
global module and the cluster-specific modules in terms 
of gene composition (Fig.  2C). Furthermore, compared 
to the co-expression modules obtained from the global 
samples, the co-expression modules corresponding to the 
clustered samples indeed showed a significant improve-
ment in accuracy (Fig.  2D). Specifically, under specific 
conditions, there was a higher similarity between the 
gene expression profiles and the average expression pro-
files of the modules they belonged to (Fig. 2D). Addition-
ally, we found that the Cluster 2 specific module has the 
most unique gene composition and the most concen-
trated biological functions compared to the global mod-
ule, which warrants further investigation (Fig. 2CD).

Although the co-expression analysis of the clustered 
samples has higher accuracy, it does not mean that the 
analysis of the global samples becomes meaningless. On 
the contrary, by combining the co-expression analysis of 
the clustered samples with that of the global samples, we 
can obtain more valuable information. In this study, a cor-
relation difference value (CDV) was proposed to explain 
the condition specificity of a gene by comparing the corre-
lation between the gene expression profile and the average 
expression profile of the cluster-specific module, and the 
correlation between the gene expression profile and the 
average expression profile of the global module under spe-
cific conditions. CDV has been demonstrated in this paper 
to reflect the impact of a gene on the similarity between 
the cluster-specific module and the global module 
(Fig. 3AB). Genes with higher CDV values exhibit higher 
condition specificity and are worth further investigation.

In this study, through the investigation of the specific 
condition Cluster 2, we identified a co-expression mod-
ule “purple” highly associated with cold stress. In its gene 
regulatory network, a series of genes encoding high-CDV 
transcription factors were significantly upregulated in 
the continuously cold-treated tea plant leaves and buds 
(Fig.  5A). These transcription factor-encoding genes 
include AP2/ERF-ERF, C3H, SET, IWS1, C2H2, GRAS, 
TUB, HSF, and MYB-related factors, most of which have 
been extensively linked to cold stress response in tea plants 
in numerous studies [43–46].

Researchers have found in past studies that GST and 
HSF interact to some extent in cellular antioxidant stress 
responses and coping with external pressures [47]. In this 
study, we observed that a glutathione S-transferase (GST) 
encoding gene, CSS0018941.1, with a high CDV (0.7153), 
is regulated by a heat shock factor (HSF) encoding gene, 
CSS0013166.1, with a high CDV (0.5926), implying the 
involvement of GST and HSF interaction in the antioxi-
dant defense system of tea plants under sustained cold 
stress, aiding in the clearance of harmful compounds 

and oxidative stress products within cells. Heatmaps of 
the expression profiles of CSS0013166.1, a homologous 
gene AT1G67970.1 in Arabidopsis (E-value = 1e−26), 
and CSS0018941.1, a homologous gene AT1G10370.1 
in Arabidopsis (E-value = 4e−04), were plotted in ePlant 
(https://​bar.​utoro​nto.​ca/​eplant/.) [48]. We found that 
both AT1G67970.1 and AT1G10370.1 exhibited an 
upregulation trend under various abiotic persistent 
stresses, including sustained cold treatment, further con-
firming the findings in this study (Figure S3).
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