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Abstract 

Background Cytoplasmic male sterility (CMS) is the basis of heterosis exploitation. CMS has been used to hybrid pro-
duction in cotton, but its molecular mechanism remains unclear. CMS is associated with advanced or delayed tapetal 
programmed cell death (PCD), and reactive oxygen species (ROS) may mediate this process. In this study, we obtained 
Jin A and Yamian A, two CMS lines with different cytoplasmic sources.

Results Compared with maintainer Jin B, Jin A anthers showed advanced tapetal PCD with DNA fragmentation, 
producing excessive ROS which accumulated around the cell membrane, intercellular space and mitochondrial 
membrane. The activities of peroxidase (POD) and catalase (CAT) enzymes which can scavenge ROS were significantly 
decreased. However, Yamian A tapetal PCD was delayed with lower ROS content, and the activities of superoxide dis-
mutase (SOD) and POD were higher than its maintainer. These differences in ROS scavenging enzyme activities may 
be caused by isoenzyme gene expressions. In addition, we found the excess ROS generated in Jin A mitochondria and 
ROS overflow from complex III might be the source in parallel with the reduction of ATP content.

Conclusion ROS accumulation or abrogation were mainly caused by the joint action of ROS generation and scav-
enging enzyme activities transformation, which led to the abnormal progression of tapetal PCD, affected the develop-
ment of microspores, and eventually contributed to male sterility. In Jin A, tapetal PCD in advance might be caused by 
mitochondrial ROS overproduction, accompanied by energy deficiency. The above studies will provide new insights 
into the cotton CMS and guide the follow-up research ideas.
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Background
Cotton is not only an important crop providing fiber, 
oil and grain, but also a strategic resource for the tex-
tile chemical industry [1]. In recent years, it is crucial 
to increase cotton production in view of the reduction 

of cultivation and increase of consumption. Like other 
crops such as wheat, rice, soybean and barley, cotton 
has obvious heterosis, and the yield and fiber quality can 
be improved effectively by utilizing this heterosis [2–8]. 
CMS is the core for the production of hybrid seeds, 
and it is also one of the hot spots in the field of genet-
ics [4]. Currently, some cotton sterile lines have been 
developed and researched such as DBA/ZBA (CMS-
D2), Zhong41A (CMS-D8) and H276A [9–15]. With 
the successful construction of cotton sterile, maintainer 
and restorer lines, the “three-line” cross breeding sys-
tem have been successfully used in cotton breeding [16]. 
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However, with just a single source and a limited num-
ber of restorers, the application of this system is greatly 
limited now [12, 17, 18]. Jin A and Yamian A, cultivated 
and studied in our laboratory, are of great significance 
to broaden the CMS resources of cotton [19, 20]. Jin A 
derived from triple hybrids [(G.  hirsutum) × (G.  thurb-
eri)] × [(G.  arboreum) × (G. hirsutum)] was a CMS line 
with G.hirsutum cytoplasm. It was developed through 
consecutive backcross procedures with the recurrent par-
ent maintainer Jin B containing a normal fertile upland 
cotton (AD1) cytoplasm [19, 21]. Yamian A derived from 
triple hybrids [(G. arboreum) × (G. bickii)] × (G. hirsutum) 
was a CMS line with G.  arboreum cytoplasm and the 
genetic background of wild G. bickii in Australia. Yamian 
B is the homotype maintainer of Yamian A [20, 22]. Our 
previous study indicated that the sterility rates of Jin A 
and Yamian A were both 100%, and their male sterility 
mechanisms have not been elucidated [21, 22].

As a complex process, anther development includes 
the proliferation and differentiation of pollen bursa mul-
tilayers, specific cells apoptosis, microsporocyte meiosis, 
microspore proliferation and development. This series of 
changes are strictly regulated in time and space [23]. As 
the innermost sporophytic layer, tapetum plays a major 
role in microspore formation [24]. It first donates pro-
teins, lipids for microspore growth, and then supplies 
enzymes for micropore release [25]. After that, it needs 
to undergo a PCD process, making room for pollen 
development and depositing components [26–28]. The 
typical features of PCD include cytoplasmic contraction, 
ER expansion, nuclear membrane rupture and DNA frag-
mentation [28]. Abnormal tapetal PCD will lead to male 
sterility. Overexpression of bHLH142 (OE142) triggered 
the early onset of PCD, leading to male sterility in rice 
[29]. In SaNa-1A CMS line of Brassica napus L., tapetal 
cells abnormal  development and delayed degradation 
inhibited microspore growth [30].

In recent years, more and more genes, regulators and 
metabolic processes related to male sterility have been 
revealed through the application of new research tech-
nologies e.g., high-throughput sequencing, metabo-
lomics, transcriptomics, proteomics, methylome and 
miRNAomics. These genes and processes include 
miR2119b, FAX1 (Fatty Acid Export 1), germin-like pro-
tein (GhGLP4), OsSPL, chalcone-flavononeisomerase, 
pectinesterase, UDP-glucose pyrophosphorylase, starch 
and sugar metabolism, ATP producing, ROS scaveng-
ing and flavonoid biosynthesis [21, 31–39]. Many studies 
suggested that pollen abortion was associated with ROS 
abnormity and energy deficiency [40–45], and ROS burst 
was revealed in some CMS types of cotton [12, 46, 47].

ROS plays a key role in tapetal PCD, of which an 
extraordinary accumulation or removal will lead to 

abnormal PCD [25–27]. There are three main manifes-
tations. Firstly, excessive ROS accumulation in sterile 
lines may affect the normal development of microspores 
and accompany with early degradation of tapetum, such 
as Kenaf CMS line 722HA and wheat YS3038-A [42, 
48]. Secondly, ROS remains at a continuously low level 
throughout microspore development, so that tapetal 
degradation is abolished or delayed, as shown in rice 
Defective Tapetum Death1 (DTC1) anthers, Arabidop-
sis thaliana Respiratory burst oxidase homology (RBOH) 
mutant and Wheat male-sterile2 line [49–51]. Thirdly, 
the plant anthers show excessive accumulation of ROS 
but with delayed PCD in the tapetum. For example, 
male sterile anthers of peach due to the decrease of anti-
oxidant content led to ROS burst, resulting in abnormal 
microspore and tapetum development (delayed) [52]. 
Excessive  ROS accumulation and lack of an antioxidant 
enzyme system in Brassica Napus CMS line SaNa-1A 
resulted in the accumulation of malondialdehyde (MDA) 
in anthers, but tapetum showed delayed degradation [30].

In fact, the generation and removal of ROS in plants 
are in a dynamic balance. ROS can originate from various 
subcellular sources, including mitochondria, chloroplasts, 
and plasma membrane-associated NADPH oxidases [53]. 
As the center of plant energy metabolism, ROS can spill 
out by electron leakage through mitochondrial electron 
transport chain (mETC) complex I and III to form super-
oxide anion ( O−•

2  ) [54]. The removal of ROS is completed 
by oxidoreductase, among which the most classic ROS 
scavenging systems are SOD, POD and CAT. They can 
gradually divide ROS into water and oxygen [55].

For normal pollen development, a burst of ROS is 
required to initiate normal PCD in tapetum which comes 
from NADPH oxidase [50, 56, 57]. However, in CMS 
anther, the source of excess ROS has not been reported. 
Contrary to that is there are many studies on the active 
enzymes in the ROS scavenging system. The absence of 
enzymatic and non-enzymatic ROS scavenging systems 
in soybean sterile line could not effectively remove ROS 
from anthers, and the excessive accumulation triggered 
PCD and eventually led to pollen abortion [40]. In wheat 
CMS, ROS scavenging enzyme activity increased rapidly 
but non-enzymatic antioxidant activity down-regulated. 
The balance of antioxidant system was broken, thus 
affecting microspore development and eventually leading 
to male sterility [58].

While ROS dynamics during anther development sug-
gests ROS involves in tapetal PCD and different types 
of CMS are associated with ROS metabolism, it remains 
unclear whether ROS production unusually accumulates, 
whether tapetal PCD abnormality matches the failure of 
ROS temporal changes, and whether the ROS clearance 
system changes during anther development in cotton 
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CMS lines. Here we characterized the tapetal PCD fea-
tures, monitored the temporal changes of ROS and 
detected ROS scavenging enzyme activities during cotton 
pollen abortion using Jin A-CMS and Yamian A-CMS 
lines. In addition, we investigated the source of exces-
sive ROS in Jin A. Our work will provide insights into the 
abnormal PCD in tapetum caused by metabolic imbal-
ance in ROS.

Results
Tapetum morphological features in Jin A and Yamian 
A CMS lines
To delve into their abortive characteristics, we performed 
trypan blue to stain the anther tissue and 4’,6-diamidino-
2-phenylindole (DAPI) to dye paraffin sections. Trypan 
blue staining suggested that some anther cells died from 

Stage 4 to 6 in Jin A and Yamian A (Additional file 1: Fig-
ure 1), and DAPI showed PCD trace (Fig. 1a).

The anthers of Jin A and Jin B appeared normal at 
Stage 1 (Fig.  1a). They all differentiated into sporangia 
in the corner epidermis of the stamen primordium, and 
the nucleus of sporogonium was significantly larger than 
peripheral tissue cells. However, at Stage 2 when three 
layers of cells formed in the sporangia with larger nuclei 
in Jin B, Jin A sporogenous and some tapetal cells mani-
fested degradation phenomena such as different nuclear 
size  and fuzziness. Thereafter, normal anther locules 
divided 4 layers, where microsporocytes were surrounded 
by the epidermis, endothecium, middle layer and tape-
tum, but in Jin A, the anther locules were dispersed, 
microsporocyte fragmented, even some disappeared, and 
tapetal nucleus blurred and severely degraded (Fig.  1a 
Stage 3). During Stage 4, microspore mother cells began 

Fig. 1 Characterization of stamen layer cells PCD. a Stamen paraffin sections stained with DAPI. Scale bar in Jin A at all stages, Jin B from Stage 1 
to 4, Yamian A and Yamian B from Stage 1 to 3 = 20 μm, Scale bar in Jin B at Stage 5 and 6, Yamian A and Yamian B  from Stage 4 to 6 = 50 μm. The 
arrows showed tapetal cells. No obvious differences in 4 materials anthers at Stage 1. Compared with the fertile material anthers at Stage 2, Jin 
A sporogenous and some tapetal cells manifested degradation phenomena, and Yamian A showed blurred nuclei. Then the cells in Jin A anther 
locules were dispersed, microsporocytes fragmented, even some disappeared, and the tapetal nucleus blurred and severely degradated (Stage 
3–5). Residual fragments were contained in Yamian A sporangium and non-degradable tapetum development pattern was similar to outer cells 
(Stage 3–5). b to g TUNEL testing in Jin A at Stage 2 (b) and 3 (c and d) and its maintainer Jin B at Stage 2 (f) and 3 (f) and positive control (g) with 
scale bar = 20 μm. No apoptosis in fertile anther locules (e and f), but Jin A tapetum showed DNA fragmentation at Stage 3 (c and d)
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meiosis and tapetum contracted inward with binuclear 
in Jin B anther, but sterile line pollen loculus were empty 
or had only a small number of cell residues and tapetal 
cells had degenerated and disappeared. Thereafter, Jin B 
microspore mother cells underwent normal meiosis to 
form tetrad; tapetum secreted enzymes, separated the 
tetrad, and itself gradually blurred degradation; eventu-
ally the microspores matured and formed pollen grains 
with spiny processes, and the tapetum was completely 
degraded, only represented residual partial traces (Fig. 1a 
Stage 5 and 6). Contrastingly, the sporangia in Jin A con-
tracted after the meiosis, outer cells conducted mitosis, 
filled the entire sporangia (Fig.  1a Stage 5), and finally 
formed anthers without pollen grains (Fig.  1a Stage 6). 
To further characterize the tapetal PCD from Stage 2 
to Stage3 in Jin A, DNA fragmentation was detected 
using TUNEL assay. There was no brown TUNEL sig-
nal in fertile anther locules at Stage 2 and 3 (Fig. 1e and 
f ). However, a weak TUNEL signal was detected in Jin 
A microspore mother cells and tapetal cells at Stage 2 
(Fig.  1b), thereby indicating that PCD were present in 
this stage. At Stage 3 Jin A cells produced stronger brown 
TUNEL-positive signals which was explained by the 
obvious accumulation of DNA cleavage (Fig. 1c, d, and g 
was positive control).

The anther development characteristic of Yamian B was 
the same to Jin B. The microspore mother cells of Yamian 
A showed blurred nuclei at Stage 2, and thereafter only 
residual fragments were contained in the sporangium 
(Fig. 1a Stage 3–5), which was eventually filled with outer 
cells (Fig. 2b Stage 6). The difference of tapetum mainly 
occurred at Stage 4, which were characterized by the 
absence of nuclear enlargement, binuclear and conden-
sation, and the development pattern was similar to outer 
cells.

These results indicated that abnormal development 
of microspores in Jin A occurred simultaneously with 
tapetum degradation, and the early PCD of tapetum was 
related to pollen abortion. Yamian A also showed abnor-
mal microspore development at Stage 2, but tapetum no 
degradation or delayed PCD.

Accumulation of ROS in Jin A and Yamian A
To explore the relationship between abnormal anther 
tapetal PCD and ROS metabolism, we determined O−•

2  , 
 H2O2 as well as MDA content. Nnitrotetrazoliumblue 
chloride (NBT) dyeing O−•

2  showed that compared with 
Jin B, the anther tissue was obviously stained blue at 
Stage 2 and 3 (Fig. 2a) in Jin A, indicating palpable O−•

2  
accumulation at that time. We also determined the O−•

2  
content of flower buds (Additional file  2: Figure  2a). 
Great increases occurred at Stage 2 and 3 in Jin A 
which was consistent with the results of NBT staining, 

illustrating O−•

2  accumulation was abnormal in the crit-
ical period of pollen abortion. 3,3’-Diaminobenzidine 
(DAB) staining  H2O2 showed that compared with Jin 
B, the anthers at Stage 3 and later stages showed obvi-
ous brown color, indicating obvious accumulation of 
 H2O2 at that time (Fig.  2b). And the content of  H2O2 
(Additional file  2: Figure  2b) were consistent with the 
results of DAB staining, illustrating the abnormal accu-
mulation of  H2O2 in Jin A during the critical period of 
pollen development. In addition, MDA content was 
similar to  H2O2, and higher at Stage 3 (Additional file 2: 
Figure 2c).

The  H2O2 accumulated in cells can be stained by 
cerium chloride to form electron-dense precipitation, 
which can be observed by an electron microscope. Jin 
B showed obvious nucleolus, clear nuclear membrane, 
nuclear pores in some positions and complete mitochon-
drial and no palpable  H2O2 electron-dense black precipi-
tate was found in mitochondrial and cell membrane at 
Stage 2 (Fig. 2g). Jin A tapetum showed signs of degen-
eration, nucleolus disintegrate and nuclear membrane 
blurred, and no electron dense black precipitate or just 
a bit was found in cell membrane or other parts (Fig. 2c), 
indicating that  H2O2 accumulation was not found at 
this time. However, at Stage 3, compared with no obvi-
ous  H2O2 deposition (Fig. 2h) found in fertile line, Jin A 
tapetum showed significant  H2O2 electron-dense black 
precipitates, which appeared around the cell membrane 
(Fig.  2d and e), intercellular space (Fig.  2e), and mito-
chondrial membrane (Fig. 2f ).

But Yamian A showed a contrary result. In both DAB 
and NBT staining, the anther tissue of Yamian A was not 
colored like Yamian B (Fig. 2a and b). However, the con-
tent of O−•

2  ,  H2O2 and MDA were significantly lower dur-
ing the critical period of microspore abortion (Additional 
file 2: Figure 2a and b), implying the low level of ROS in 
Yamian A (Additional file 2: Figure 2c).

Based on these results, we suggested that microspore 
abortion had correlation with the accumulation of ROS 
in Jin A. The level of ROS increase might lead to cell 
metabolism imbalance and eventually infertility.  H2O2 
accumulation in tapetum might be the cause of apopto-
sis and early degradation. The low ROS level in Yamian 
A during microspore abortion might be the reason for 
delayed or non-degradation of tapetum.

Enzymatic activities of ROS‑scavenging
The concentration of ROS is determined by the com-
position and availability of antioxidant systems. We 
measured the activities of enzymes including SOD, 
POD and CAT involved in ROS scavenging. The results 
were as follows: For the flower buds of Jin A, SOD 
activity increased only between Stage 4 and Stage 6, 
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when microspore abortion and tapetum degradation 
accomplished, and there was no significant difference 
in other stages (Fig. 3a). POD activity was significantly 
lower than Jin B except Stage 1 (Fig. 3b). CAT activity 
decreased at Stage1, 2 and 3, and showed no differ-
ence after microspore abortion and tapetum degrada-
tion (Fig.  3c). For Yamian A, SOD activity increased 

significantly from Stage 2 to 5  (Fig.  3a). POD activity 
at Stage 2 and 4 was significantly higher than Yamian B 
(Fig. 3b). CAT activity was significantly higher at Stage 
2, but significantly lower at Stage 3 and 4 (Fig. 3c).

In summary, the decrease of POD and CAT activities 
seemed to be more closely related to the accumulation of 

Fig. 2 Comparison of O−•

2
 and  H2O2 levels. a Stamen stained with NBT. Scale bar at Stage 1 and 2 = 200 μm, Stage 4, 5 and 6 = 500 μm. Jin A 

O
−•

2
 gathered at Stage 2 and 3; Yamian A showed no O−•

2
 enrichment. b Stamen stained with DAB. Scale bar at Stage 1 and 2 = 200 μm, Scale 

bar at Stage 4, 5 and 6 = 500 μm. Jin A  H2O2 gathered from Stage 3 to 6; Yamian A showed no  H2O2 enrichment. c to h Stamen  H2O2 subcellular 
localization between Jin A at Stage 2 (c), Stage 3 (d, e and f) and Jin B at Stage 2 (g), Stage 3 (h). Scale bar in c, e, g and h = 0.5 μm, d = 1 μm, and 
f = 0.25 μm. The arrows showed  H2O2 deposition. No  H2O2 deposition in Jin B at Stage 2 and 3, but obvious sedimentary  H2O2 in Jin A at Stage 3
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ROS, while the increase of SOD and POD activities was 
responsible for the decrease of ROS content in Yamian A.

SOD, CAT and POD enzymes contain a variety of iso-
enzymes and they represent differences in biological 
activity and even functional diversity at different parts 
of cells [59–63]. In Jin A, there were no significant dif-
ferences in the expression of Cu-ZnSOD and FeSOD 
from Stage 2 to 3, and the expression trend of MnSOD 
is the same as SOD activity (Additional file  3: Table  1). 
The GPX6 and CAT2 expression level was lower in Jin A 
which were consistent with POD and CAT activities. In 
Yamian A, Cu-ZnSOD and APX expressions were higher, 

and CAT1 was consistent with CAT activity. There-
fore, the differences of ROS elimination enzymes activi-
ties may be related to the expression changes in various 
isoforms.

ROS origin
NADPH oxidase was widely considered as the main 
source of ROS burst/generation in anther, especially 
RBOHE [48, 55, 56]. Therefore, we tested the expression 
of RBOHE (Additional file  4: Table  2). Interestingly and 
amazingly, the expressions were both down-regulated in 

Fig. 3 Determination of SOD (a), POD (b) and CAT (c) activities in Jin A (left), Yamian A (right) and their maintainers Jin B, Yamian B. Values are 
means ± SD of three replicates. Asterisks represent statistically significant differences between sterile line and its maintainer (* P < 0.05; ** P < 0.01, 
Student’s t tests). SOD, superoxide dismutase; POD, peroxidase; CAT, catalase
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Jin A and Yamian A indicating RBOHE representing less 
effect for ROS generation.

Given the results of RBOHE expression and  H2O2 
subcellular localization we identified the mitochondrial 
ROS. Therefore, we detected ROS content in isolated 
mitochondria. During the critical period of Jin A pollen 

abortion, it exhibited significantly higher O−•

2  (Fig.  4a) 
and  H2O2 (Fig. 4b) than Jin B. At the same time, we tested 
the generation rate of O−•

2  , and found that O−•

2  from 
mitochondrial complex I had no differences between 
Jin A and Jin B regardless of whether adding rotenone 
or not (Fig.  4c). However, when inhibitor absence, O−•

2  

Fig. 4 Comparison of mitochondrial ROS levels between Jin A and its maintainer Jin B. a Content of flower buds mitochondrial O−•

2
 between 

Jin A and Jin B. b Content of flower buds mitochondrial  H2O2 between Jin A and Jin B. c Production of O−•

2
 by Jin A and Jin B etiolated seeding 

submitochondrial particles. Values are means ± SD of three replicates. Statistical differences are the same as Fig. 3. I, Complex I; III, Complex III; AA, 
Antimycin A; R, Rotenone

Fig. 5 Determination of ATP content in Jin A (left), Yamian A(right) and their maintainers Jin B, Yamian B. Values are means ± SD of three replicates. 
Statistical differences are the same as Fig. 3
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generation from complex III was significantly higher than 
Jin B (Fig. 4c), and this change was abolished when add-
ing antimycin A. The results supported Jin A complex 
III might produce excess ROS in normal condition. In 
addition, we measured the changes of ATP content. The 
results showed that ATP content had no differences at 
each stage of anther development in maintainers, while 
it decreased significantly at Stage 3 and 4 in Jin A (Fig. 5).

We therefore concluded that disordered mitochondrial 
ROS generation and accumulation may be a significant 
contribution to ROS anomaly during Jin A pollen abor-
tion. Energy metabolism may be not closely related to 
Yamian A abnormal anther development.

Discussion
Microspore abortion and tapetal abnormal PCD in CMS
Normal pollen development is a continuous process. In 
sporangia, microspore mother cells, dividing from sporog-
enous cells, proliferate and subsequently undergo meiosis 
to form microspores, and eventually develop into mature 
pollen grains through two rounds of cell division. Abnor-
malities at any step in this process can result in microspore 
development failure and pollen malformation [64]. Towards 
cotton male sterility germplasm, photosensitive male ster-
ile mutant anther abortion occurred at the microspore 
stage; GMS 1355A abortion occurred during the release of 
microspores; CMS H276A and zhong41A pollen mother 
cells were gradually dissolved at the tetrad stage [14, 15, 65, 
66]. Meanwhile, it should be noted that tapetum is close to 
the microspores, and its appropriate PCD is important. The 
abnormal activities including delayed and premature PCD 
in tapetum will lead to the obstruction of microspore devel-
opment and pollen abortion. In previous reports, prema-
ture tapetal PCD had been described in cotton harknessii 
A, C2P5A, rice WA-CMS, wheat K87B1-706A, and delayed 
degradation was occurring in wheat u87B1-706A and Bras-
sica napus L. SaNa-1A [12, 30, 46, 58, 67]. In this research, 
the abnormal microspore development of Jin A and Yamian 
A could be traced back to Sporogenous cells stage (Stage 2) 
when the microspore nuclear membrane was not complete 
and the nucleus turned blur and degenerative. At the same 
stage in Jin A, tapetal cells showed degeneration and disap-
pearance and the fragmentation of nuclear DNA (TUNEL 
signal) appeared. This suggested Jin A tapetal cells under-
went PCD in advance, and its early disintegration was a 
key feature of microspore abortion. Moreover, interest-
ingly, Yamian A showed the opposite developmental state 
that compared with Yamian B, no degradation of tapetum 
conducted at Stage 4. This difference may be determined 
by different abortion mechanisms in different CMS types. 
Therefore, Jin A and Yamian A could enrich the germ-
plasm diversity of male sterility and provide new materials 
and new ideas for the study of CMS in cotton. The study 

of genes that regulated the early or delayed degradation 
of tapetum will be a goal of our future research and will 
be beneficial to our understanding of the CMS molecular 
mechanism.

Mitochondrial ROS and abnormal energy metabolism 
leading to tapetum PCD
The production of ROS is an important factor in plant 
PCD signaling [68]. Actually, during the process of nor-
mal anthers development, the amount of ROS usually 
increased at the particular stage of the tapetum abor-
tion process, and the peak time of ROS production was 
associated with stage-specific expression of NADPH oxi-
dase, especially RBOHE [50, 56, 57]. Recent study had 
identified that abscisic acid (ABA) could trigger ROS 
burst in rice developing anthers leading to tapetal PCD 
when experiencing heat stress [69]. This excess ROS 
production in stress-induced male sterility also related 
to NADPH oxidase on account of ABA stimulated the 
hyperpolarization-activated  Ca2+ channels and up-regu-
lated the activity of NADPH oxidase [70]. RT-PCR analy-
sis showed a down-regulated expression of RBOHE in Jin 
A and this strange result suggested that excess ROS in 
tapetum might be not produced by NADPH oxidase.

During cell death-inducing conditions, the mETC may 
become inhibited, plausibly producing cytotoxic levels 
of ROS [71, 72]. In addition, PCD induced by externally 
applied ROS could be mediated by mitochondria [73–
76]. These findings supported a central role for mito-
chondria in PCD, where ROS was produced by complex 
I and III [63]. The accumulation of ROS includes two 
factors. One hand is excessive ROS produced. The main 
causes of CMS were the changes of key genes or genera-
tion of chimeric ones caused by mitochondrial genome 
rearrangement or mutation, and these genes may inhibit 
mETC and  F0F1-ATP synthase which caused the surplus 
of electron transfer [77–80]. The excess electrons are 
converted into ROS. orf610a was identified as sterility 
gene in cotton CMD-D2 line ZBA. This chimeric gene 
was specifically expressed in sterile line and resulted in 
excessive accumulation of ROS and reduction in ATP 
content when ectopic expression in yeast [78]. Another 
is ROS scavenge or elimination. SOD、POD and CAT 
enzymes system is a classical one in plants to resist 
oxidative stress and they form a complete antioxidant 
chain and work together for ROS scavenge or elimina-
tion [81]. Also, these antioxidant enzymes can suppress 
plant PCD when specifically targeted to mitochondria 
[14]. In cotton CMS-D2 line, excessive  H2O2 accumu-
lated along with POD activity significantly decreasing 
[12]. Lack of positive regulation of SOD and its activ-
ity declining induced ROS balance disrupted in Kenaf 
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CMS 722HA [42]. The activity levels of SOD, CAT 
and POD in IAMSLs were higher than the maintainer, 
which was the result of the activation of antioxidant 
system triggered by the increased production of O−•

2  
and  H2O2 [58]. In addition, the change in various iso-
forms of antioxidant enzymes was closely associated 
with the tissue-specificity of ROS scavenge/elimination 
in plant organelles. In our study, compared to main-
tainer, Jin A complex III overflowed excess ROS. ROS 
cannot be cleared in time on account of POD and CAT 
activities decreased which caused by related isoform 
GPX6 (which can be localized in mitochondria [61]) 
and CAT2 (whose main function is to clear ROS [63]) 
transforming. These both led to a high level of ROS in 
mitochondrial and anther tissues. The accumulation of 
ROS induced the signal of PCD in tapetum and caused 
DNA fragmentation in parallel with ATP content sharp 
declined at the same time. These experimental results 
pointed out mitochondrial ROS and energy metabolism 
disorder were related to pollen abortion.

Based on this study, we constructed a proposed work-
ing model of impaired microspore development in Jin A 
(Fig. 6). In parallel with the decrease of ATP level, mito-
chondrial electron transport chain complex III of tapetal 
cells leaked out excess O−•

2  , which generates  H2O2 under 
the action of SOD. Due to the reduced activities of POD 
and CAT, ROS cannot be removed in time and resulted 
in ROS burst. Excessive ROS triggered DNA fragmen-
tation and caused premature apoptosis of tapetum, and 
eventually resulted in microspore abortion.

Given the phenomenon of tapetal no or delayed deg-
radation in Yamian A, it was not surprising that ROS 
content was reduced in flower buds. However, there are 
few reports on the decrease of ROS content and delayed 
or non-degraded tapetum in other CMS lines, but many 
on regulatory factors [49, 50, 56, 57]. Yamian A down-
regulated RBOHE expression might be related to the 
lower ROS, and the up-regulated Cu-ZnSOD and APX 
increased SOD and POD activities. In wheat, orf279 (ATP 
synthase subunit 8) had been reported as an AL-type 
(AL18A) CMS gene, which resulted in delayed tapetal 
PCD with abnormal expression of mETC and ROS scav-
enging enzymes in early anther development period [79, 
80]. Although the performance of Yamian A was simi-
lar to AL18A, no significant difference in ATP content 
suggested that Yamian A might have less relationship 
with mitochondrial energy metabolism, and its abortion 
mechanism still needs to be further studied. In addition, 
the difference in tapetal PCD between the two materials 
confirmed the core role of ROS accumulation, which will 
provide guidance for our future work.

Methods
Plant materials
All materials were planted at the Farm Station of 
Shanxi Agricultural University in the summer of 
2021, Crop management practices followed normal 
recommendations. When the cotton developed to 
the flowering stage, the buds of different develop-
mental stages were picked. Based on the preliminary 
observation of microspore development in cotton, 
we divided anther development into six stages [22]. 
After removing the bracts, the buds were divided 
into 6 different periods: Stage1 (Sporogonium stage), 
Stage 2 (Sporogenous cells stage), Stage 3 (Microspo-
rocyte stage), Stage 4 (Meiosis stage), Stage 5 (Tetrad 
stage), Stage 6 (First nuclear and pollen maturation 
stage). The buds used in cytological experiments were 
treated according to the general operation, and the 
rest were frozen with liquid nitrogen, then stored at 
-80℃ refrigerator.

Fig. 6 A proposed working model of pollen abortion in Jin A. 
In parallel with the decrease of ATP level, mitochondrial electron 
transport chain complex III of tapetal cells leaked out O−•

2
 , which 

generates  H2O2 under the action of SOD. Due to the reduced 
activities of POD and CAT, ROS cannot be removed in time, which 
leaded to ROS burst. Excessive ROS triggered DNA fragmentation and 
caused premature apoptosis of tapetum, and eventually resulted in 
microspore abortion
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Trypan blue, NBT and DAB staining
Trypan blue staining was performed as Mou et al. 
described and dead cells or tissues were stained blue 
[82]. NBT and DAB staining was performed as Wu et 
al. described and O−•

2  and  H2O2 were stained blue and 
brown, respectively [83].

DAPI staining and TUNEL assays
DAPI staining was performed as routine paraffin sec-
tion making process. When dyeing, added 100μL DAPI 
dye solution (10 μg/mL), and after 5–15 min staining at 
room temperature, added a drop of glycerol, and covered 
the cover glass before being visualized at fluorescence 
microscope.

TUNEL assays were performed using the TUNEL 
Apoptosis Detection Kit (BIOTIN marking POD 

method) (KeyGEN BioTECH, Jiangsu, China) according 
to the supplier’s instructions.

Subcellular localization of  H2O2: cerium chloride treatment
Subcellular localization of  H2O2 was performed as 
Luo et al. described [62]. Briefly, The buds were incu-
bated at 5  mM cerium chloride solution (dissolve in 
50  mM MOPS, pH7.2) for 1  h, then fixed in 50  mM of 
sodium dimethylarsinate (pH7.2) with 1.25% glutaralde-
hyde/1.25% paraformaldehyde. After general SEM slice 
operation,  H2O2 accumulation was observed using trans-
mission electron microscope (Hitachi H-7500, Japan).

Determination of ROS and MDA content
The content of O−•

2  and  H2O2 was determined with 
standard curve method in spectrophotometry.

Prepared 0.4  ml sodium nitrite standard solution 
(0-10 μg, dissolve in acetone), added 0.4 ml 17 mM ani-
linparasulfonic acid, 0.4 ml 7 mM α-naphthylamine, and 
then incubated at 30℃ for 30  min. The absorbance was 
determined at 530  nm. Samples of bud (~ 0.1  g) at dif-
ferent stage were ground in 1  ml PBS(65  mM, pH 7.8). 
The homogenates were centrifuged at 10,000  rpm for 
10 min. 150 μl PBS and 50 μl hydroxylamine hydrochlo-
ride (10  mM) were added to the supernatant (0.2  ml), 
then incubated at 25℃ for 20 min. The absorbance value 
of the reaction solution was determined by the same 
method, and the O−•

2  content was calculated according to 
the standard curve.

Prepared 1 ml  H2O2 standard solution (20-100 μM, dis-
solve in acetone), and added 0.1 ml 2 M titanium sulfate. 

The homogenates were centrifuged at 12,000  rpm for 
10  min. The supernatant then added 0.2  ml ammonia 
spirit (25%-28%), centrifuged at 12,000  rpm for 10  min.
The precipitate added 3  ml 2  M sulfuric acid to com-
pletely dissolve. The absorbance was determined at 
415 nm. Samples of bud (~ 0.1 g) were ground in acetone, 
and the absorbance value was determined by the same 
method and the  H2O2 content was calculated according 
to the standard curve.

Blend the bud (~ 0.2 g) to a smooth paste with distilled 
water (5 ml), added 5 mL 0.5% thiobarbituric acid solu-
tion (dissolved in 20% trichloroacetic acid), and Boiled 
for 10  min. The volume was measured after filtration 
and the OD values at 450 nm, 532 nm and 600 nm were 
determined. MDA contents were calculated using the fol-
lowing formula:

N, the volume of the solution after the reaction; Fw, the 
fresh weight of the sample.

Determination of ROS scavenging enzyme activities
SOD, POD, and CAT enzyme activites determination 
were performed as Demircan et  al. and Bradford et  al. 
described [84, 85].

Mitochondrial extraction and ROS testing
Mitochondria were extracted from various tissues or 
anthers using Plant mitochondrial Extraction Kit (biolab 
Biotechnologies Beijing) according to the manufacturer’s 
instructions.
O−•

2  and  H2O2 assay were similar with described above. 
They were determined with standard curve method in 
enzyme-labeled instrument. The generation rate of O−•

2  
was performed as Boveris described [54].

RT‑PCR
RNA extraction were performed using Plant RNA 
Extraction Kit (Aidlab Biotechnologies Co.,Ltd, China) 
according to the supplier’s instructions. Reverse tran-
scription were performed using PrimeScript™ RT rea-
gent Kit with gDNA Eraser (Perfect Real Time) (Takara 
Bio Dalian, Inc.). RT-PCR were performed using TB 
Green® Premix Ex Taq™ II (Tli RNaseH Plus) (Takara 
Bio Dalian, Inc.) at Bio-rad CFX Connect fluorescent 
PCR amplifier (Bio-Rad Laboratories, Inc.). Primers 
were shown in Additional file  5: Table  3.  Primer syn-
thesis were performed by Beijing Tsingke Biology Co., 
Ltd.

MDA concentration C (µmol/L) = 6.45 (A532 − A600)− 0.56A450,

MDA content (µmol/g) = C×N × 10−3/Fw
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Determination of ATP
TUNEL assays were performed using the ATP Detection 
Kit (Beijing Solarbio Science and Technology Co., Ltd) 
according to the supplier’s instructions.

Abbreviations
CMS  Cytoplasmic male sterility
PCD  Programmed cell death
ROS  Reactive oxygen species
MDA  Malondialdehyde
SOD  Superoxide dismutase
POD  Peroxidase
CAT   Catalase
mETC  Mitochondrial electron transport chain
ABA  Abscisic acid
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Additional file 1: Figure 1. Stamen stained with Trypan blue. Scale bar 
in Stage 1 and 2 =200μm, Stage 4, 5 and 6 =500μm. Jin A and Yamian A 
anther cells death mainly occurred at Stage 4 to 6, but in fertile lines, cell 
debris were present on the pollen surface at Stage 6.

Additional file 2: Figure 2. Determination of O−•

2  ,  H2O2 and MDA 
content in Jin A (left), Yamian A(right) and their maintainers Jin B, Yamian 
B. (a) Content of O−•

2  in Jin A (left) and Yamian A (right). (b) Content of 
 H2O2 in Jin A (left) and Yamian A (right). (c) Content of MDA in Jin A (left) 
and Yamian A (right). Values are means ± SD of three replicates. Asterisks 
represent statistically significant differences between sterile line and its 
maintainer (* P < 0.05; ** P < 0.01, Student’s t tests).

Additional file 3: Table 1. The relative expression of antioxidase genes 
by qRT-PCR. Values are means ± SD of three replicates. Asterisks represent 
statistically significant differences between sterile line and its maintainer 
(*P < 0.05; ** P < 0.01, Student’s t tests). GPX, Glutathione peroxidase; APX, 
Ascorbate peroxidase.

Additional file 4: Table 2. The relative expression of RBOHE by qRT-PCR. 
Values are means ± SD of three replicates. Asterisks represent statistically 
significant differences between sterile line and its maintainer(* P < 0.05; ** 
P < 0.01, Student’s t tests).

Additional file 5: Table 3. Primer sequence.
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