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Abstract 

Background  Organic acids and anthocyanins are the most important compounds for the flavor and nutritional 
quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin 
metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved 
in both citrate and anthocyanin accumulation in postharvest citrus fruit with ‘Tarocco’ blood orange (TBO; high accu-
mulation) and ‘Bingtangcheng’ sweet orange (BTSO; low accumulation).

Results  A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accu-
mulation throughout the storage period through transcriptome analysis. Further according to the results of weighted 
gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively 
correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate car-
boxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3’-hydroxylase (F3’H) and 
glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), 
Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc 
finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further 
qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression pro-
files were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as 
the content of citrate and anthocyanin content.

Conclusions  The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regula-
tors participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These 
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results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus 
fruit.

Keywords  Transcriptome, Anthocyanin, Citrate, ‘Bingtangcheng’ sweet orange, ‘Tarocco’ blood orange, Postharvest

Background
Citrus is one of the most important fruit crops world-
wide. China is the largest producer of citrus in the world 
with a current annual yield of 45 million tons, among 
which 90% are used for fresh consumption. With the 
changes in people’s consumption concept, ‘high qual-
ity’ has become the core competitiveness of fresh citrus 
fruit, and postharvest fresh-keeping technologies play an 
increasingly prominent role in citrus industry. Organic 
acids are important components for the flavor and quality 
of citrus fruit, and are closely related to the fruit storage 
performance [1, 2]. In addition, anthocyanin is an impor-
tant component for citrus fruit color, as well as plays a 
critical role in citrus fruit quality formation, stress resist-
ance and human health benefits [3–5]. Blood orange is 
the only commercial citrus variety that can accumulate 
anthocyanins in its fruit. The content of organic acid and 
anthocyanin jointly determine the quality of postharvest 
blood orange fruit.

The intracellular organic acid level is regulated by 
the synthesis, degradation, transport and vacuole stor-
age of organic acids. A variety of enzymes involved in 
citrate metabolism have been reported, such as phos-
phoenolpyruvate carboxylase (PEPC) [6], phospho-
enolpyruvate carboxylase kinase (PEPCK) [7], citrate 
synthase (CS) [8], cis-aconitase (Aco) [9], vacuolar pro-
ton pump V-ATPase/V-PPase and citrate/H+ cotrans-
porter (Cit) [10, 12], GABA shunt gene and citrate lyase 
(ACL) [13, 14]. Moreover, transcription factors (TFs) 
including ERF, bHLH, NAC, WRKY, bZIP and MYB 
have also been reported to participate in the regulation 
of citrate level through the VHA [15], Aco [16, 17], ACL 
[18] or PH8 [12, 19, 20] pathway.

The biosynthesis of anthocyanins is a complex 
multi-step process involving many structural and reg-
ulatory genes. These structural genes code enzymes 
like phenylalanine ammonia-lyase (PAL), chalcone 
synthase (CHS), chalcone isomerase (CHI), flavanone 
3-hydroxylase (F3H), flavonoid 3’-hydroxylase (F3’H), 
dihydroflavonol 4-reductase (DFR), anthocyanidin 
synthase (ANS) and glutathione S transferase (GST) 
[21, 22]. The most extensively studied TFs for the 
transcriptional regulation of anthocyanin biosyn-
thesis are MYB, bHLH and WD40 [23]. It has been 
demonstrated that MYB can regulate anthocyanin 
accumulation by directly binding to the promoters of 

key genes in the anthocyanin biosynthesis pathway 
[24, 25]. In general, bHLH needs to form a complex 
with the MYB protein to be involved in anthocyanin 
biosynthesis [4, 26–28]. Similarly, WD40 cannot inde-
pendently regulate anthocyanin synthesis and mainly 
functions by forming MYB-bHLH-WD40 (MBW) 
complex [29]. It has been reported that anthocyanin 
accumulation in almost all citrus cultivars is closely 
associated with the activity of the Ruby1 gene (a MYB 
TF) [30]. The Ruby1 gene can respectively inter-
act with bHLH and WD40 to regulate anthocyanin 
metabolism in citrus [4, 31].

Although numerous genes related to citrate and 
anthocyanin metabolism have been reported, lit-
tle is known about the common regulatory pathways 
involved in the accumulation of both citrate and antho-
cyanins. In petunia, it has been reported that MYB 
complexes with bHLH and WD40 protein to regulate 
anthocyanin biosynthesis, and bHLH is actually the 
AN1 protein involved in regulating vacuolar acidifica-
tion [32]. A recent study demonstrated that the traits 
of exceptionally low fruit acidity and absence of antho-
cyanins in leaves and flowers and proanthocyanidins in 
citrus seeds are due to the mutation of the Noemi gene 
encoding a bHLH TF (a homolog of AN1 in petunia 
and TT8 in Arabidopsis) [33]. Because both acidity and 
coloration are important fruit quality traits, increas-
ing research has been focused on the discovery of new 
Noemi genes [34].

Transcriptome profiling has greatly contributed to 
the identification of new genes or pathways for many 
important traits [21, 35, 36]. Blood orange is the only 
commercial citrus variety that can accumulate antho-
cyanins in its fruit, and the acid content in its fruit is 
higher among sweet orange varieties. ‘Tarocco’ blood 
orange (TBO) is the main variety of blood orange 
grown in Hunan. ‘Bingtangcheng’ sweet orange (BTSO) 
is an excellent variety selected in Hunan province, and 
is characterized by a low acid content. It is also the 
main sweet orange variety planted in Hunan province. 
In this study, we comparatively analyzed the transcrip-
tome of these two contrasting sweet orange germplasm, 
TBO and BTSO, throughout the postharvest storage 
process, aiming to identify the genes playing impor-
tant roles in the postharvest process of citrus fruit, 
and thereby provide insights into the key pathways and 
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regulators simultaneously associated with the accumu-
lation of citrate and anthocyanins in citrus fruit.

Results
Variations in the physical and chemical characteristics 
of TBO and BTSO during postharvest storage
To compare the fruit of TBO and BTSO, we examined 
the physiochemical characteristics of fruit at different 
stages of postharvest storage (Fig. 1). The two varieties 
exhibited similar fruit pulp colors at maturity (0 DAS, 
days after storage). Thereafter, the pulp of TBO fruit 
started to accumulate anthocyanins gradually from 15 
to 90 DAS and was differentiated from BTSO fruit in 
color (Fig.  1A). Further determination of anthocya-
nin content revealed that it was gradually increased in 
TBO during storage and was significantly higher than 
that in BTSO (Fig. 1C).

Citrate and malate are major organic acids in cit-
rus fruit. Hence, we also analyzed their changes in 
TBO and BTSO fruit during postharvest storage. The 
results showed that mature TBO (10.49 ± 0.72  g  kg−1) 
had a markedly higher citrate content than BTSO 
(1.49 ± 0.05  g  kg−1), which was consistently observed 
throughout the whole storage period (Fig.  1B). The 
malate content showed a decreasing tendency in TBO 
fruit, while a slightly increasing tendency in BTSO fruit 
along with storage (Fig. S1). In general, the malate con-
tent had little influence on total organic acids.

Transcriptome analysis
To explore the regulatory mechanism of citrate and 
anthocyanin accumulation in the flesh of citrus fruit, 
the samples at five detection time points (0, 15, 30, 60 90 
DAS) from the two different varieties were used for deep 
RNA-seq analysis. After filtering out the rRNAs and low-
quality reads, a total of 133 million reads were mapped 
to the Citrus sinensis reference genome (Table S2). For 
these clean reads, the average mapped reads per sample 
was greater than 90% (ranging from 87.90% to 91.87%). 
A total of 29,655 annotated genes were obtained. Dif-
ferentially expressed genes (DEGs) were identified 
based on their expression levels in different samples, 
and functional annotation and enrichment analysis were 
performed. A total of 14,232 genes were differentially 
expressed between postharvest stored TBO and BTSO 
fruit (Fig. 2A). To screen the candidate genes related to 
citrate and anthocyanin biosynthesis, our study focused 
on the DEGs at TBO vs. BTSO. There were 2397, 2677, 
3067, 3131 and 2960 genes that were differentially 
expressed on 0, 15, 30, 60 and 90 DAS respectively 
between TBO and BTSO (Fig. S2). Among them, 839 
genes were consistently differentially expressed (Fig. 2B), 
and 381 genes were consistently upregulated, while 444 
were consistently downregulated in TBO relative to 
BTSO throughout the storage period. The remaining 
14 genes were upregulated in some storage periods and 
downregulated in other storage periods (Fig. 2C).

Fig. 1  BTSO and TBO fruit under postharvest storage (A), and their corresponding citrate and anthocyanin contents (B and C). Error bars represent 
the standard deviations of the mean in three replicates, and for each storage day, * stand for significant differences between two materials at 
p < 0.05
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Construction of a WGCNA and coexpression network
To obtain hub genes related to citrate and anthocyanin 
accumulation, the relationships of DEGs, citrate and 
anthocyanin content for each sample were analyzed by 
constructing a WGCNA (Fig.  3). Samples clustering 
showed that the three biological replicates of each sample 
were very good (Fig.  3A). Fourteen coexpression mod-
ules were identified by WGCNA (Fig. 3B), among which 
the turquoise module was highly positively correlated 
with the contents of citrate (r = 0.57, p value = 9e-04) and 
anthocyanin (r = 0.83, p value = 1e-08). In addition, the 
brown module was also highly positively correlated with 
the citrate content (r = 0.94, p value = 2e-14) (Fig.  3C). 
A total of 5154 and 1193 genes were obtained from tur-
quoise and brown module respectively. Thinking about 
the content of citrate and anthocyanin were all markedly 
higher in TBO than that in BTSO fruit during the whole 
storage period (Fig.  1B and C), we focused on intersec-
tion genes between the 825 continually DEGs (Fig.  2C) 
and the turquoise and brown modules. Finally, 310 valu-
able genes was filtered out. According to GO and KEGG 
enrichment of the 310 candidate genes, 11 genes were 
mapped to the flavonoid metabolism pathway, 5 genes 

were mapped to the citrate cycle pathway, and 7 genes 
were mapped to the starch and sucrose metabolism path-
way (Fig. S3 and S4).

Identification of candidate genes involved in citrate 
and anthocyanin accumulation
As a results, 3 and 5 structural genes involved in citrate 
metabolism and anthocyanin biosynthesis were obtained 
in 310 candidate genes. A heatmap of their expression 
profiles in the flesh of TBO and BTSO fruit was drawn 
based on their FPKM value (log2(FPKM)) (Figs. 4 and 5). 
The 3 structural genes from all major steps of the citrate 
metabolism pathway were distributed as follows: p-type 
ATPase gene (PH8), two phosphoenolpyruvate carboxy-
lase kinase (PEPCK). Further the expression patterns of 
these 3 structural genes involved in citrate metabolism, 
PH8 (Cs1g16150), PEPCK1 (Cs3g16700) and PEPCK2 
(Cs1g20920), were studied via qRT-PCR (quantitative 
real-time PCR), and the transcripts of PH8 and PEPCK2 
genes were significantly higher in TBO fruit than in 
BTSO fruit during the whole storage period (Fig.  4C), 
which was consistent with the results of transcriptome 
analysis based on the correlation analysis (Fig. 4D).

Fig. 2  Summary of differentially expressed genes between TBO and BTSO fruit during postharvest storage. A Number of DEGs in different DEG sets. 
B Venn diagram shows DEGs in TBO vs BTSO. C Number statistics of DEGs intersected of TBO vs BTSO in five storage period groups



Page 5 of 14Jin et al. BMC Plant Biology          (2023) 23:296 	

The 5 structural genes from all major steps of the 
anthocyanin biosynthesis pathway were distributed 
as follows: chalcone isomerase (CHI), two flavanone 
3-hydroxylase (F3H), flavonoid 3’-hydroxylase (F3’H) and 
glutathione S transferase (GST). Further the expression 
patterns of these 5 structural genes involved in anthocya-
nin biosynthesis, CHI (Cs7g29780), F3H (Cs1g25280 and 
Cs2g04110), F3’H (Cs5g11730) and GST (Cs6g15900), 
were studied via qRT-PCR, and the transcripts of these 
genes were significantly higher in TBO fruit than in 
BTSO fruit during the whole storage period (Fig.  5C), 
which was consistent with the results of transcriptome 
analysis based on the correlation analysis (Fig. 5D).

Identification of genes involved in carbohydrate 
metabolism
Carbohydrates are considered substrates for anthocya-
nin synthesis, and was also closely connect with organic 
acid metabolism. In our results, the contents of glucose, 
fructose and sucrose showed downward trends on the 
whole in TBO and BTSO fruit during postharvest stor-
age. The glucose and fructose content in TBO fruit was 
significantly lower than that in BTSO throughout the 
storage period; while the sucrose content was markedly 
higher in TBO fruit than that in BTSO fruit at 15 and 60 

DAS (Fig.  6A). In 310 candidate genes, two trehalose-
phosphate phosphatase (TPP) genes were involved in 
starch and sugar metabolism which was related to citrate 
metabolism and anthocyanin synthesis (Fig.  6B). Cor-
relation analysis showed that the expression patterns of 
the TPP genes were positively correlated with citrate and 
anthocyanin content, and was negatively correlated with 
glucose and fructose content (Fig.  6C), suggesting that 
higher expression levels of these genes were beneficial to 
carbohydrate metabolism, which contributed to citrate 
and anthocyanin accumulation in TBO fruit.

Screening potential transcription factors that regulate 
citrate and anthocyanin accumulation in postharvest TBO 
fruit
To explore the molecular regulatory mechanism of cit-
rate metabolism and anthocyanin biosynthesis in TBO 
fruit, we constructed a coexpression network based on 
the genes present in the intersection of 825 continu-
ally differentially expressed genes (DEGs) (Fig.  2C) and 
turquoise + brown modules. In the network, we iden-
tified a total of 40 transcription factor genes, and 5 of 
them including PH4 (Cs9g03070), CHR4 (Cs2g11400), 
FAR1 (Cs2g11450), ATC3H64 (Cs4g14220), and HAC12 

Fig. 3  Weighted gene coexpression network analysis of TBO vs BTSO fruit during postharvest storage period. A Sample clustering. B Hierarchical 
clustering showing modules of coexpression genes. C Module/trait correlations and corresponding p values. The right panel shows a colour scale 
for module/trait correlations from -1 to 1



Page 6 of 14Jin et al. BMC Plant Biology          (2023) 23:296 

(Cs6g19010) were identified as hub genes (Fig. 7A and B). 
These TFs were found to be closely correlated with cit-
rate and anthocyanin metabolism-related genes. Among 
them, PH4 was closely related to PH8, CHI, F3’H, and 
GST; CHR4 was closely related to F3H (Cs1g25280); 
FAR1 was closely related to PH8, PEPCK1, and PEPCK2; 
ATC3H64 was closely related to PEPCK2 and F3H 
(Cs1g25280 and Cs2g04110); HAC12 was closely related 
to PEPCK1 (Fig. 7B).

The heatmap based on the transcriptome data showed 
that the expression levels of PH4, CHR4, HAC12, FAR1 
and ATC3H64 were obviously upregulated in the TBO 
fruit compared with BTSO fruit throughout the storage 
period (Fig.  7C). Meanwhile, the qRT-PCR results indi-
cated that the transcripts of these 5 detected genes in 
the TBO fruit were obviously higher than those in BTSO 
fruit during storage, especially the FAR1, ATC3H64 and 
PH4 (Fig. 7D), which was consistent with the transcrip-
tome analysis results based on the correlation analysis 

Fig. 4  Analysis of genes related to citrate metabolism in the intersection genes between the 825 continually DEGs and the turquoise and brown 
modules. A Citrate metabolism pathway. The red font indicates the genes obtained in the intersection genes. B Heatmap of the expression levels 
of differentially expressed genes (DEGs) involved in citrate metabolism. C qRT-PCR detection of citrate metabolism related structural genes, PH8 
(Cs1g16150), PEPCK1 (Cs3g16700) and PEPCK2 (Cs1g20920). D Correlation analysis of the expression profiles in qRT-PCR (qPCR) and transcriptome 
data (FPKM) (*, ** and *** represent significant differences at p < 0.05, p < 0.01 and p < 0.001, respectively between the two sets of data)
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(Fig.  7E). Furthermore, the expression patterns of the 5 
transcription factor genes were positively correlated with 
the changes of structural genes expression levels and 
citrate/anthocyanin content (Fig. S5). It was proposed 
that PH4, CHR4, HAC12, FAR1 and ATC3H64 might be 
involved in citrate and anthocyanin accumulation by reg-
ulating the expression of structural genes associated with 

citrate metabolism and anthocyanin biosynthesis, espe-
cially the FAR1, ATC3H64 and PH4 genes.

Discussion
The mechanism of higher content of citrate 
and anthocyanin in postharvest TBO fruit
Accumulations of citrate and anthocyanins are impor-
tant indicators to evaluate citrus fruit quality, as well as 

Fig. 5  Analysis of genes related to anthocyanin biosynthesis in the intersection genes between the 825 continually DEGs and the turquoise and 
brown modules. A Anthocyanin biosynthesis pathway. The red font indicates the genes obtained in the intersection genes. B Heatmap of the 
expression levels of differentially expressed genes (DEGs) involved in anthocyanin biosynthesis. C qRT-PCR detection of anthocyanin biosynthesis 
related structural genes, CHI (Cs7g29780), F3H (Cs1g25280 and Cs2g04110), F3’H (Cs5g11730) and GST (Cs6g15900). D Correlation analysis of the 
expression profiles in qRT-PCR (qPCR) and transcriptome data (FPKM) (*, ** and *** represent significant differences at p < 0.05, p < 0.01 and p < 0.001, 
respectively between the two sets of data)
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important traits for consumers’ concern. Blood orange is 
the only commercial citrus variety that can accumulate 
anthocyanins in its fruit, and with higher organic acid 
content in its fruit compared with other sweet orange, 
which determined its unique flavor. Some studies have 
suggested that PH8 might be responsible for the differ-
ence in acidity among mature or postharvest stored cit-
rus varieties [1, 2, 7]. Here, the differentially expressed 
structural gene PH8 was found based on the transcrip-
tome data, and was mapped to the citrate metabolism 
pathway (Fig.  4A and B). Moreover, its expression pat-
tern was significantly positively correlated with citrate 
content (Fig. 4 C and D), which was similar to previous 
study. These results indicate that in TBO fruit, more cit-
rate accumulated in vacuoles due to the strikingly higher 
expression of PH8, which increases the ability of the pro-
ton pump to uptake citrate into vacuoles.

Additionally, a series of studies showed that the accu-
mulation of anthocyanin in blood orange fruit was 
attributed to the upregulation of genes across the bio-
synthetic pathway [37, 38]. In this study, the differentially 
expressed structural gene CHI, F3H, F3’H and GST were 
found based on the transcriptome data, and was mapped 
to the anthocyanin biosynthesis pathway (Fig. 5A and B). 
The expression pattern of these genes was significantly 
positively correlated with anthocyanin content, especially 

two F3H genes (Fig.  5C and D). These results indicate 
that the high expression of F3H might be the main rea-
son for anthocyanin accumulation during postharvest 
storage of TBO fruit, and the significant high expression 
of F3’H and GST also jointly promoted the anthocyanin 
accumulation.

Transcription factors involved in citrate and anthocyanin 
accumulation in postharvest TBO fruit
The regulation of citrate metabolism has always been the 
concern of researchers. And so far, some transcription 
factors have been reported to be involved in the regula-
tion of citrate metabolism through triggering structural 
genes [12, 33, 39–41]. MYB5a, MYB5b and MYBA1 
have been proven to be involved in vacuolar acidifica-
tion by inducing the expression of vacuolar acidification-
related genes PH5 and CAC16.5 in grapevine [40]. The 
co-exprssion of PH4 and AN1 strongly induced PH1 and 
PH5 expression to lead to citrate accumulation in citrus 
fruit [12, 41]. VvMYB5 has similar functions to PhPH4 
and AtMYB5, and is also involved in controlling vaculor 
hyper-acidification and trafficking in grapvine [39]. In 
the present study, both transcriptome analysis and qPCR 
quantitative detection that the expression of PH4 was sig-
nificantly higher in TBO fruit than that in BTSO, and was 
coordinated with the expression patterns of PH8 (Fig. 7). 

Fig. 6  Soluble sugar content and expression pattern of carbohydrate metabolism related genes in TBO and BTSO fruit during postharvest storage 
period. A Glucose, fructose and sucrose contents in TBO fruit compared with BTSO fruit during storage. B Heatmap of the expression levels of 
carbohydrate metabolism related genes in the intersection genes between the 825 continually DEGs and the turquoise and brown modules. C 
Correlation analysis of the citrate content, anthocyanin content, soluble sugar content and expression profiles of carbohydrate metabolism related 
genes (*, ** and *** represent significant differences at p < 0.05, p < 0.01 and p < 0.001, respectively between the two sets of data). For each storage 
day, different lowercase letters stand for significant differences between two materials at p < 0.05



Page 9 of 14Jin et al. BMC Plant Biology          (2023) 23:296 	

Thus, the transcription factor PH4 is likely involved in 
regulating citrate accumulation in postharvest TBO fruit. 
Except for PH4, the expression patterns of FAR1 was 
also found to be closely related to citrate accumulation 
and changes in the PH8, and moreover, the expression 
patterns of FAR1 was similar to PH4, indicating that the 
transcription factors FAR1 was also involved in regulat-
ing citrate accumulation in postharvest TBO fruit. The 
proposed function of FAR is that it play crucial roles in 
controlling the growth and development of plants, and 
it also proved to involved in regulating light-induced 
myo-inositol biosynthesis and an alternative ascorbate 

biosynthetic pathway [42, 43]. However, the roles in 
regulating citrate accumulation in postharvest fruit are 
unclear and need to be studied further.

Previous studies have well documented that the tran-
scription factors families such as the R2R3-MYB, bHLH 
and WD40-domain proteins primarily regulate antho-
cyanin biosynthesis via regulating the structural genes in 
the anthocyanin biosynthesis pathway [24, 28]. In grape-
vine, the MYB5b can involve in anthocyanin biosynthesis 
through upregulating a subset of anthocyanin structural 
genes [40]. Additionally, overexpression of LcMYB5 
increased anthocyanin biosynthesis in tobacco and 

Fig. 7  Coexpression network analysis of the potential key genes in the intersection between the 825 continually DEGs and the turquoise and 
brown modules. A coexpression network of the genes (weight > 0.15). B coexpression network of transcription factors and citrate/anthocyanin 
metabolism related structural genes. C Heatmap of the expression levels of the candidate transcription factors. D qRT-PCR detection of candidate 
transcription factor genes CHR4 (Cs2g11400), FAR1 (Cs2g11450), ATC3H64 (Cs4g14220), HAC12 (Cs6g19010) and PH4 (Cs9g03070). E Correlation 
analysis of the expression profiles in qRT-PCR (qPCR) and transcriptome data (FPKM) (*, ** and *** represent significant differences at p < 0.05, 
p < 0.01 and p < 0.001, respectively between the two sets of data)
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petunia either by directly activating the expression of key 
structural genes such as DFR or by indirectly up regulat-
ing the expression of endogenous bHLH1 [44]. Recently, 
research showed that PH4 could directly upregulating 
the expression of Noemi gene and involved in proantho-
cyanin biosynthesis through activating the expression 
of PA biosynthetic genes like DFR, ANS, ANR, LAR and 
UFGT2 in citrus [45]. In this study, the expression of 
PH4 was also coordinated with the expression patterns of 
CHI, F3’H and GST (Fig. 7). Thus, the transcription factor 
PH4 was also likely to be involved in regulating antho-
cyanin biosynthesis in postharvest TBO fruit. Moreover, 
the expression patterns of CHR4, FAR1, ATC3H64 and 
HAC12 were similar to PH4, indicating that these TFs 
were have similar functions to PH4. A FAR1 gene, 16 and 
15 members from C3H and ZF subfamilies was identified 
and differentially expressed in purple-fleshed compared 
with white-fleshed sweetpotato through transcriptome 
analysis [46], suggesting that these transcription factors 
involved in anthocyanin accumulation in sweetpotato. 
However, the regulation mechanism of these transcrip-
tion factors in anthocyanin biosynthesis in postharvest 
fruit are unclear and need to be studied further.

In recent years, many reports have proposed that the 
regulation of citrate metabolism is closely associated 
with that of anthocyanin biosynthesis [32, 33, 47]. The 
bHLH protein AN1 (also called Noemi) participates in 

the regulation of vacuolar acidification in petunia, and is 
also involved in the regulation of anthocyanin biosynthe-
sis by complexing with MYB and WD40 protein [32]. The 
exceptionally low fruit acidity and the absence of antho-
cyanins in citrus leaves and flowers are due to mutation 
in the Noemi gene [33]. PH4 could directly upregulating 
the expression of Noemi gene and involved in both citrate 
accumulation and proanthocyanidin biosynthesis [45]. In 
this study, we found that the expression of AN1 was also 
upregulated in TBO fruit and was significantly positive 
correlated with PH4 (Fig. 7B). And so far, the transcrip-
tion regulation involved in both citrate and anthocyanin 
metabolism are all around MYB and bHLH. Hence, with 
the results of this study, we hope to explore new regula-
tory factors from CHR4, FAR1, ATC3H64 and HAC12 
that can simultaneously regulate the accumulation of cit-
rate and anthocyanin. According to the results of previ-
ous studies [1, 4] and the present study, we established 
a model to explain the high citrate and anthocyanin 
accumulation in postharvest TBO fruits compared with 
BTSO fruits (Fig. 8).

Conclusion
In this study, TBO and BTSO were chosen for a tran-
scriptome analysis to excavate the key genes and regula-
tors involved in citrate and anthocyanin metabolism in 
citrus fruit during postharvest storage. Importantly, we 

Fig. 8  Sketch of the potential regulatory mechanisms involved in high citrate and anthocyanin trait in TBO fruits compared with that in BTSO fruits. 
The red typeface indicates that the metabolite content or gene expression level is significantly higher in TBO fruits than BTSO fruits
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identified the key structural genes, transporters and TFs 
for the genetic control of citrate and anthocyanin accu-
mulation in citrus fruit. Since in almost all transcrip-
tome studies, it remains a great challenge to demonstrate 
which candidate genes play actual regulatory roles in 
fruit acidity and coloration, our comprehensive analysis 
provides an important basis for future study to determine 
whether the key genes identified here play important and 
specific roles in citrate and anthocyanin accumulation in 
citrus fruit.

Materials and methods
Plant materials
Physiologically mature fruit of ‘Tarocco’ blood orange 
(TBO) and ‘Bingtangcheng’ sweet orange (BTSO) (Citrus 
sinensis) were purchased from an experimental station 
in Huaihua, Hunan Province, China, in December 2019, 
and then immediately transported to the laboratory. Fruit 
with uniform size and color and free of any visible dam-
age or defects were selected as samples for further experi-
ments. The fruit were individually packed in polyethylene 
bags and stored in a temperature controlled chamber at 
8 ± 1 °C with a relative humidity 85%–90% for about three 
months.

Juice sacs were separated from five fruit in each group 
at 0, 15, 30, 60 and 90 days after storage (DAS) with three 
replicates to measure the levels of organic acids, sugars, 
and for transcriptome analysis and expression analysis of 
related genes. The samples were immediately frozen in 
liquid nitrogen and stored at –80 °C for further analysis.

Determination of organic acids and sugars
Organic acids (citrate and malate) and sugars (glucose, 
fructose and sucrose) were measured and analyzed by 
high-performance liquid chromatography (HPLC) with 
a previously described method [1]. The results were 
expressed on a fresh weight (FW) basis.

Determination of anthocyanins
The anthocyanin contents were determined based on 
a previously reported protocol [48] with minor modi-
fications. The mixed sample was ground in liquid nitro-
gen, and exactly 0.1  g of the sample was homogenized 
with 2  mL of A buffer (50  mM KCl and 150  mM HCl, 
pH = 1.0). Another 0.1 g of the sample was homogenized 
with 2  mL of B buffer (400  mM NaAC and 240  mM 
HCl, pH = 4.5). The homogenate was centrifuged at 
12,000 rpm for 15 min at 4 °C. The supernatant was then 
collected and diluted to measure the A510 values, and 
the anthocyanin content (g kg−1 FW) = (A510 at pH1.0 
– A510 at pH4.5) × 484.8 (molecular weight of cyanidin) 

/ 24,825 (molar absorption coefficient of cyanidin at 
A510) × dilution ratio.

Transcriptome sequencing and WGCNA 
Total RNA was extracted from TBO and BTSO fruit sam-
ples for 0, 15, 30, 60 and 90 DAS (three biological rep-
etitions) using the Trizol reagent (Invitrogen, CA, USA) 
following the manufacturer’s procedure. The mRNA was 
purified and fragmented into small pieces. Then, the 
cleaved RNA fragments were reverse transcribed to cre-
ate the final cDNA library in accordance with the proto-
col for the mRNA Seq sample preparation kit (Illumina, 
San Diego, USA). RNA sequencing was performed on 
an Illumina Hiseq 4000 platform (LC-Bio, Hangzhou, 
China) to produce raw reads according to the protocol.

High-quality clean reads were used to de novo assem-
ble the transcriptomes of TBO and BTSO using the 
StringTie program [49]. Then, all transcriptomes from 
samples were merged to reconstruct a comprehen-
sive transcriptome using the Perl scripts. After the 
final transcriptome was generated, StringTie and Ball-
gown were used to estimate the expression levels of all 
genes. StringTie was used to determine the expression 
level for mRNAs by calculating the FPKM. Differen-
tially expressed mRNAs and genes were selected with 
log2 (fold change) > 1 or log2 (fold change) < -1 and with 
statistical significance (p value < 0.05) by R package 
-Ballgown [50]. Gene Ontology (GO) annotation was 
performed using the eggNOG-mapper (http://​eggnog-​
mapper.​embl.​de/). DEGs were enriched in GO and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) databases 
so as to identify the changes in biological functions and 
metabolism pathways [51, 53]. Finally, the transcriptome 
data and phenotype data were analyzed by WGCNA 
using R language. The WGCNA package was employed 
to construct a gene coexpression network using a variant 
set of genes (15,318 genes, the maximum FPKM in all 
samples ≥ 2). The analysis was performed based on the 
WGCNA package in R studio software [54]. The main 
parameters of WGCNA program were as follows: vari-
ance data expression > 0,no mission data expression < 0.1; 
soft threshold = 18 (scale-free R2 = 0.9); deep split = 2; 
min module size = 60; merge cut height = 0.25.

Quantitative real‑time PCR validation
The candidate DEGs were verified by qRT-PCR. Total 
RNA from samples was extracted by the CTAB method 
and used for quantitative real-time PCR.

The RNA samples were used for first-strand cDNA 
synthesis using a FastKing gDNA Dispelling RT Super-
Mix reverse transcriptase Kit (Tiangen, China) following 
the manufacturer’s instructions. qRT-PCR assays were 

http://eggnog-mapper.embl.de/
http://eggnog-mapper.embl.de/
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performed according to previous reports [1], and the 
relative expression levels were calculated with the 2−ΔΔCt 
method in three biological replications. Specific primers 
were designed from the selected gene sequences using 
Primer Express 3.0 (Applied Biosystems, Foster City, CA, 
USA) and the primer sequences are given in Table S1.

Statistical analysis
Each experiment was performed in three replicates. 
Experimental results were analyzed using IBM SPSS Sta-
tistics, RStudio and Gephi software. Error bars denote 
standard deviations. Different lowercase letters above 
the bars indicate significant differences at p < 0.05, which 
were obtained based on one-way ANOVA using IBM 
SPSS Statistics software.
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