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Abstract 

Background  Organic acids are important components that determine the fruit flavor of peach (Prunus persica L. 
Batsch). However, the dynamics of organic acid diversity during fruit ripening and the key genes that modulate the 
organic acids metabolism remain largely unknown in this kind of fruit tree which yield ranks sixth in the world.

Results  In this study, we used 3D transcriptome data containing three dimensions of information, namely time, phe-
notype and gene expression, from 5 different varieties of peach to construct gene co-expression networks through-
out fruit ripening of peach. With the network inferred, the time-ordered network comparative analysis was performed 
to select high-acid specific gene co-expression network and then clarify the regulatory factors controlling organic 
acid accumulation. As a result, network modules related to organic acid synthesis and metabolism under high-acid 
and low-acid comparison conditions were identified for our following research. In addition, we obtained 20 candidate 
genes as regulatory factors related to organic acid metabolism in peach.

Conclusions  The study provides new insights into the dynamics of organic acid accumulation during fruit ripen-
ing, complements the results of classical co-expression network analysis and establishes a foundation for key genes 
discovery from time-series multiple species transcriptome data.

Keywords  Peach, Fruit ripening, Organic acid, Gene co-expression network, Dynamic network analysis

Background
Peach (Prunus persica L. Batsch) belongs to the Pru-
noideae subfamily of the Rosaceae [1, 2]. As an impor-
tant economic deciduous fruit, peach fruit ranks sixth in 
yield in the world [3, 4]. Compared with other perennial 
fruit crops, peach has a small diploid genome and rela-
tively short juvenile period [5]. It is a good material for 
studying functional genomes, so it has been considered 
to be a model species of Rosaceae family [6, 7]. The eco-
nomic value of peach is mainly determined by quality, 
taste, aroma, and storage durability [8]. Acid is one of 
the important factors affecting taste, and its composition 
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and metabolic process are relatively complex. They are 
affected by genetic factors, physiology, environmental 
conditions and cultivation measures [9]. Physical location 
is the first step to isolate and modulate peach acidity dur-
ing the improvement of peach varieties [10]. The prede-
cessors used fruit acid measurement, amplified fragment 
length polymorphism (AFLP) markers and bacterial 
artificial chromosome (BAC) libraries to locate the gene 
controlling peach acidity at the D site of the fifth chro-
mosome of the peach genome [9, 11–14]. However, due 
to the variety of organic acids in peach and the complex-
ity of metabolic methods, no specific genes have been 
found to control the acidity of peach [15].

With the progress of high-throughput biotechnol-
ogy experiments, large amounts of omics data are avail-
able and provide us the chance to investigate the key 
genes controlling some complex traits by bioinformatics 
approaches. Among these methods, network analysis is 
an important tool for characterizing gene relationships 
with the assumption that network is a common form of 
complex system [16, 17]. In network science, life system 
is considered as a molecular network composed of differ-
ent biochemical reaction pathway modules [18, 19]. With 
the development of network theory and technology, a lot 
of different organizational forms of networks in biologi-
cal system are discovered, such as transcription regula-
tory network, protein interaction network, metabolism 
network, and signal transduction pathway. In a biological 
system, genes and proteins are important components, 
but what’s more important are the relationships between 
them [20, 21]. Genes that perform similar functions at 
the same time are more closely related to each other, so 
we can divide gene sets that perform similar functions 
through network construction [22, 23]. As one of the 
most popular methods for network analysis, the weighted 
gene co-expression network analysis (WGCNA) has been 
widely used and proved it to be a useful tool for tran-
script analysis. However, it cannot detect the dynamical 
mechanism of biological process [24].

The time-series transcriptome data generally contains 
three dimensions of information, namely time, pheno-
type and developmental stage, which calls 3D transcrip-
tome data [25]. It can provide the information about the 
stages of development for detecting the dynamic mecha-
nism [26, 27]. The transcriptomes of different varieties 
with huge phenotypic differences can reveal the genes 
that exhibit variety-specific differential expression. As a 
time-ordered (TO) gene co-expression network analysis 
(GCN) tool for dealing with this kind of 3D data, TO-
GCN method can reveal the dynamics of gene expression 
and the transition of biological processes [28, 29]. Specifi-
cally, TO-GCN not only avoids time-point alignment, but 
also overcomes the trouble from normalization between 

conditions. It will not lose time information because the 
average value represents the level of each time series. In 
addition, it will not generate new gene clusters that do 
not belong to the original data due to the fusion of multi-
ple datasets after normalization. Different from classical 
co-expression network analysis, it considers continuous 
time points in transcriptome data. This method has been 
validated by many experimental methods [28].

In this study, we used 3D transcriptome data from 5 
different varieties of peach to construct gene co-expres-
sion networks throughout fruit ripening. With the net-
work inferred, the time-ordered network comparative 
analysis was performed to select high-acid specific gene 
co-expression network and then clarify the regulatory 
factors controlling organic acid accumulation. The dif-
ference of synthesis and metabolism of different organic 
acid components in high-acid varieties and low-acid 
varieties results in the total acid content. The time delay 
for the respective synthesis and degradation of organic 
acid components was considered for the comparative 
analysis of different developmental stages. After the co-
expression patterns under high acidity and low acidity 
were compared, we obtained 20 candidate genes related 
to organic acid metabolism in peach. Overall, our study 
provides new insights into the dynamics of organic acid 
accumulation during fruit ripening and establishes a 
foundation for key genes discovery from time-series tran-
scriptome data of multiple species.

Results
Phenotypic diversity of organic acids during fruit 
development
Sampling is divided into five periods, i.e. the young fruit 
period, the first expansion period, the hard core period, 
the second expansion period and the maturity period 
(Fig. 1). In order to maintain a consistent time sequence 
and facilitate the operation of the sampling personnel, 
sampling was carried out on 34, 50, 75, 97 and 117 days 
after full bloom (DAF), respectively [30–32]. The sam-
ples were sampled from three biological replicates, and 
the five peach varieties were basically at similar stages of 
development. The stages of fruit development are divided 
into five stages, i.e. T1-T5. T1 (34 DAF) corresponds to 
the young fruit stage when the ovary begins to develop. 
T2 (50 DAF) corresponds to the first expansion stage and 
the fruit expands rapidly at this time. T3 (75 DAF) cor-
responds to the hard core stage and at this time devel-
opment is delayed and the core hardening. T4 (97 DAF) 
corresponds to the second expansion period and at this 
time the fruit expands again. T5 (117 DAF) corresponds 
to the mature period and the fruit basically stops growing 
and matures gradually.
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The composition of peach organic acids is analyzed 
from two dimensions, one is the total amount of organic 
acids, and the other is the proportion of organic acids. 
These two points are the key factors affecting the eco-
nomic value of peaches. The total amount of organic 
acids determines the sugar-acid ratio of fruit, and the 
proportions of malic acid and citric acid are also the 
important factors that affect the peach flavor. In terms of 
acid content, Shantao (ST) is the highest one in total acid 
content. The high acidity is mainly related to the genetic 
background of the wild species when the factors of dif-
ferent fruit sizes are excluded. The organic acids in ST 
are mainly composed of malic acid and quinic acid, while 
citric acid has little effect on the total acid and its con-
tent fluctuates slightly from T1 to T5. After the hard core 
period (T3), the content of quinic acid decreases slowly 
while malic acid continues to accumulate from the first 
expansion period (T1). The above two points cause malic 
acid to account for the largest proportion of acid content 
of ST in the maturity stage (T5).

The total acid content of the two nectarine varieties is 
almost always higher than that of the two hairy peach 
varieties. The acid content difference between the nec-
tarine varieties and hairy peach varieties in the first three 

periods is small, but the difference in the latter two peri-
ods is huge. Two nectarine varieties Legrand (LG) and 
Meiguowanyou (MY) are high-acid varieties, and two 
hairy varieties Xiacui (XC) and Xiahui (XH) are low-acid 
varieties. From Fig. 1, we can find that this difference is 
not only caused by the accumulation or degradation of 
a certain acid, but also has a huge relationship with the 
simultaneous change of three organic acids. In the first 
two periods, malic acid and quinic acid accounted for 
a larger proportion of the total acid content of high-
acid varieties. From the hard core period (T3), citric 
acid accumulates rapidly until the mature period (T3), 
accounting for 1/3 to 1/2 of the total acid. The total acid 
content of low-acid varieties was mainly dominated by 
quinic acid in the first three periods, and the proportion 
of citric acid in it was always relatively small and sta-
ble. Since the degradation rate of quinic acid in the later 
period is higher than that of high-acid varieties, the deg-
radation rate of malic acid is slower than that of quinic 
acid. Therefore, the total acid content was gradually con-
verted to be dominated by malic acid from the T3 period. 
It can be observed from the line chart that the changing 
trends of the three organic acids in different varieties 
have their own characteristics. The main changing trend 

Fig. 1  Distribution and dynamics of three organic acids of five peach varieties in five developmental stages. LG stands for Legrand, stands MY for 
Meiguowanyou, XC stands for Xiacui, XH stands for Xiahui and ST stands for Shantao. T1 to T5 represent 5 developmental stages, corresponding to 5 
sampling time points. The unit of different organic acid content of each peach variety measured by HPLC is micrograms per gram)
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of malic acid in the four cultivars is declining, while the 
changing trend in the wild species is exactly the oppo-
site. Citric acid showed an overall upward trend in high-
acid varieties. It rose slightly and then slowly declined 
in low-acid varieties, but it changed more irregularly in 
wild species. These two points show that wild germplasm 
resources and cultivars are very different in certain traits. 
However, the quinic acid of these five selected varieties 
are all degraded at the later stage of development, and 
their changing trends are relatively consistent. Therefore, 
there are similarities between wild species and cultivated 
species.

Spatiotemporal dynamics of gene expression during fruit 
development
In order to investigate the dynamic changes of gene 
expression in fruit development, we conducted RNA-seq 
experiments on total RNA extracted from five stages of 
fruit development from the five peach varieties, LG, MY, 
XC, XH, and ST. Through three independent biological 
replicates of each variety, a total of 3.62 billion high-qual-
ity reads were obtained. By using Hisat2 tool, the reads 
with an average of 48 million reads per sample and an 
average Q30 of 89% were mapped to the peach genome 
and resulted in the average comparison rate 92%. Then, 
by using Stringtie tool combined with the annotation 
file, a total of 26873 known peach genes were identified. 
The unique alignment reads (39-48M) of each sample 
continue to be processed using Stringtie components to 
determine the standardized expression abundance, i.e. 
fragments per kilobase transcribed length per million 
marker reads (FPKM) per transcription.

Overall, approximately 92.6% of genes are expressed 
in at least one out of 25 samples. There are certain dif-
ferences in the number of expressed genes in different 
periods and different varieties. LG and MY expressed the 
least genes in the T5 period (75.8% and 76.4%, respec-
tively) and the most expressed genes in the T1 period 
(79.2% and 79.8%, respectively). Different from the two 
nectarine varieties, the period in which the other three 
wild peach varieties expressed the least number of genes 
was in the T3 period, which was 76.2%, 76.1%, and 76.9%, 
respectively. The same was that the period in which they 
expressed the highest number of genes was also in T1 
period. During the period, the proportion of expressed 
genes was 79.7%, 81.7% and 81.8%, respectively.

In next step, the obtained FPKM matrix (Supplemen-
tary Table S1) was used for principal component analy-
sis [33]. To facilitate the display the result with the large 
number of samples, we calculated FPKM value of each 
biological repeat after the arithmetic average and then 
conducted principal component analysis. From the 
obtained scatter plot (Fig.  2), we found that the overall 

distribution of the ST variety in the first quadrant was 
separated from other samples, indicating that the gene 
expression pattern of this variety was different from 
other varieties, but from the view of the x projected 
from PC1 on the axis, the period position of ST can be 
matched with different developmental stages of other 
varieties. This conclusion verifies the similarity and the 
difference of the phenotypes in the previous conclusion 
from the genetic level. The similarity of the four culti-
vars in time was very high. Samples of different varieties 
in the same period can be grouped together respectively, 
which was much higher than the similarity of samples of 
the same variety in different periods. This shows that the 
genes of different peach varieties have similar expression 
patterns in the same development period. The red ellipse 
is the first period, the blue the second period, the green 
the third period, the yellow the fourth period, and the 
purple the fifth period. We can observe that the sample 
expression patterns of T2 is similar to that of T3 while 
the sample expression patterns of T4 is similar to that of 
T5, which is consistent with the actual fruit development.

Network module related to fruit development and acidity 
accumulation
The weighted gene co-expression network was analyzed 
using the gene expression matrix data. By calculating the 
correlation coefficient between each gene pair, different 
gene modules were obtained by hierarchical clustering 
based on the weighted correlation, and then the gene 
modules related to the traits were identified according to 
the correlation with the four phenotypes (Fig.  3a). As a 
result, a total of 22 modules correlated with traits were 
identified. Among them, the orange module and the dark 
green module matched with malic acid were positively 
correlated, while the pink module and the light yellow 
module were negatively correlated. The white module 
and the black module matched with citric were positively 
correlated, while the purple module was positively cor-
related. And the dark grey module and the plum2 mod-
ule matched with quinic acid were positively correlated, 
while the thistle module and the darkorange2 module 
were negatively correlated. All P-values were less than 
0.05, indicating that the result of the classification is sig-
nificant (Fig. 3b). We obtained 950 possible genes related 
to malate metabolism, 626 possible genes related to cit-
ric acid metabolism, and 1574 possible genes related to 
quinic acid metabolism from the modules that were 
closely related to traits.

Selecting the simplified plant Gene Ontology (GO) set 
as the enriched background, we performed gene ontology 
functional enrichment for the genes in each gene module 
and only the significant results were retained. According 
to the classification in GO, the BP (Biological Process), 
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MF (Molecular Function), and CC (Cellular Component) 
lists related to each trait are respectively summed to do 
GO clue synthesis. To obtain more accurate gene set, the 
related metabolic pathways compared with the result of 
differentially expressed genes (DEGs) were annotated. 
We selected the module with the largest correlation with 
malic acid as a demonstration (Fig. 4a). Both positive and 
negative correlation modules were included. After per-
forming GO clustering on the genes, the entries with a 
p-value less than 0.05 were de-redundant. We can find 
that the functions of the modules related to this trait 
were mainly focused on organic substance metabo-
lism, cellular process and signal transduction. The result 
showed that accumulation and degradation of malate 
involved a large number of organic substances in differ-
ent cellular processes including the tricarboxylic acid 
(TCA) cycle in mitochondria (Fig.  4b). The activity of 
proton pump on the vacuole was also involved in a large 
number of signal transduction. The functional clustering 

of genes in malate-related module obtained by WGCNA 
was consistent, showing that the results are scientifically 
supported.

Candidate genes for organic acid accumulation during fruit 
development
TO analyze the accumulation of organic acids in fruits 
of high-acid and low-acid varieties, the time-ordered 
gene co-expression network analysis (TO-GCNs) was 
implemented on the peach transcriptome with 5 devel-
opmental stages (Fig. 5). Firstly, all the transcription fac-
tors (TFs) and genes on the acid-related pathway in the 
GDR (https://​www.​rosac​eae.​org/) annotation were col-
lected for constructing the gene co-expression network 
which directly or indirectly affects the accumulation and 
degradation of peach organic acids in different develop-
mental stages. The network included the genes involved 
in TCA cycle and the related proton pump genes on the 
vacuole, etc. With FPKM values, the Pearson correlation 

Fig. 2  Principle Component Analysis. Letters a - e represent Legrand(LG), Meiguowanyou(MY), Xiacui (XC) and Xiahui (XH) and , Shantao (ST), 1-5 
represent five stages of peach fruit development. The explanation rate of population variance of Principal component 1 is 25.32%,the explanation 
rate of population variance of Principal component 2 is 36.62%. The ellipses of different colors divide the samples of different periods into different 
categories

https://www.rosaceae.org/
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coefficients (PCCs) of 182 acid-related gene pairs and all 
transcription factors under high-acid varieties and low-
acid were calculated separately (Supplementary Table 
S2). Then, the PCC values obtained were used to gener-
ate the distribution matrix of probability density function 
(PDF) and cumulative density function (CDF). According 
to the CDF, we obtained positive and negative reference 
cutoffs under each condition when the p-value is less 
than 0.05, which means the result is significant (Fig. 6a).

As a statistical result, the significant (P-value <0.05) 
positive and negative cutoffs for PCC values are 0.75 
and -0.60. If PCC>0.75, two genes are defined as positive 
co-expressed (indicating as C1+ or C2+). In addition, if 
-0.5≤PCC<0.5, two genes are defined as not co-expressed 
(indicating as C10 or C20). If PCC < -0.60, it means nega-
tive expressed (indicating as C1- or C2-). We obtained 
8 time-series gene co-expression networks (TO-GCNs), 
which were used to predict the time node order of genes 
in GCN. We jointly considered the co-expression sta-
tus under C1 and C2. If both genes are positively co-
expressed in high-acid varieties and low-acid varieties, 
the two genes belong to the C1+C2+ relationship set. 
Similarly, two genes belong to the C1+C20 relationship 
set (Supplementary Table S3) if they are only expressed 
in high-acid varieties but not co-expressed in high-acid 
or low-acid varieties. We focused on the C1+C20 rela-
tionship which may include key genes involved in the 

metabolism of organic acids in high acid varieties. Other 
group may be discussed in other follow-up studies.

The expression levels of organic acid metabolism-
related genes in different periods were presented in the 
form of heatmap (as shown in Fig. 6b), and the first gene 
to be expressed was selected as the seed of predict the 
sequence of time nodes of the genes in GCN. From the 
statistical table, we can find that the genes expressed in 
these five developmental stages have been redistributed 
into 8 time points. With the help of combination with 
the annotated function corresponding to each gene, we 
can find that organic acids accumulate firstly and then 
degrade, which matches the actual biological process. 
The time period of redistribution is reasonable, so we can 
infer that the genes with greater connectivity within these 
selected genes have a certain effect on accumulation and 
degradation of organic acids. From the total PCC table, 
the genes with a high degree of association make up the 
small network component genes were selected as candi-
date genes. Our previous study has verified that one of 
them, PRUPE.5G008400, is related to citric acid metab-
olism [34]. We used cytohubba [35], a plugin of the 
Cytoscape_v3.9.0 [36], to select the hub genes from this 
gene set. In the result, some genes can be discovered as 
candidate genes. After performing GO clustering on the 
candidate genes related to organic acid metabolism, we 
can find that the functions of these genes were mainly 

Fig. 3  a. Hierarchical clustering tree (dendrogram) of genes based on coexpression network analysis in four cultivars. Each ‘leaf’ (short vertical line) 
corresponds to individual gene. The genes were clustered on the basis of dissimilarity measure (1-TOM). The branches correspond to modules 
of highly inter- connected genes. The color rows below the dendrograms indicate module membership in four cultivar and their corresponding 
modules in different trait. b. Module-sample feature correlation analysis
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focused on biosynthetic process, cellular process and 
DNA binding (Fig. 6c). Even though the number of genes 
used for clustering is reduced, their functions are simi-
lar to the results of malic acid-related module cluster-
ing mentioned above (Fig. 4a), which indicates that this 
method enables us to screen candidate genes more accu-
rately without changing the direction of target traits to a 
certain extent.

As a result, we obtained 20 candidate genes related to 
organic acid metabolism in peaches (Table  1). We can 
find that no matter what is the permutation or combina-
tion, after selecting the first expressed gene as the seed 
gene, the action phase of two genes after sequencing are 
very close, further demonstrating that it is feasible to use 
this method to find functionally related genes from the 
vicinity of known key genes. In a word, our analysis was 

Fig. 4  Functional clustering analysis. a. GO cluster of genes in acid-related modules. b. Expression of genes in acid-related modules taking part in 
TCA cycle
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an effective way to identify candidate genes related to 
specific metabolic pathway.

Discussion
This article provides new insights into the dynamics of 
organic acid accumulation during peach fruit ripening, 
complements the results of classical co-expression net-
work analysis. As we all know that peach has a relatively 
small genome (~230 Mb/haploid) and a short juvenile 
phase (2–3 years), which makes it suitable to serve as a 
model for investigation of the inheritance mechanism of 
fruit quality [37]. The growth and ripening of fleshy fruit 
is typically accompanied by numerous biochemical and 
physiological changes, such as increase of soluble sugars 
or decline of acidity [38]. Organic acids that are impor-
tant metabolites of the tricarboxylic acid cycle occupy 
a central position in plant metabolism. However, the 
major gene influence the accumulation of acidity is still 
unknown. Current genome researches have strengthened 
the genetic basis underlying these two internal quality 

properties for fruit flavor improvement in many fruit 
crops [39–43].

The Chinese peaches are regarded as the most influ-
ential germplasm in the history of global peach breed-
ing [44, 45]. There are different selections between 
eastern and western peach breeding programs, two typ-
ical flavor types: sweet, low-acid vs. sweet, acid taste, 
respectively favored by eastern and western consumer 
[37, 46]. This situation provides us a chance to select 
stable varieties with wide acidity differences to find the 
genes which influence the accumulation of organic acid 
in peach. In most ripe fruits, malate and citrate are the 
predominant organic acids [47]. Fruit acidity depends 
on both the content and composition of organic acids 
[48] Peach fruits contain mainly three kinds of organic 
acids, citrate, malate and quinate [49]. Such great dif-
ferences in both malate and citrate contents along with 
a relatively small difference in quinate content were also 
noted in a recent study [50, 51]. A number of studies 
have shown that peach fruit acidity is mainly controlled 
by the D locus on chromosome 5 (Chr5), with low 

Fig. 5  Three steps to construct an acid-related time-series gene co-expression network. The independent of acid (C1+C2+), high acid specific 
(C1+C20) and low acid specific (C10C2+) GCNs are shown as three examples. Lable +/-represent positive/negative co-expression
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Fig. 6.  a. The distributions of PCC values between TF genes over the time-series FPKM values under LD (blue bars) and under TD (red bars). 
The cutoff is set to 0.75 with p < 0.05. b. Heatmap of acid-related genes for choosing a seed in step 3. Each column represents a gene, each row 
represents a developmental stage, and each crossed color block represents the expression level of a gene in that period. c. GO cluster of 20 
candidate genes related to organic acid metabolism
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acidity being dominant over high acidity [52, 53]. Inter-
estingly, apart from its role in controlling fruit acidity, 
the D locus may also have a minor effect on fruit sugar 
accumulation [54–56], which give us new thought to 
comprehend the change of organic acid content.

The pursuit of high fruit quality is always the aim of 
the researchers in fruit science. With the development 
and innovation of technology, mining key genes involved 
in the metabolic pathway of organic acids is becom-
ing possible. From the earliest use of molecular markers 
to construct genetic maps and large-scale genome-wide 
association analysis (GWAS) for quantitative trait loci 
(QTL) mapping to the use of genomic structural varia-
tion to correlate traits, the study of organic acids in peach 
has made much progress. But the major genes that con-
trol the accumulation of organic acids in peach have not 
yet been determined. According to the sampling charac-
teristics of RNA-seq data, this study introduced a specific 
network method to infer their biological functions in the 
living environment based on the interactions between 
genes, and tried to identify some candidate genes missed 
by other methods. It provided new insight for further 
analyzing the mechanism of organic acid accumulation in 
peach.

Conclusions
According to the peach genome annotation and previ-
ous literature reports, we retrieved and filtered genes that 
are closely related to acid metabolism, and analyzed the 
corresponding transcriptome data as a supplement. We 
carried out expression analysis, and looked for the intrin-
sic relationship through the expression of these genes at 
different stages of fruit development. First, we construct 
a co-expression network based on the above transcrip-
tome data. Then screen out the network modules related 
to organic acid synthesis and metabolism under the com-
parison conditions of high acid and low acid. Finally, hub 
gene was selected as candidate gene by network analysis. 
It is worth mentioning that we used a new method called 
TO-GCN method to obtain candidate genes, which is 
especially designed for 3D data that including time, phe-
notype and gene expression. Compared with the classical 
co-expression network analysis method [57], we added 
the consideration of time series. That is, when construct-
ing a co-expression network, the dynamic changes of the 
network are considered, and a network with more con-
nections is constructed through the comparison of phe-
notypes, thereby mining genes that cannot be captured 
by traditional methods.

Table 1  Candidate genes related to organic acid metabolism

Rank Name Count Annotation

1 PRUPE_3G046900 7 Myb-like DNA-binding domain

2 PRUPE_1G274300 6 No apical meristem (NAM) protein/regulation of transcription, DNA-dependent

3 PRUPE_3G271200 6 Sequence-specific DNA binding transcription factor activity

4 PRUPE_6G112000 6 No apical meristem (NAM) protein/regulation of transcription, DNA-dependent

5 PRUPE_3G084600 9 AP2 domain/sequence-specific DNA binding transcription factor activity

6 PRUPE_3G198700 12 Protein binding

7 PRUPE_6G280800 2 Magnesium ion binding/pyruvate decarboxylas

8 PRUPE_1G390000 5 No apical meristem (NAM) protein

9 PRUPE_6G303900 6 Protein dimerization activity/MADS box transcription factor

10 PRUPE_6G121700 12 SRF-type transcription factor (DNA-binding and dimerisation domain)

11 PRUPE_1G339800 5 Malate dehydrogenase, NAD binding domain

12 PRUPE_6G004400 3 Sequence-specific DNA binding transcription factor activity/EREBP-like factor/SHN (SHINE), DNA BINDING

13 PRUPE_7G066700 10 AP2 domain/sequence-specific DNA binding transcription factor activity

14 PRUPE_1G538700 6 Protein dimerization activity/SRF-type transcription factor (DNA-binding and dimerisation domain)

15 PRUPE_4G132100 5 GRAS domain family

16 PRUPE_8G166900 6 bHLH-MYC and R2R3-MYB transcription factors N-terminal/protein dimerization activity

17 PRUPE_1G441700 14 Myb-like DNA-binding domain

18 PRUPE_2G278500 8 Domain of unknown function (DUF313)

19 PRUPE_1G037800 4 AP2 domain/ sequence-specific DNA binding transcription factor activity

20 PRUPE_7G206900 4 Heat shock transcription factor/nucleus/response to heat
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Methods
Plant materials and sampling
All peach cultivars used in the study are grown at North-
west A&F University, Yangling, China. Five varieties 
including Legrand (LG) and Meiguowanyou (MY) (high-
acid varieties), Xiacui (XC) and Xiahui (XH) (low-acid 
varieties) and Shantao (ST) (wild variety) were involved 
in study. A total of 75 samples for five time points and 
three random biological repetitions were selected for 
RNA sequencing (RNA-Seq). Five time points include 
young fruit period (T1), first expansion period (T2), 
hard-core period (T3), second expansion period (T4) and 
maturity period (T5). The fruits used were randomly col-
lected in our study to ensure the consistency of sample 
collection, and each fruit is taken from the middle of the 
tree and try to ensure the same position. Fruit samples 
were collected in 2017 and each variety had at least ten 
fruits. After the fruit samples were pitted, the flesh was 
cut into small pieces and immediately frozen in liquid 
nitrogen, then stored at −75°C for sequencing and fur-
ther experimental analysis.

Previous studies have shown that nectarine grows 
larger and larger during fruit development. MY and LG 
are nectarine varieties, and their fruits are still growing in 
the T3 period [57]. But their changes in the development 
period are basically the same as that of hairy peaches. ST 
is a wild variety of peach. Its change in size from T1 to 
T5 is not obvious compared to other four cultivars. How-
ever, from the perspective of the accumulation of acid-
ity, its growth stage is basically the same as other four 
varieties. The sampling time points inferred from above 
are very representative and can basically distinguish the 
stages of peach development. Each sample can reflect the 
status of the transcription products of the peach vari-
ety at the current development stage. In addition, we 
selected three biological repetitions instead of technical 
repetitions to mutually verify the unity of developmental 
periods. Due to the difference of varieties, even under the 
same cultivation environment, the development period 
of all samples cannot be completely consistent. We used 
biological repetition to ensure the consistency of samples 
of a single variety in a single period, thereby enhancing 
the representativeness of the transcriptome of the sample 
performance and improving the stability and reliability of 
transcriptome data.

Measurement of three organic acids
According to our previous reports [58], the HPLC was 
used to test the main organic acid content in five differ-
ent varieties of peach fruits. The mesocarp of peach fruits 
from each replicate was ground into powder in liquid 
nitrogen using an A11 basic Analytical mill (IKA, Ger-
many). Approximately 0.5 g of powder was dissolved in 

6 mL deionized water obtained from a Milli-Q Element 
water purification system (Millipore, Bed ford, MA, 
USA). The mixture was extracted in an ultrasonic bath 
for 15 min, and then centrifuged at 5000×g for 15 min. 
The supernatant was purified using a SEPC18 syringe 
(Supelclean ENVI C18 SPE), and filtered through a 0.22 
μm Sep-Pak filter (ANPEL, China) to 2 mL clean cen-
trifuge tube, stored at −4 °C for test. The filtered super-
natants were transferred to sutosampler vials (CNW, 9 
mm), and put into the Agilent 1100 Series autosampler 
to measure organic acid content using an Agilent 1260 
Infinity HPLC system (Milford, MA, USA). Chroma-
tographic separation was conducted with an Athena 
C18-WP column (CNW, 4.6 × 250 mm, 5 μm), and the 
column temperature was maintained at 40 °C. The mobile 
phase was 0.02 mol/L KH2PO4 solution with a pH value 
of 2.4. The elution was performed at the flow rate of 0.8 
mL/min. The acid concentration was quantified using 
ultraviolet (UV) absorbance detection at 210 nm. Three 
technical replicates were performed for each sample and 
three biological replicates for each treatment. The acid 
concentration was calculated by comparison with the 
values obtained from a standard curve, and expressed in 
mg/g fresh weight (FW).

RNA‑seq data arrangement
Raw data were trimmed using Trim Galore with Q > 
30 [59] and then mapped to the reference genome of 
peach using HISAT2 and Stringtie [60–62]. The number 
of reads mapped to each gene was calculated using the 
HTSeq v0.6.0 software [63]. The gene expression levels 
was estimated based on the value of expected number of 
fragments per kilo-base of transcript sequence per mil-
lions base pairs sequenced (FPKM).

Gene co‑expression network analysis
Weighted gene co-expression network analysis 
(WGCNA) is a systematic biological method used to 
describe gene association patterns between different 
samples. It can be used to identify highly synergistically 
changing gene sets [24]. Candidate genes were identified 
based on the connectivity of the gene set and the associa-
tion between gene set and phenotype. Firstly, the Pear-
son correlation coefficients (PCCs) between genes were 
calculated based on gene expression data and then been 
used to measure the weighted co-expression network. 
Secondly, the gene modules related to different kind 
of organic acids were identified. Based on the weighted 
correlations, the hierarchical cluster analysis was per-
formed, and the clustering results according to the set 
criteria were divided to obtain different gene modules 
which were represented by the branches of the cluster 
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tree and different colors. Thirdly, the correlation between 
the genetic module and the phenotype was calculated to 
identify the modules related to the trait using the pheno-
type information. Fourthly, the interactions among dif-
ferent modules were constructed to identify the driver 
genes of interest from the key modules and predict the 
function of some genes. Lastly, the topological overlap 
(TOM) matrix was exported to visualize the graphs using 
R packages.

GO and pathway enrichment analysis
The gene ontology enrichment analysis for different 
module sets was performed using TBtools [64] and clus-
terProfiler [65]. Firstly, the species-related annotation 
package was obtained from AnnotationHub (https://​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​Annot​
ation​Hub.​html). Secondly, the sub-database was con-
structed according to the concept of gene ontology for 
following analysis. Thirdly, we selected GO entries with 
P-value less than 0.05 to draw the phylogenetic tree. 
Lastly, the de-redundant GO entries obtained with evolu-
tionary relationships were used for annotation.

Dynamic network analysis
To start the analysis in the workflow, two lists of FPKM 
values for the whole genes and specific target genes at 
different sample points under two conditions were gener-
ated. The dataset used in this work is named 3-D data for 
different species, trait and developmental stages. Three 
programs are named as Cutoff, GCN, and TO-GCN. 
We used C++ source code (.cpp) and compile them 
into executable files. Firstly, we calculated PCC values 
for each TF gene pair under each condition. With PCC 
values obtained, we generated a distribution of prob-
ability density function (PDF) and cumulative density 
function (CDF). According to the CDF, we can suggest 
positive and negative cut-off values for each condition, 
p<0.05. Secondly, we constructed eight GCN co-expres-
sion types under two conditions (C1 and C2): C1+C2+, 
C1+C20, C1+C2-, C10C2+, C1-C2+, C1-C2-, C1-C20, 
and C10C2-, where +, -, 0 indicate positive, negative, 
and no co-expression, respectively. The output file for 
each GCN was listed in a comma-separated value (.csv) 
format. These five columns represent the acidity gene 
ID, co-expression type, gene ID, PCC under condition 1, 
and PCC under condition 2. Besides four parameters in 
the previous step, four more parameters were provided 
to indicate the positive cut-off values of conditions 1 and 
2 and the negative cut-off values of conditions 1 and 2. 
Lastly, we determined the chronological order of the 
nodes in GCN. The time sequence was assigned by the 
breadth first search (BFS) algorithm which starts with a 

selected set of seed nodes. We used positive cut-off val-
ues for conditions 1 and 2. Two other parameters were 
used to indicate the seed node gene ID and co-expression 
type. For co-expression type, the numbers 0, 1, and 2 rep-
resent C1+C2+, C1+C20 and C10C2+, respectively.
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