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Abstract 

Background:  Access to biologically available nitrogen is a key constraint on plant growth in both natural and agri-
cultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists 
both within and between plant species. However, our understanding of changes in different phenotypes under long 
term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited.

Results:  Here we quantified variation in the metabolic, physiological, and morphological responses of a sorghum 
association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the rela-
tionship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environ-
ment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen 
stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions 
identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated 
with yield under high and low nitrogen conditions.

Conclusion:  Our results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits sub-
stantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response 
to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did 
morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible 
to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or 
lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such 
model.
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Introduction
Malthus predicted that exponential population growth 
would always surpass linear increases in food production 
resulting in constant famine [1]. Both dramatic increases 
in total agricultural land and technological innova-
tions have staved off Malthusian catastrophy in the 
20th and early 21st century. One of the key technologi-
cal innovations was invention and widespread adoption 
of the Haber-Bosch process, which reduces atmospheric 
nitrogen gas (N2) to reactive forms of N, to provide an 
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abundance and reliable source of nitrogen fertilizer for 
agriculture [2]. The widespread adoption of synthetic 
nitrogen fertilizers has dramatically increased crop yields 
but these increases have not come without some negative 
externalities, including increased greenhouse gas emis-
sions and decreases in rural water quality [3]. In addition, 
for many non-irrigated agricultural systems the cost of 
fertilizer is either the single biggest variable input cost of 
production, or the second biggest after the cost of seed 
[4]. As the human population continues to grow and pop-
ulations around the world shift to more calorie intensive 
diets, incentives and pressure on agricultural productivity 
will increase as well [5, 6]. It has been estimated that only 
30-40% of nitrogen fertilizer is taken up and utilized by 
crops [7]. Increasing the nitrogen use efficiency of major 
agricultural crops would enable farmers to meet these 
growing requirements for food production with stable or 
decreasing applications of nitrogen fertilizer, increasing 
farmer profitability, and decrease the environmental and 
energy footprint of agriculture [8].

Substantial genetic variation in nitrogen use efficiency 
exists within crop plants [9, 10]. Between 1969 and 2010 
European wheat breeders increased the nitrogen use effi-
ciency of wheat by an estimated one third of one percent 
per year [11]. The global impact of a 1% increase in nitro-
gen use efficiency is estimated to be $1 billion dollars per 
year [12]. Understanding the genes controlling variation 
in nitrogen use efficiency and the other phenotypes asso-
ciated with these differences would aid in both evaluat-
ing the feasibility of increasing nitrogen use efficiency in 
different crops – while sustaining the high yields neces-
sary to meet global demand for food – and, where fea-
sible, designing breeding strategies to achieve such an 
increase. However, nitrogen use efficiency is a complex 
trait and multiple morpho-physiological and metabolic 
mechanisms likely play roles in determining how well or 
poorly a given plant genotype can compensate for limited 
N availability in different environments and at different 
life stages.

Understanding the morpho-physiological and meta-
bolic mechanisms associated with differences in tolerance 
for nitrogen deficit stress in agriculturally relevant envi-
ronments represents a stepping stone to the subsequent 
identification of genetic loci associated with response to 
low nitrogen stress and finally to crop improvement via 
breeding or engineering. To date the majority of research 
on the morpho-physiological and metabolic responses 
of plants to nitrogen deficit stress has been conducted 
in controlled environment conditions, particularly 
emphasizing severe stress applied early in development 
[13–15]. The nitrogen deficit stress experienced by crops 
in agricultural settings is typically less extreme and may 
not produce obvious visual effects, but is sufficient to 

result in substantial grain or biomass decrease over the 
course of a growing season. Collecting phenotypic and 
metabolic data from large sets of genotypes experiencing 
agriculturally relevant degrees of stress under field con-
ditions can provide substantial insight into natural vari-
ations in stress response and tolerance within individual 
crop species [16].

Here we quantified crop yield and eight morpho-phys-
iological traits from a large and diverse sorghum popu-
lation (Sorghum bicolor L.) grown to maturity in field 
conditions under both nitrogen limiting and non nitro-
gen limiting conditions. For a subset of 24 replicated 
genotypes, large scale metabolic profiling was conducted 
from leaf tissue collected at the flowering stage. Signifi-
cant plasticity and genotype x environment interactions 
were observed for both yield and a subset of metabolic 
traits, while substantially less genotype x environment 
interaction was observed for morpho-physiological 
traits. The abundance of several metabolites at flowering 
exhibited significant correlations with plant performance 
(e.g. yield) at maturity.

Results
Genetic variability of sorghum’s response to differential 
nitrogen application
A population of 347 sorghum genotypes drawn from the 
Sorghum Association Panel (SAP) [17] were grown under 
two nitrogen treatments with replication in Lincoln, 
Nebraska: low nitrogen (LN; no supplemental nitrogen) 
and high nitrogen (HN; 90 kg/ha, following local agro-
nomic recommendations to avoid nitrogen limitations on 
yield in sorghum). A mixture of manually scored – leaf 
number, flag leaf length, flag leaf width, plant height, days 
to flowering– and phenotypes estimated from hyper-
spectral reflectance data – specific leaf area (SLA), chlo-
rophyll content (CHL) and nitrogen (N), phosphorus (P) 
and potassium (K) content following previous workflow 
[18] – were collected from plants grown under both con-
ditions (Table S1).The overall hyperspectral reflectance 
profile of sorghum leaves collected from plants grown in 
HN and LN treatments was similar (Fig. S1a), and neither 
of the first two principle components clearly separated 
the two treatments (Fig. S1b). Ground truth data were 
obtained for five traits: CHL, SLA, N, P, and K content 
from 265 samples, and partial least squares regression 
(PLSR) were used to predict values for scored six traits 
for whole panel based on hyperspectral data. Raw spec-
tral data used for PLSR model building, as well as predic-
tion traits were provided in Table S2. Employing five-fold 
cross validation with ground truth samples the accuracy 
(R2) of phenotypes estimated from hyperspectral reflec-
tance data varied from 0.18 for P to 0.82 for CHL (Table 
S3). Similar performance was observed in the validation 
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set ( n = 80 , Table S3 and Fig. S2) indicating models were 
not overfit. Prediction accuracy for K and P were low (R2 
in validation set 0.22 and 0.25; Table S3), and these traits 
were excluded from downstream analyses.

The effect of N treatment was statistically signifi-
cant for all traits evaluated, except for plant height (p < 
0.05; likelihood ratio test (LRT); Fig.  1). Flag leaf width 
and flag leaf length were reduced by approximately 3.5% 
and 6.5% respectively under LN treatment. Plants grown 
under LN took 4% more time to flower. Larger differ-
ences were observed in chlorophyll and nitrogen content, 
with reductions of 15.3% and 13.8% respectively under 
LN treatment. However, the single largest impact of low 
nitrogen stress was observed on grain product, with a 
48% reduction in grain yield under LN treatment.

While overall population level responses to nitrogen 
deficit treatment were statistically robust, individual 
genotypes often exhibited different degrees of response 
to nitrogen treatment. A mixed model, considering gen-
otype, treatment, and the interaction between genotype 
and treatment (genotype-by-environment, GxE) effects, 
was fit to each individual phenotypic dataset. A majority 
of the total variation in plant height and flowering time 
was explained by differences between genotypes ( ∼91% 
and ∼85% respectively together on HN and LN; Fig. 2a). 
In the case of plant height none of variance was attrib-
uted to treatment or genotype by environment inter-
action. For flowering time, only ∼ 4% of variance were 
explain by treatment effect and ∼ 3% by GxE. The high 
degree of genetic control and low GxE effect is reflected 

Fig. 1  Phenotypic difference of morpho-physiological traits across two treatment conditions. Statistical significance of N treatment were 
determined by likelihood ratio test (LRT) on mix model with treatment denote as fix effect and genotype as random. Asterisks indicate p-value 
< 0.05. Red dots indicated values for genotypes selected for metabolomics analysis. HN - high nitrogen, LN - low nitrogen. a - i Comparison of 
distribution of nine traits under HN and LN conditions
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in the high degree genetic correlation across treatment 
conditions for these traits: 0.86 for plant height and 0.8 
for flowering time (Fig. S3). Variance in traits related to 
leaf (leaf number, leaf width, and leaf length) were also 
mostly explained by genetic factors (> 60% for each of 
these three traits). However, proportion of variance not 
explained by any of the factors in the model (e.g. the 
residual) was substantially greater for each of the three 
leaf related traits compared to plant height and flower-
ing time, leading to lower correlations across treatment 
( ∼0.6; Fig. S3). Traits estimated from hyperspectral data 
(CHL, N, SLA) were comparatively much more plastic 
across environments (Fig. 2a), but only modest amounts 
of variance was attributed to GxE for each of these traits. 
One explanation for this, is that although our PLSR mod-
els were accurate (R2 > 0.6), it might be still not sufficient 
to precisely capture GxE.

Extensive plasticity of grain yield in response to nitro-
gen deficit stress was observed across the study popula-
tion. Among analyzed traits, grain yield exhibited by far 
the largest proportion of variance attributable to GxE 
(Fig. 2a), resulting in only moderate genetic correlation 
between treatment (0.42, Fig. S2). Genotypes with high 

grain yield in the HN treatment tended to be somewhat 
more sensitive to low nitrogen stress than genotypes 
with low grain yield, even under the HN treatment (Fig. 
S4). However, the correlation between the responses of 
grain yield to nitrogen deficit stress and grain yield under 
HN was modest ( ∼-0.3; Fig. S4). This reflects the rela-
tively larger GxE effect of nitrogen treatment on yield. 
Although highly yielding genotypes on HN are more 
sensitive to LN stress, this reaction is not consistent and 
yield of some genotypes are less affected by LN stress.

Coefficients of variation were calculated for each var-
iance component for each trait, following the approach 
described in [19]. Plant height exhibited the largest 
relative variation, particularly variation attributed to 
genetic factors (Fig.  2b), likely reflecting the effects of 
multiple large effect dwarfing genes segregating for 
functionally distinct alleles among the lines of the sor-
ghum association panel [20]. The second largest relative 
variance was observed for grain yield, in particular for 
genetic factor under HN. However, relative variance 
from treatment conditions and GxE were also large, 
and in fact larger than the variance for any component 
among the remaining traits.

Fig. 2  Components of traits variation. a shows the proportion of variance attributed to each component for each trait. b shows the magnitude 
of this variance relative to each trait’s mean, using the coefficient of variation (CV; the estimated variance divided by the squared mean of the 
respective trait). HN - high nitrogen, LN - low nitrogen
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Metabolomic changes in sorghum leaves under long‑term 
low nitrogen stress
As morpho-physiological traits scored in this study did 
not appear to explain the plasticity of sorghum grain 
yield across different nitrogen availability treatments, 
we next sought to characterize the responses of a large 
suite of metabolic phenotypes to differential nitrogen 
availability in the adult leaves across a subset of sor-
ghum genotypes of the SAP. A set of 24 genotypes were 
selected to represent the phenotypic and genetic diver-
sity of the SAP (Fig.  1, S5; [21]). Sampling was timed 
to coincide with anthesis, with a total of 96 leaf sam-
ples collected from two independent plots per genotype 
per treatment. Each sample was quantified via liquid 
chromatography - high-resolution mass spectrometry 
(LC-HRMS) analysis. In order to maximize the num-
ber of metabolites detected and quantified each sam-
ple was analyzed using both RP (reverse phase) and 
HILIC (hydrophilic interaction liquid chromatography) 
separations in both positive and negative ion mode, 

resulting in the detection and quantification of 115,782 
mass spectral features. After filtering out features that 
were detected in less than 80% of samples, and further 
manual quality control (as described in the methods 
section), the number of features was reduced to 3,496, 
of which 145 could be assigned high confidence anno-
tations (Table S4).

No obvious differences were observed in the distribu-
tion of estimated abundance values for high confidence 
metabolites (n = 145) between HN and LN conditions 
(Fig. 3a). Samples collected from plants grown in HN or 
LN were not clearly separated by either of the first two 
principal components of variation for the abundance 
of this set of high confidence annotated metabolites 
although samples collected from plants grown in LN 
exhibited a tighter distribution of PC1 values than did 
samples collected from plants grown in HN (Fig.  3b). 
After correcting for multiple testing via false discov-
ery rate (FDR, [22]), the abundance of 62 metabolites 
changed significantly between samples collected from 

Fig. 3  Metabolomics profiling in 24 sorghum genotypes across two nitrogen conditions based on 145 confidently annotated metabolites. a 
Distribution of the 145 confidently annotated metabolites across two treatment conditions. b First two principle component (PC) from PCA. Values 
in bracket indicate amount of variance explained by each component. c Volcano plot showing the down regulated (yellow), up regulated (green), 
and unhanded (grey) metabolites under low nitrogen (LN) conditions compare to high nitrogen (HN). d Proportions of the metabolites with know 
structures more abundant in samples collected from plants grown under HN (green), more abundant in samples collected from plants grown under 
LN (yellow), and unchanged (gray)
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plants grown in HN or LN (FDR < 0.05). Thirty-four 
metabolites were more abundant in samples collected 
from plants grown under HN and 28 more abundant in 
samples collected from plants grown under LN (Fig. 3c). 
The vast majority of statistically significant changes in 
metabolite abundance were modest in size, defined 
as a less than two fold change in abundance between 
treatments. The majority of observed free amino acids 
(17/33) were significantly more abundant in samples 
collected from plants grown under HN but the amino 
acids acetylcarnitine and L-carnitine were significantly 
more abundant in samples collected from plants grown 
under LN (Fig.  3d, Table S4). In contrast, half of the 
phenolic compounds confidently identified in this data-
set, such as the eight flavonoids, were significantly more 
abundant in samples collected from plants grown under 
LN (Table S4).

Similar results to those observed with the set of anno-
tated metabolites were observed when analysed all 3,496 
identified mass features. Overall abundance of those 
compounds was similar across treatment (Fig. S6a-b). 

Although 337 compounds were significantly different 
across two treatment condition (FDR < 0.05; Fig. S6c), 
those changes were rather small, with only 28 compounds 
being changed larger than two fold between treatments. 
Finally, PCA based on 3,496 mass features did not sepa-
rate two treatment conditions (Fig. S6d). Interestingly, 
many of these unidentified metabolites showed relatively 
high heritability, with mean value 0.6 under HN and 0.68 
under LN (Fig. S7). This suggests that natural variation 
in the contents of these compounds is genetically con-
trolled, which makes a good prospect for furthering their 
identification and uncovering their biological meaning 
through genetic studies. In case of known metabolites, 
variation in the abundance of individual flavonoid and 
flavonoid glycosides compounds tended to be the most 
heritable across independent field plots of the same gen-
otype grown in the same environment (Fig. S8).

A similar variance partitioning strategy to that 
employed for morpho-physiological traits was used to 
partition variance for each annotated metabolite. For 
each metabolite a mixed model was fit, including terms 

Fig. 4  Proportion of variance attributed to each component for each metabolite. HN - high nitrogen, LN - low nitrogen
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for genotypes (genetic effects), differences between N 
treatments (environmental effects), and genetic differ-
ences in the degree of response to N supply (genotype-
by-environment, GxE). Likely as a result of the much 
smaller overall number of datapoints for each metabolic 
trait relative to each morpho-physiological traits, this 
model could only be successfully fit for 46 of 145 metabo-
lites. Differences between genotypes typically explained 
around half of the variance for different metabolites 
( ∼28% on HN and ∼31% on LN), while the variance 
explained by environmental factor was much lower ∼ 2% 
(Fig. 4). The GxE effect explained on average of ∼ 7% of 
variance across the 46 metabolites where a mixed model 
was successfully fit. Despite the fact, that this value was 
not very high, it was higher than the average variance 
explained by the GxE effect for morpho-physiological 
traits ( ∼1%). The coefficient of variation for each vari-
able for each metabolite vary, but no clear pattern can 
be observed across different classes of metabolites (Fig. 
S9). A wide range of different patterns are exhibited by 
individual metabolites in response to LN stress across 

different genotypes. Glucose and sucrose both belong to 
the set of 83 metabolites which did not show any statisti-
cally significant differences in abundance between sam-
ples collected from plants grown in high nitrogen and 
plants grown in low nitrogen but which do exhibit con-
sistent patterns of difference in abundance between geno-
types across treatments (Fig. 5a-b). Serine, one the amino 
acids with a statistically significant difference in abun-
dance between samples collected from plants grown in 
HN and LN exhibits a consistent decreased in abundance 
across genotypes with ∼15% of variance explained by the 
environmental factor (Fig. 5c). Glutamic acid and allan-
tonin both exhibited large GxE effects of ∼15% and ∼
30% variance for these two metabolites explained by GxE 
respectively (Fig.  5d-e). Genotypes with comparatively 
high glutamic acid content in HN saw larger reductions 
in glutamic acid content in LN. Genotypes with com-
paratively lower glutamic acid content in HN saw smaller 
reductions in LN. Previous study found a decrease in sali-
cylic acid content under low nitrogen stress in sorghum 
root [23]. Here we found increase in salicylic acid content 

Fig. 5  Examples of unchanged a-b, changed but non-plastic c and plastic d-f metabolites. Each dot indicate genotypic mean and lines connect 
the same genotype across two treatment conditions. HN - high nitrogen, LN - low nitrogen
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of sorghum leaves under LN (Fig.  5f ). This response 
is consistent across majority of genotypes, although 
strength of this reaction slightly vary, with genotypes 
with low salicylic acid content under HN indicating a 
higher increase under LN.

Correlation between metabolites and yield
The abundance of metabolites was correlated to some 
degree with observed grain yield values from the same 
plots (Fig.  6; Table  S5). The correlation coefficients 
between metabolite abundance and grain yield in indi-
vidual environments (HN or LN) were positively corre-
lated with each other (r = 0.36, p < 0.05; Fig. 6). However, 
in only a modest number of cases where the correlations 
between the abundance of individual metabolites and 
grain yield statistically significant including six metabo-
lites in HN and eleven in LN. Five metabolites were sta-
tistically significantly correlated with grain yield in both 
environments: 4-hydroxymandelonitrile, aconitic acid, 
ascorbic acid, benzamide and glucose. The strength of the 
correlations between grain yield and metabolite abun-
dance where relatively modest (r < 0.6) even for those 

metabolites where statistically significant relationships 
were observed.

Two machine learning approaches, elastic-net regres-
sion (GLMNET) and random forest (RF), were evalu-
ated for their potential to predict variation in plot level 
grain yield from combined metabolite abundance data. 
Three sets of input data were evaluated with each of the 
two machine learning approaches. First, the set of all 
detected metabolites ( n = 3, 496 ). Second, the set of 145 
metabolites with confident annotations. Finally, a set of 
145 metabolites selected randomly from the complete set 
of 3,496 detected metabolites. Both algorithms achieved 
moderate prediction accuracy however, the accuracy of 
their predictions was either equivalent to or only mod-
estly exceeded, the prediction accuracy of a simple linear 
model fit to only the treatment effect, which was able to 
predict 29% of the total variance in sorghum grain yield 
data (Fig. S10). Ascorbic acid showed the greatest con-
tribution to the accuracy of the GLMNET model (Fig. 
S10b) and the third largest contribution with RF (Fig. 
S10c) in permutation based estimates of feature impor-
tance, consistent with the significant correlation between 

Fig. 6  Scatter plot of correlation values of each metabolite and yield in given conditions. Marked metabolites indicate significantly correlated 
metabolites from Pearson analysis ( p < 0.05 ). HN - high nitrogen, LN - low nitrogen
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the abundance of this metabolite and grain yield in both 
conditions (Fig. 6).

Discussion
Natural variation in tolerance to nitrogen deficient grow-
ing conditions has been widely studied in both crops and 
other plant species. However, the majority of these stud-
ies occurred in controlled environments and imposed 
substantial nutrient deficits that produced visible phe-
notypic responses even at seedling stages. Here we 
examined natural variation in both the morpho-physio-
logical and metabolomic impact of long term low inten-
sity nitrogen deficit at a level sufficient to alter grain yield 
and fitness in sorghum but which does not produce obvi-
ous visible stress symptoms.

Grain yield is a complex phenotype that is determined 
by a number of different component phenotypes (e.g. 
yield component traits). In Arabidopsis branching num-
ber is correlated with yield and previous study found 
large plasticity of this trait in response to low nitrogen 
stress [19]. In case of rice, various traits such as tiller 
number, grain number per penile, or 1,000 - grain weight 
are associated with yield. Interestingly, only tiller number 
were affected by low nitrogen stress [10]. Finally, in case 
of maize 1,000 - kernel weight were also not affected by 
low nitrogen, but substantial decreases in kernel number 
per cob were observed [13]. This observation highlights 
the complexity of how plant yield can be affected by low 
nitrogen stress. In this study grain weight per panicle was 
used to represent sorghum yield, and consistently with 
research done on Arabidopsis [19], large plasticity in 
response to low nitrogen stress was observed in this trait.

While grain yield decreased substantially under nitro-
gen limited conditions for the vast majority of sorghum 
genotypes, rank order grain yield under high nitro-
gen conditions was only modestly correlated with rank 
order grain yield under low nitrogen conditions (Spear-
man correlation = 0.44; Fig. S3). This suggests efforts to 
increase grain yield under nitrogen limited conditions 
will require separate field trials, evaluations and selec-
tions from breeding efforts to increase grain yield under 
non-nitrogen limited conditions. Yield under non-nitro-
gen limited conditions was negatively correlated with 
the size of the decrease in yield observed when nitrogen 
was limited ( ∼-0.3; Fig. S4). However, because of large 
GxE effect, this reduction is not consistent across highly 
yielding genotypes. Some of the reductions are char-
acterized by relatively low loss in yield under low nitro-
gen conditions. This indicates that it should be possible 
to produce varieties not only with high yield under high 
nitrogen condition but also more robust to low nitrogen 
stress. In contrast to grain yield, the morpho-physiolog-
ical traits did not exhibit significant degrees of change 

in response to the degree of nitrogen limitation applied 
in this study, and of the traits which did exhibit signifi-
cant effects – such as leaf nitrogen content and specific 
leaf area – the effects of treatment and genotype were 
largely independent of each other (Fig. 2). While changes 
in chlorophyll concentration were quantifiable using both 
handheld chlorophyll concentration meter and hyper-
spectral reflectance data, plants in the nitrogen limited 
field were not visibly chlorotic (personal observation). 
Metabolite abundance was characterized for a subset of 
sorghum genotypes in both conditions in an attempt to 
identify other phenotypes with potential value to pre-
dict how the grain yield of different sorghum varieties 
will respond to nitrogen limitation. The overall pattern of 
metabolite abundances did not exhibit substantial differ-
ences between nitrogen limited and non-nitrogen limited 
conditions (Fig.  3a-c). This is consistent with both the 
limited degree of change observed for morpho-physio-
logical traits and the goal of imposing a degree of nitro-
gen limitation sufficient to alter fitness/grain yield but 
not so severe that it dramatically altered plant growth.

While overall differences in metabolite abundance 
between conditions were modest, the metabolites that did 
exhibit significant differences between treatments were 
consistent with expectations for nitrogen limited grown 
plants. Decreases in the abundance of many amino acids 
were observed (Fig. 3d; Table S4). Consistent with reports 
from studies of nitrogen deficit experiments in seedlings 
and adult maize leaves [13], sorghum roots [23], and 
maize, sorghum, and Paspalum vaginatum seedlings [24]. 
Disturbance in serine metabolism was previously found 
to play key role in limiting maize yield under low nitro-
gen conditions [9]. In addition, serine plays an important 
role in photorespiration [25], although in plants utilizing 
the C4 photosynthetic pathway, including both maize and 
sorghum this pathway is much less active than in plants 
utilizing the C3 photosynthetic pathway. We did not 
observe significant variation in the degree of decreased 
serine abundance observed among sorghum genotypes 
(Fig. 5c). Genetically controlled diversity for this trait may 
still be discovered in profiling of a larger panel of diverse 
sorghum lines under nitrogen limited and non nitrogen 
limited conditions. If no such diversity is found it may 
prove impossible to reduce this response to nitrogen 
constrained growth via conventional breeding and selec-
tion strategies. In contrast, while the abundance of glu-
tamic acid also declined in nitrogen limited conditions, 
the degree of decline varied significantly among sorghum 
genotypes (Fig. 5d). In previous field studies of maize, the 
abundance of glutamic acid was negatively correlated with 
yield under heat and water stress but not under control 
conditions [16]. We observed a similar negative correla-
tion between glutamic acid abundance and yield under 
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both control and nitrogen limited conditions (Fig. 6). One 
potential explanation for this relationship might be, that 
genotypes with higher yield remobilise more nitrogen 
resources, including those coming from glutamic acid to 
fill kernels, and therefore they have lower level of glutamic 
acid. This result highlight potential importance of glu-
tamic acid metabolism on yield in C4 crops under stress 
conditions. Genes involved in glutamic acid metabolism 
were enriched among those exhibiting differential mRNA 
expression between older maize inbreds (pre-1960s) and 
maize inbreds developed and selected by breeders in the 
modern era [26]. These observations suggest that glutamic 
acid metabolism may already have been an indirect target 
of selection during crop improvement in maize. If so, the 
data presented here suggest that glutamic acid may also 
represent an interesting metabolic marker when selecting 
for better performing sorghum genotypes although fur-
ther validation is certainly needed.

Overall, our results highlight that grain yield in sor-
ghum, unlike many morpho-physiological traits, exhib-
its substantial variability of genotype specific responses 
to long term low severity nitrogen deficit stress. Differ-
ences in the eight morpho-physiological traits scored 
in this study explained only ∼ 9% of variance in yield. 
Metabolic responses to long term low severity nitrogen 
deficit stress exhibited a higher proportion of variabil-
ity explained by genotype specific responses than did 
morpho-pysiological traits and a number of individual 
metabolites were associated with yield variation under 
one or both nitrogen treatments. It may be possible to 
build predictive models using metabolite abundance to 
estimate which sorghum genotypes will exhibit greater 
or lesser decreases in yield in response to nitrogen defi-
cit, however data from a larger number of genotypes 
grown across multiple sites will be necessary to train 
and evaluate such models. Large scale metabolic pro-
filing will likely require targeted metabolomics using 
feature selection approaches to identify an informative 
subset of the metabolites profiled in this study.

Materials and methods
Field experiment, and phenotypic data and tissue 
collection
A replicated field trial was planted at the University of 
Nebraska-Lincoln’s Havelock Farm Location (N 40.861, 
W 96.598) on June 08, 2020. The experiment was laid out 
in a RBCD design, initially with two blocks each under 
high nitrogen (80 lbs/acre) and low nitrogen (no sup-
plemental nitrogen) treatment conditions and 416 plots 
per block, including 347 genotypes from the sorghum 
association panel [17], and BTx623 as a repeated check. 
Each plot consisted of a single 2.3 meter row of plants 
from a single genotype, with 0.76 meter spacing between 

parallel and sequential rows. Before supplementing soil 
with nitrogen, soil sample from each block were taken 
and sent to a commercial lab for nitrate content analysis 
(Ward Laboratories, Inc., Kearney, NE). The nitrate con-
tent in blocks which was later supplement with nitrogen 
(HN) were 19.5, and 19.9 ppm respectively. In blocks 
without fertilizer (LN) the nitrate content were 13.7 and 
9.45 ppm.

A mixture of hand measured traits and traits predicted 
from hyperspectral data (see below) were employed to 
assess the response of sorghum to nitrogen deficit stress. 
The date of flowering for each plot was scored when 50% 
of surviving plants reached anthesis. Plant height was 
measured after flowering and was defined as the dis-
tance from the soil surface to the collar of the flag leaf. 
The number of panicles produced by each plot (pani-
cles per plot) were counted by direct observation. For 
each plot, one to three panicles were hand harvested, 
dried, threshed, and the resulting grain weighed. The 
weight of grain per harvested panicle was multiplied by 
the count of panicles per plot to estimate grain yield per 
plot. The difference in number of collected panicles pri-
mary come from difference in germination rate of differ-
ent genotypes. A small number of sorghum genotypes 
had extremely poor germination rate and, as a number of 
panicles from this field project were reserved for another 
experiment that was not consistent with collecting total 
grain mass per panicle, it was not always possible to col-
lect three panicles per plot.

Between 5 and 12 August 2020, hyperspectral reflec-
tance data was collected from the second leaf from top of 
the plant from single plant per block using a FieldSpec4 
(Malvern Panalytical Ltd., formerly Analytical Spectral 
Devices), following the protocol outlined in [18]. A set of 
265 leaf samples (130 from HN and 135 from LN) were 
selected for ground truth measurements. Leaf chloro-
phyll concentration (CHL) was measured with a hand-
held chlorophyll concentration meter (MC-100, Apogee 
Instruments, Inc., Logan, UT), and leaf area (LA) was 
measured with a leaf area meter (LI-3100, LI-COR Bio-
sciences, Lincoln, NE). Next, samples were placed in a 
oven set to 50◦ C and dried over 72 h. Dry weight (DW) 
of the leaves was then recorded with digital balance. 
Specific Leaf Area (SLA, m2/kg) was calculated as LA/
DW. Finally, dried plant leaves were sent to a commer-
cial lab (Ward Laboratories, Inc., Kearney, NE) where 
the samples were ground, homogenized, and analyzed 
for analysis of nutrient content: nitrogen, potassium and 
phosphorus.

For 96 plots representing 24 genotypes replicated in 
two blocks each under sufficient and low nitrogen treat-
ments, leaf tissue was collected for metabolomics analy-
sis. For each plot, a single plant was selected, avoiding 
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edge plants where possible. From this plant eight leaf 
punches of 0.33 cm2 in area were collected from the mid-
dle section of the leaf below the flag leaf (e.g the penul-
timate leaf ) and immediately frozen in liquid nitrogen. 
Samples were collected between 9:00 AM and 1:00 PM 
on August 12 2020.

Modeling traits based on hyperspectral data
Five models were developed to predict chlorophyll, 
nitrogen, phosphorus, and potassium concentration as 
well as specific leaf area from hyperspectral reflectance 
data, following the approach described in [18]. Meas-
ured intensity values for each wavelength were zero cen-
tered and scaled to unit variance. Wavelengths below 
450 nm and above 2400 nm were discarded. Predictive 
models were built separately for each trait using partial 
least squares regression implemented in the pls v.2.8.0 
[27] and caret [28]. Prior to the modeling, data were 
split into training ( n = 185 ) and validation set ( n = 80 ). 
This was done to avoid the risk of misleadingly high pre-
diction accuracy resulting from over fitting. Decisions 
regarding model tuning and performance evaluation 
were made based on root mean squared error (RMSE) 
of five-fold cross validation using training set ( n = 185 ). 
After final models were trained, their performance was 
evaluated using the validation set ( n = 80 ). Final mod-
els were applied to equivalently zero centered and scaled 
hyperspectral reflectance measurements collected from 
the remaining sorghum plots.

Untargeted metabolomics using LC‑MS/MS
Samples were extracted using cold methanol:acetonitrile 
(50:50, v/v) spiked with 100 M of CUDA (12-[(cyclohexyl-
carbamoyl)amino]dodecanoic acid). The tissue samples 
were disrupted and homogenized by adding 2 stainless 
steel beads (SSB 32) using the TissueLyserII (Qiagen) at 
20 Hz for 5 mins. After centrifugation at 16,000 g, the 
supernatants were collected and the same extraction was 
repeated on the pellet one more time. The supernatants 
were pooled and vacuum dried down using a SAVANT 
speed-vac. The pellets were re-dissolved in 100 µ L of 
30% methanol. Blank tubes were extracted alongside 
the samples to remove contaminant background from 
the data analysis. In addition, an aliquot of the samples 
was pooled to make a quality control (QC) sample which 
was run between every 10 samples in order to correct for 
batch effect. Two separate LC-MS/MS workflows run-
ning on a Thermo Vanquish LC system interfaced with 
a Thermo QE-HF mass spectrometer were used to pro-
file the metabolites. For the hydrophobic compounds, 
a ACCQ-TAG ULTRA C18 column (1.7 µ m , 2.1 mm 

Ã— 100 mm, Waters) was used flowing at 0.3 mL/min at 
40 ◦ C. The gradient of the mobile phases A (0.1% formic 
acid in water) and B (0.1% formic acid in acetonitrile) was 
as follow: 2% B for 2 min, to 50% B in 11 min, to 90% B in 
2 min, hold at 90% B for 1 min, to 2% B in 0.5 min. The 
QE-HF was run in a data-dependent acquisition mode 
triggering on single charge peaks using a mass range of 
67 to 1000 m/z at 60,000 resolution, with an AGC target 
of 3e6 and a maximum ion time of 100 ms for both posi-
tive and negative ion scans. The isolated ions were fur-
ther fragmented by HCD using isolation window of 1.6 
m/z and scanned at a resolution of 15,000. For the polar 
compounds, a XBridge Amide 3.5(4.6 x 100 mm, Waters) 
was used flowing at 0.4 mL/min at 45 ◦ C. The gradient of 
the mobile phases A (10 mM ammonium formate/0.125% 
formic acid in water) and B (10 mM ammonium for-
mate/0.125 formic acid in 95% acetonitrile) was as fol-
low: 100% B for 2 min, to 70% B in 5.7 min, to 40% B in 
1.8 min, to 30% in 0.75 min, to 100% B in 2.5 min. The 
QE-HF was run in a data-dependent acquisition mode 
triggering on single charge peaks using a mass range of 
60 to 900 m/z at 60,000 resolution, with an AGC target of 
1e6 and a maximum ion time of 100 ms for both positive 
and negative ion scans. The isolated ions were further 
fragmented by HCD using isolation window of 1.6 m/z 
and scanned at a resolution of 15,000.

LC‑MS/MS data analysis
Data from LC-MS/MS analysis were processed with MS-
Dial software v4.70 for peak detection, deconvolution, 
alignment, quantification, normalization, and identifica-
tion [29]. Background peaks detected in blank extracts 
were filtered out. Intensity drift was corrected using the 
local regression (LOESS) for QC batch normalization, 
and zero intensities were replaced by 10% of the mini-
mum peak height. The identification was done using the 
curated mass spectral public libraries (http://​prime.​psc.​
riken.​jp/​compms/​msdial) for MS/MS positive (290,915 
entries, April 2021) and MS/MS negative (36,848 entries, 
April 2021). Metabolites missing in more than 80% of the 
total samples were removed. The remaining 3,496 metab-
olites from all four analytical conditions, that is from 
separation on HILIC and RP column with negative and 
positive ion mode, were manually checked for Gaussian 
chromatographic peak and, peak alignment and MS/MS 
profile. Identified metabolites were classified either as 
level I when peak matched to m/z and retention from an 
in-house library prepared from authentic standards, or 
as level II based on their spectral similarities with pub-
lic/commercial spectral libraries in accordance with the 
Metabolomics Standards Initiative guidelines [30].

http://prime.psc.riken.jp/compms/msdial
http://prime.psc.riken.jp/compms/msdial
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Phenotypic data analysis
All statistical analyses were conducted in R v.4.1.2 [31]. 
The meta-package tidyverse v.1.3.1 was employed for 
data processing and visualization [32]. In order to ana-
lyze the impact of the treatment effect on morpho-phys-
iological traits and metabolites, mix-models were fit to 
each trait – after being transformed using the Box-Cox 
method – using the lmer function provided by the lme4 
package [33]. The full model used in this study included 
treatment as a fix effect and genotype as a random 
effect. The reduced model included only genotype but 
not treatment. For each trait evaluated, the difference in 
fit between the full and reduced models were evaluated 
using the likelihood ratio test (LRT) to obtain p-values 
for the significance of treatment effects. P-values from 
metabolite data analysis were corrected for multiple tests 
using false discovery rate (FDR) [22], and values below 
0.05 were considered to be statistically significant.

A more complex model which, in addition to treatment 
(nitrogen) as a fixed effect and genotype as a random 
effect, also included genotype by environment (GxE) 
interaction as random effects was fit for each metabolite 
in order to estimate total variance potentially explain-
able by each of these three factors [19, 34]. Metabolites 
for which variance estimated from the model for one or 
more parameters were zero, or close to zero, and there-
fore singular fit of the model was obtain, were excluded 
for analysis.

Broad-sense heritabilities were estimated from the fol-
lowing equation:

where σ2
g is genetic variance, σ2

e is residual variance, and 
n is the number of replicates. Variances were obtain from 
mixed model fitted separately to values from each experi-
mental conditions with genotypes treated as random 
effect.

Principle component analysis for metabolite values 
across the 96 samples were calculated using the PCA 
function provided by the FactoMineR package [35]. 
Pearson correlation analysis between yield and metabo-
lites were done with cor.test function in R.

Yield predictions were done based on three metabo-
lite data sets: all identified metabolites ( n = 3, 496 ), 
metabolites with confident annotation ( n = 145 ), and 
the same number of metabolites with unknown anno-
tation ( n = 145 ). Analysis were done with caret frame-
work [28]. Random forest were fitted with ranger 
package [36] and elastic-net regression with glmnet 
package [37]. Prior to the analysis, yield and metabo-
lites values were Box-Cox transformed and scaled 

H2
=

σ
2
g

σ 2
g +

σ 2
e
n

with preProcess function. Repeated 100x times five-
fold cross validation were used to determinate optimal 
parameters for each model based on minimization root 
mean square error (RMSE). Importance value were cal-
culated with varImp function from caret package based 
on permutation. The mean squared error is computed 
on the out-of-bag data for each model, and then the 
same computed after permuting a single variable. The 
differences are averaged and normalized by the stand-
ard error and scaled to values between 0 and 100.
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