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Abstract

Background: Fusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal
strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato
plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study
was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt)
and a non-pathogenic (Fo-npt) strain of Fo.

Results: All cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-
inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included
upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In
IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes
mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes
potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly
downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense
responses, and metal ion binding.

Conclusions: Results suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate
phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the
transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional
changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently
underway in the zone.
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Background
The plant immune system responds to pathogen attack
by deploying two main defense strategies. i) recognition
of pathogen-associated molecular patterns (PAMPs),
such as chitin and B-glucans, by transmembrane pattern
recognition receptors (PRRs), and ii) mounting a poorly-
understood intracellular molecular defense response
upon detection of plant proteins that have been acti-
vated by pathogen effectors, using polymorphic NB-LRR
proteins [1]. Defense responses mediated by NB-LRR
proteins are effective against biotrophic and hemibio-
trophic pathogens, such as Fusarium oxysporum [2]. In
the zig-zag model of plant-pathogen coevolution, plant
PRRs detect PAMPs and activate pathogen-triggered im-
munity (PTI). Pathogens antagonize PTI leading to
effector-triggered susceptibility (ETS). Intracellularly,
NB-LRRs recognize pathogen effectors and restrict infec-
tion, triggering an amplified form of PTI, often associ-
ated with a hypersensitive response, dubbed effector-
triggered immunity (ETI). Pathogens harboring effector
mutants that are not recognized by NB-LRRs escape or
suppress ETL In turn, selection favors new host cells
with polymorphic NB-LRRs that do recognize mutant
effectors reinstating ETI [3]. As a result, antagonistic
molecular encounters between the pathogen and the
plant cell ignite a cascade of transcriptional and post-
transcriptional events that either result in disease or re-
sistance and can spread systemically through the plant
[4, 5]. Understanding such transcriptional responses is of
paramount importance for the comprehension of disease
dynamics and for the design of management strategies.
Fusarium oxysporum constitutes an ensemble of
strains that cause vascular wilt diseases in many cash
crops worldwide and was initially described and taxo-
nomically classified by Snyder & Hansen in 1940 [6, 7] .
Although sexual reproduction has not been documented
for all species, it is thought that lateral gene transfer
may be responsible for the genetic and pathogenic diver-
sity observed in the Fusarium complex [8]. Fusarium
oxysporum f. sp. lycopersici (Fol) is a severe pathogen of
tomato. It comprises three races with variable virulence
and causes losses between 21 and 47% [9] in tropical
and subtropical regions of the world [10]. F. oxysporum
is considered a hemibiotrophic fungus that systemically
invades the plant vascular system and eventually kills its
hosts [2]. Fol secretes mycotoxins that activate defense
responses in the plant, including callose deposition, acti-
vation of the jasmonic acid pathway and proliferation of
parenchymatic cells [11, 12]. Non-pathogenic strains of
Fo have also been reported [6], which although incapable
of causing vascular wilt, colonize roots and can indeed
act as biological controllers of pathogenic strains
because they compete for nutrients and activate plant
defense responses [13-16].
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In wild tomato (Solanum pennelli), resistance genes
against Fol are found and they are called I (for immun-
ity), I-2 and I-3, which have been introgressed into a
number of commercial cultivars [17, 18]. In turn, Fol
encodes avirulence (avr) genes that are recognized by
products of I genes. Some mutations in avr genes over-
come [-mediated resistance giving rise to Fol pathogenic
races. This poses an arm race between tomato resistance
genes and avr Fol genes [19]. To manage pathogenic
races of Fol against which I genes fail to confer resist-
ance, a variety of strategies have been assayed. For in-
stance, salicylic acid has been used to prime systemic
acquired resistance, which leads to milder wilting,
although mycelial growth is not prevented [20]. More
holistic disease management approaches have also been
proposed but Fol continues being a serious threat to
tomato production in many areas of the world [21]. Such
a daunting scenario has spurred an intense quest for
molecular sources of resistance.

Previous transcriptome studies in different plants in-
fected with F. oxysporum have revealed quite variable
transcriptional responses ostensibly dependent on plant
species and F. oxysporum strain combinations. For ex-
ample, in the model plant A. thaliana a series of upregu-
lated genes have been suggested as a b Bona fide defense
response against the fungus [22]. In two cultivars of flax
with different susceptibility to F. oxysporum f. sp. lini, it
was shown that the most resistant cultivar deployed a
defense response that included WRKY transcription fac-
tors, ethylene regulators, and flavonoid-related enzymes,
among others [23]. In a resistant cultivar of Medicago
trucantula infected with F. oxisporum f. sp. medicaginis,
genes encoding proteins related to sugar, protein, cell
wall metabolism, nutrients uptake and oxidative pro-
cesses were found enriched [24]. In highly resistant
plants of B. oleracea infected with F. oxysporum f. sp.
conglutinans early plant defense responses included
MAPK signaling, calcium signaling, and ROS induction.
In addition, pathogenesis-related (PR) proteins, ABC
transporters and several transcription factors were acti-
vated [25]. Two micro (mi)-RNAs, slmiR482f and
slmiR5300, were found downregulated in the Motelle to-
mato cultivar upon Fol infection. Those miRNAs were
proposed to act as constitutive repressors of four
uncharacterized proteins harboring nucleotide binding
domains with putative function in anti-fungal immunity
[26]. Finally, in tomato plants susceptible or resistant to
Fol, it was found that the incompatible interaction
established in the resistant cultivar was accompanied by
secondary metabolite production and tryptophan metab-
olism [27].

Because the molecular interaction between Fol and
tomato cultivars growing in Colombian fields
remained unexplored, we decided to conduct whole-



Loépez et al. BMC Plant Biology (2021) 21:412

genome transcriptome analysis of plants infected with
either a pathogenic (Fol-pt) or a non-pathogenic (Fo-
npt) strain of Fo in two commercial and one wild to-
mato cultivars common in the department of Caldas,
Colombia. Such commercial cultivars were chosen
based on a prior survey conducted with tomato
growers, about their cultivar preferences in the Caldas
region. We hypothesized that tomato varieties mount-
ing an effective defense response will overexpress
resistance-associated genes that could be used in trad-
itional genetic breeding or assayed in transgenesis ex-
periments. Our results suggest that the cultivars
analyzed exhibit a differential molecular response to
Fol infection and differentially expressed genes might
constitute the foundations for genetic breeding pro-
grams against Fol in Colombia.

Results

To characterize the molecular response of three culti-
vars of tomato (CT1, CT2 and IAC391) regarded as re-
sistant to infection by Fusarium oxysporum f. sp.
lycopersici (Fol) in the Caldas department of Colombia,
we conducted transcriptomic analysis by RNAseq, upon
infection of tomato plants with either a non-pathogenic
or a pathogenic strain of Fol. For the sake of simplicity,
we refer to those strains as Fo-npt and Fol-pt, respect-
ively. Details of our inoculation experiment are graphic-
ally depicted in Fig. 1A. It is important to clarify that
we decided to take samples at 36 h post-inoculation
(hpi) because we were interested in an early defense re-
sponse of tomato plants against Fol. Moreover, distal
(upper) leaves were sampled because our interest was
in the systemic molecular defense responses induced by
Fol in tomato cultivars. The use of a non-pathogenic
strain of Fo is an additional control that allowed us to
focus on bona fide defense-related genes. Early defense-
response genes have the potential to be used in genetic
breeding programs aimed at conferring resistance
against Fol. Hereafter, we present the results per culti-
var (Fig. 1B). Because the transcriptome of uninfected
tomato plants between cultivars is substantially different
(Supp. Figure 1), in each experiment, we used control
plants belonging to the same cultivar inoculated with Fo-
npt or Fol-pt. In general, the overlap between genes differ-
entially expressed in each cultivar was very scarce, and so
was among plants inoculated with either Fo-npt or Fol-pt
(Supp. Figure 2).

Commercial tomato 1 (CT1)

For plants inoculated with Fo-npt (Supplementary Table
S1), the overall transcriptional profile exhibited a closer
resemblance to the profile of mock-inoculated control
plants than to the one of plants inoculated with Fol-pt
(Fig. 2A; Supplementary Table S2). This suggests that
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the transcriptomic changes observed in tomato plants
inoculated with Fol-pt are likely due to the pathogenic
infection of the fungus since Fol-pt samples clearly sepa-
rated from control and Fo-npt samples in a principal
component analysis (PCA) plot (Fig. 2A). Substantial
variability between infected plants was also observed
(Fig. 2A). In differential expression analysis between
control plants and those inoculated with Fo-npt, 35
genes were found differentially expressed (22 and 13
upregulated and downregulated genes, respectively) (Fig.
2B, left panel; Supplementary Table S1). By contrast, 64
genes were found differentially expressed in plants infected
with Fol-pt (55 and 9 upregulated and downregulated
genes, respectively) (Fig. 2B, right panel; Supplementary
Table S2). The fold change of upregulated genes in the case
of Fol-pt was substantially higher than the corresponding
one for Fo-npt (average 18 and 3.8, respectively). Overlap
between genes differentially expressed by Fo-npt and Fol-pt
was rather scarce. Thus, a more robust transcriptional re-
sponse was elicited by Fol-pt. Only three genes were differ-
entially expressed in both datasets (Solyc05g055330,
Solyc10g075100 and Solyc11g013810) (Fig. 2B, inset). The
first two were upregulated in both cases and encode a drug
resistant transporter ABC-like protein and a non-specific
lipid transfer protein. The third gene was downregulated in
both cases and encodes a nitrate reductase. Such a poor
overlap suggests that genes differentially expressed only by
Fol-pt might be associated with disease production. Because
anti-fungal defense includes the induction of expression of
defense-related genes [28] we focused on the set of genes
that were found upregulated in plants inoculated with Fol-
pt, which were the majority. Those genes have the potential
to be used in genetic breeding programs. Several genes
known to have a role in anti-fungal defense were found up-
regulated. For instance, two WRKY transcription factors
(Solyc01g104550 and Solyc02g080890) were found upregu-
lated 175-fold and 7-fold, respectively. WRKY transcription
factors have been reported to play a role in responses to
abiotic and biotic stresses [29] and more specifically in
plant immunity [30]. In addition, five genes encoding cyto-
chrome P450 (CYP) proteins were found upregulated with
fold-change that ranged from 4 to 30. CYP proteins have
been implicated in a diverse array of defense responses by
regulation of the synthesis of terpenes [31]. A conspicu-
ously upregulated gene was an acidic extracellular 27kD
chitinase (Solyc02g082930; fold-change = 5.03), which is a
gene directly implicated in anti-fungal defense [32]. The ex-
pression profile of the top differentially expressed genes in
this cultivar is presented in Fig. 2C.

To gain additional insights into the physiological processes
and functions potentially affected by differentially expressed
genes, we conducted gene ontology analysis (GO) using
Blast2GO [33], only for genes upregulated during infection
with Fol-pt. Fifteen upregulated genes were mapped to the
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Fig. 1 A Description of experiments. Plants of the cultivars CT1 or CT2, as well as the wild genotype ICA391 were mock-inoculated or inoculated
with either a non-pathogenic (Fo-npt) or a pathogenic (Fol-pt) strain of Fusarium oxysporum f. sp. lycopersici, at 30 days post-germination. Two
biological replicates were included per cultivar. Inoculation was on the soil-stem junction without mechanical damage. Systemic leaves of
inoculated plants were collected 36 h post-inoculation (hpi). Collected leaves appear encircled. Leaves were snap-frozen in liquid nitrogen upon
collection and subsequently lyophilized. Lyophilized material was used for RNA extraction and construction of RNAseq libraries. B Number of
differentially expressed genes in each tomato cultivar inoculated with the pathogenic (Fol-pt) or non-pathogenic (Fo-npt) strain of Fol

oxidation-reduction process (P:GO:0055114), including all
cytochrome P450 genes, dioxygenases, dehydrogenases,
among others (Supplementary Table S7). Other ostensibly
defense-related processes or functions identified on the basis
of the upregulated genes included metal ion binding (F:GO:
0046872), terpenoid biosynthetic process (P:GO:0016114)
and regulation of transcription DNA-templated (P:GO:
0006355), represented by the WRKY transcription factors
differentially expressed. Thus, the induction of defense re-
lated genes was the predominant response observed in the
cultivar CT1 upon infection with Fol-pt.

Commercial tomato 2 (CT2)

The transcriptome of plants infected with Fol-pt
(Supplementary Table S4) was clearly different from
mock-inoculated plants or from plants infected with Fo-
npt (Supplementary Table S3). Of note, mock-inoculated
and Fo-npt-inoculated plants were located close to each
other in a PCA plot, while plants infected with Fol-pt
clearly separated from the rest but by comparison to
CT1 (Fig. 2A), they were located closer to the other two
groups (Fig. 3A). In a way, this suggests that the tran-
scriptional response to Fol infection in the CT2 cultivar
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Fig. 2 RNAseq results for cultivar CT1. A Principal component analysis (PCA) shows that the overall transcriptional profile of plants infected with
the non-pathogenic strain of Fol is more similar to that of mock-inoculated plants, suggesting that such difference is due to the pathogenic
infection. B Volcano plots depicting differentially expressed genes in plants infected with the non-pathogenic (left panel) or the pathogenic (right
panel) strains of Fol. As inset, a Venn diagram showing the number of genes uniquely differentially expressed for each strain or common to both
strains are shown. C Heatmap depicting the normalized expression of the top 25 differentially expressed genes. Normalized data is presented in a
logarithmic scale. Arrows on the side color bars of the heatmap indicate blocks of genes that were downregulated (downward arrow) or

was milder than in the previous case, because Fo-npt-in-
oculated plants could not be clearly separated from con-
trol plants based on their Euclidean distances. Indeed,
the transcriptional response to Fol infection in CT2 was
substantially different to the one seen in CT1. The most
conspicuous difference was the predominance of down-
regulated genes. Namely, in the case of Fo-npt, 16 and 6
genes were found downregulated and upregulated, re-
spectively. Similarly, for Fol-pt, 137 and 5 genes were
found down- and up-regulated, respectively. Nine genes

were found down-regulated in both the Fo-npt and Fol-
pt experiments (Fig. 3B). In plants infected with Fol-pt, a
series of transcription factors, phosphatases and kinases
were included among down-regulated genes. The ex-
pression profile of the top differentially expressed genes
in this cultivar is presented in Fig. 3C.

We also conducted gene ontology analysis on the
down-regulated genes (Supplementary Table S8).
Enriched gene ontology terms included ATP binding (F:
GO0O:0005524), metal ion binding (F:GO:0046872),
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Fig. 3 RNAseq results for cultivar CT2. A Principal component analysis (PCA) shows that the overall transcriptional profile of plants infected with
the non-pathogenic strain of Fol is more similar to that of mock-inoculated plants, suggesting that such difference is due to the pathogenic
infection. B Volcano plots depicting differentially expressed genes in plants infected with the non-pathogenic (left panel) or the pathogenic (right
panel) strains of Fol. As inset, a Venn diagram showing the number of genes uniquely differentially expressed for each strain or common to both
strains, is shown. C Heatmap depicting the normalized expression of the top 25 differentially expressed genes. Normalized data is presented in a
logarithmic scale. Arrows on the side color bars of the heatmap indicate blocks of genes that were downregulated (downward arrow) or
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oxidation-reduction process (P:GO:0055114), regulation
of transcription (P:GO:0006355), defense response (P:
GO:0006952), and RNA binding (F:GO:0003723). It is
possible that the downregulation of transcription factors
and RNA-binding proteins account for the overall down-
regulation of genes observed in this variety. At least at
the molecular level, this cultivar should be considered
permissive to Fol infection. Complementary studies in-
cluding disease severity and reduction of yield are neces-
sary to declare this variety as susceptible.

1AC391

In the IAC391 cultivar, the transcriptome of plants inoc-
ulated with either Fo-npt (Supplementary Table S5) or
Fol-pt (Supplementary Table S6) was clearly distinct
from the transcriptome of mock-inoculated plants
(Fig. 4A). The transcriptional response observed in
IAC391 was much more complex than the one observed
in the two other cultivars. In plants infected with Fo-npt,
4 and 25 genes were found up- and downregulated,
respectively (Fig. 4B; Supplementary Table S5). Among
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the four upregulated genes, the proteins pathogenesis-
related 5-like protein (Solyc08g080670), diacylglycerol
kinase 5 (Solyc08g082190) and an ethylene forming en-
zyme (Solyc12g098850) are encoded, presumably with a
role in defense against pathogen attack. Interestingly,
several other genes encoding defense-related proteins
were found downregulated. Plants infected with Fol-pt,
as before, exhibited a much more robust transcriptional
response. Respectively, 36 and 79 genes were found up
and downregulated (Supplementary Table S6). Upregu-
lated genes included pathogenesis-related proteins,

cytochrome P40 proteins and terpenes, which are genes
with potential roles in defense. Downregulated genes
also included pathogenesis-related proteins and cyto-
chrome P450 proteins, among many others (Supplemen-
tary Table S6). The expression profile of the top
differentially expressed genes in this cultivar is presented
in Fig. 4C.

Because a considerable number of genes were found
up- and downregulated in IAC391, gene ontology
analysis was conducted on both set of genes. For
upregulated genes (Supplementary Table S9), as in the
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case of CT1, there was an enrichment of the oxidation-
reduction process (P:GO:0055114), response to biotic
stimulus (P:G0O:0006355) and regulation of transcription
(F:GO:0016717). Interestingly, the oxidation-reduction
process was associated with downregulated genes too
(Supplementary Table S10). Remarkably, the defense
response GO process (P:GO:0006952) was associated
with 12 genes exhibiting drastic downregulation. Metal
ion binding (F:GO:0046872) and lipid transport (P:GO:
0006869) were also found enriched by downregulated
genes. In other words, the fact that genes and gene
ontology terms involved in defense responses were
found up- and downregulated points toward a genuine
arms race between pathogenicity factors of the fungus
and defense mechanisms of the plant in this cultivar.

Distribution of differentially expressed genes along
chromosomes

Differentially expressed genes mapped to all chromo-
somes, but its location was divergent among cultivars. In
Fig. 5, the number of genes per chromosome was plotted
on a heatmap, using the same intensity scale (0-20), so
that intensities are comparable between samples,
between fungus isolates, and between upregulated
(Fig. 5A) and downregulated (Fig. 5B) genes. For
upregulated genes, the number of genes induced by
Fol-pt was clearly higher than the ones induced by
Fo-npt, especially in the cultivars CT1 and IAC391,
but they showed a distinct spatial distribution along
chromosomes. The higher number of upregulated
genes in CT1 clustered on chromosomes 1,2,4 and 9,
while in TAC391 they clustered on chromosomes 7,8
and 12. The number of upregulated genes in CT2

was very low and similar for Fol-pt and Fo-npt (6 and
5 genes, respectively). For downregulated genes, CT1
registered few genes, for both Fol-pt and Fo-npt. CT2
and TAC391 both registered many downregulated
genes and their distribution pattern along chromo-
somes was similar, but clearly distinct. Namely, down-
regulated genes in the CT2 were in all chromosomes
but mainly in chromosomes 1, 2, 3, 4, 7, 9, and 11;
while in IAC391 they were mostly on chromosomes
1, 3, and 9 (Fig. 5)

Discussion

At the molecular level, imbricated interactions between
effector molecules from phytopathogenic fungi and the
host plant defense machinery take place, which results
in either disease or resistance [19]. We conducted RNA-
seq in three different Colombian tomato cultivars to
portray the molecular response to infection by a patho-
genic (pt) or a non-pathogenic (npt) strain of Fusarium
oxysporum. In all cases, the pathogenic strain induced
more robust transcriptional changes, which we assume
occurred in response to the infective process promoted
by Fol-pt. Because our interest is to determine molecular
changes associated with disease production, we discuss
the response of tomato plants to Fol-pt. It is important
to mention here that the number of differentially
expressed genes in our study was relatively small, but
our experiments, specially the sampling time at 36h
post-inoculation were precisely intended to detect early
defense responses against Fol. This is based on the
premise that, for a source of resistance to be effective
against a pathogen, it should act as early as possible
during infection.
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Table 1 Representative genes differentially expressed by infection of Fol-pt and gene ontology terms associated

Gene Log2 Fold-change Adj. p-value Go term Gene description

CT1
Solyc02g080890 2.80907115 4.6862E-05 F:GO:0003700 WRKY transcription factor 6
Solyc01g104550 744730817 0.00806559 F:GO:0003700 WRKY transcription factor 9
Solyc02g082930 2.33107546 0.00131687 F:GO:0004568 Acidic extracellular 27 kD chitinase
Solyc11g013110 1.89560049 0.00101235 F:GO:0004553 Flavonol synthase
Solyc03g115220 1.55351214 0.02040609 F:GO:0005506 Flavonoid 3"-hydroxylase
Solyc12g042500 469099536 0.01727904 - Gibberellin-regulated family protein
Solyc12g042520 449358815 0.01104915 - Gibberellin-regulated family protein
Solyc06g059930 4.1876883 5.2556E-05 F:GO:0000287 Sesquiterpene synthase 1
Solyc01g105880 3.9202373 6.067E-05 F:G0O:0000287 Monoterpenoid synthase 2

CT2
Solyc01g096190 —2.2633495 0.01505172 F:GO:0005388 Ca2 +—ATPase
Solyc01g058720 —3.4691547 0.00034242 F:GO:0005509 Calcium-binding EF-hand
Solyc06g065820 —4.6022105 0.00366324 F:G0O:0003677 Ethylene-respons transcript factor ERF003-like
Solyc11g012980 —4.8573007 0.04893111 F:GO:0003677 Ethylene-respons transcript factor ERFO14-like
Solyc10g079860 —3.8592592 0.00552977 F:GO:0005506 Lesculentum TomQ'b beta(1,3)glucanase
Solyc03g006880 244990544 0.01969419 - Gibberellin 20-oxidase-1

1AC391
Solyc01g091160 4.81325521 0.03935622 F:G0O:0004053 Pathogenesis-related 5-like protein
Solyc10g080010 4.53194493 0.01116834 F:GO:0016757 Geranylgeranyl pyrophosphate synthase 1
Solyc07g066330 3.07847198 0.00853798 F:GO:0003677 Sesquiterpene synthase
Solyc02g071475 548144135 0.00393161 F:GO:0008168 Cytochrome P450, family 81
Solyc10g005320 9.62306957 0.0025659 F:GO:0004834 Tryptophan synthase beta chain 1-like
Solyc07g044900 8.67617934 0.00021562 - Tryptophan synthase
Solyc03g114540 —4.9058111 1.9386E-10 F:GO:0016844 Sn-1 protein
Solyc07g055950 —5.3240287 3.7529E-06 CGO:0016021 Sn-2 protein
Solyc08g066260 —6.5689437 19717E-12 F:G0O:0004398 Rapid alkalinization factor 3

Induction of defense-related genes during Fol infection
The response of the cultivar CT1 to infection with Fo-
npt or Fol-pt consisted predominantly of the upregula-
tion of gene expression; many of those genes are
involved in defense. For instance, upregulation of
WRKY transcription factors 6 and 9 (Solyc02g080890
and Solyc01g104550; Table 1), was observed only in the
presence of the pathogenic strain of Fol. This is consist-
ent with a recent study, using microarrays, wherein 16
different WRKY transcription factors were found up-
regulated in tomato plants infected with Fol, among
which WRKY36 and WRKY37 stood out [29]. Thus, it
is possible that the plethora of WRKY transcription fac-
tors represents the evolution of specialized responses
against different Fol strains [34, 35], and more gener-
ally, against different pathogens [30]. WRKY transcrip-
tion factors were not found upregulated in the cultivars
CT2 or IAC391.

A conspicuous upregulated gene in CT1 was the acidic
27 kDa endochitinase (CHI17, Solyc02g082930; Table 1)
which is involved in defense against chitin-containing
fungal pathogens like Fol [36]. According to the
STRING protein database (string-db.org) this chitinase
interacts with several pathogenesis-related (PR) proteins.
Similarly, pathogenesis-related protein 5-like protein
(Solyc01g091160; Table 1) was induced in IAC391, al-
though it was also induced by Fo-npt, suggesting that it
is perhaps involved in basal defense. This protein be-
longs to the thaumatin family of PR proteins involved in
defense response to biotic factors [37], including fungal
pathogens [38]. No gene involved in a defense response
was found upregulated in CT2.

Genes related to the synthesis of flavonoids were found
upregulated in CT1 (Solyc11g013110, Solyc03g115220)
and IAC391 (Solyc10g080010, Solyc07g066330), but not
in CT2 (Table 1). Flavonoids synthesis is activated upon
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pathogen attack and can inhibit microbial cellulases, pecti-
nases and xylanases [39]. Gibberellins are closely related to
plant defense responses against pathogens [40], and they
were found upregulated in CT1 (Solyc12g042500,
Solyc12g042520) and CT2 (Solyc03g006880) (Table 1).
Induction of genes associated with gibberellins has been re-
ported in melon and chickpea plants infected with different
species of Fusarium [41, 42]. Genes associated with the syn-
thesis of terpenes were also found upregulated in CT1
(Solyc06g059930, Solyc01g105880) and  [AC391
(Soly10g080010, Soly07g066330) (Table 1). Terpenes are
synthesized either through the mevalonate or the MEP
pathways and have been implicated in defense to microbes
and insects [43—-46]. Volatile compounds serve as an alert
strategy among plants to prime systemic defense responses,
which increase tolerance to environmental conditions. A
few genes encoding mono-oxygenases in the family cyto-
chrome P450 (CYPs) were found upregulated in CT1 and
one in IAC391 (Solyc02g071475) (Table 1). CYP enzymes
are involved in redox reactions and biosynthesis of com-
pounds like fatty acids, alkaloids, flavonoids and other sec-
ondary metabolites like phytoalexins [31]. Overexpression
of CYP genes has been reported in potato plants in re-
sponse to Phytophthora infestans infection [47]. However, it
should be mentioned that CYP genes were also found up-
regulated in plants inoculated with Fo-npt, which hints to a
general defense response independent of pathogen viru-
lence genes. Two genes associated with the synthesis of
tryptophan (Solyc10g005320, Solyc07g044900; Table 1)
were found upregulated in IAC391. This amino acid is in-
volved in the hypersensitive response to hemi-biotrophic
pathogens like Bipolaris oryzae in rice [48] and Verticillium
longisporum [49], Colletotrichum gloesporiodes [50] and Fu-
sarium spp. [51] in Arabidopsis.

Genes repressed during Fol infection

Although all tomato cultivars underwent downregulation
of some genes upon Fol infection, such phenotype was
notably stronger in CT2. For example, genes associated
with the synthesis and transport of calcium
(Solyc01g096190, Solyc01g058720; Table 1) were found
downregulated in CT2. It has been reported that calcium
signaling plays an important role in effector-triggered
immunity (ETI) in response to pathogen-associated
molecular patterns (PAMPs) [52]. Likewise, two ethylene-
responsive  transcription  factors  (Solyc06g065820,
Solyc11g012980; Table 1) were found downregulated.
These genes belong to a family of transcription factors im-
portant for regulation of ethylene, and their depletion
should negatively impact ethylene’s role in pathogen
defense and ROS response [53, 54]. A glucanase
(Solyc10g079860) was also found downregulated in CT2
(Table 1). Glucanases belong the PR2 protein family and
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have antifungal activity by themselves or in association
with chitinases and other antifungal proteins [55].

Most differentially expressed genes in IAC391 were
downregulated. Among them are Sn-1 and Sn-2
(Solyc03g114540 and Solyc07g055950; Table 1), which are
peptides involved in defense against pathogens in potato
[56, 57] and tomato [58, 59]. Moreover, Rapid
Alkalinization Factor 3, RALF (Solyc08g066260; Table 1),
which is involved in plant immune responses, was also
found downregulated. RALF has also been reported down-
regulated in chickpea roots infected with F. oxysporum f.
sp. cicero Race 1 (Foc Race 1) [60]. It has been shown that
tomato roots colonized by F. oxysporum undergo alkaliza-
tion, which contributes to activation of essential mitogen-
activated protein kinase Fmkl, important for pathogen
colonization [61]. The cultivar CT1 exhibited only few
downregulated genes with no evident role in disease.

In summary, the transcriptional response of each culti-
var to Fol infection had a unique profile, evidencing that
the genome of tomato encodes a plethora of mecha-
nisms that are partially expressed in each case, perhaps
depending on the specific interactions of each cultivar
with Fol races and environmental conditions. The
response of CT1 seems in line with resistance, because
the expression of defense genes was actively induced, in-
cluding a chitinase and WRKY transcription factors. We
summarize the transcriptional response of CT1 as a
remarkable upregulation of genes. Growers regard CT1
as a cultivar resistant to Fol. On the contrary, CT2 ex-
hibited predominat downregulation of genes, including
transcription factors, phosphatases and kinases. This
could be interpreted either as the shutdown, by the host,
of factors that favor fungal pathogenicity or as the inacti-
vation of defense responses by the fungus. Because the
local growers also regard CT2 as a resistant variety, we
favor the first hypothesis, but clearly more investigation
is needed. Lastly, IAC391 exhibited a somewhat inter-
mediate response, although its transcriptional response
was predominantly downregulation of gene expression,
it also exhibited a considerable number of genes upregu-
lated, which perhaps evidences an arms race between
such accession and Fol. IAC391 is considered a wild
genotype, although experimentally is cultivated with sat-
isfactory performance in terms of yield of commercial
fruits [59, 60] More in-depth studies, including agro-
nomic evaluation of cultivars exposed to Fol will provide
additional insights into more subtle differences in resist-
ance or tolerance observed in each cultivar.

Chromosomal localization of differentially expressed
genes in response to Fol infection

Distribution of differentially expressed genes along to-
mato chromosomes was quite variable among cultivars.
Downregulated genes, especially in the case of Fol-pt,
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were more abundant on chromosomes 3, 6 and 11, in
the three cultivars. CT2 and IAC391 were more similar
in this respect, with numerous downregulated genes in
most chromosomes. Conversely, for upregulated genes,
the response of CT1 and IAC391 was more similar, al-
though considerably discordant in the spatial distribu-
tion of genes along chromosomes. CT2 showed only a
handful of upregulated genes. Taken together, the spatial
distribution of differentially expressed genes in the dif-
ferent cultivars suggests that the genetic and/or epigen-
etic defense strategies of each cultivar against Fol are not
only qualitatively but also structurally distinct, which
may point to distinct processes of coevolution with Fol.
However, we do acknowledge that such divergent spatial
distribution of differentially expressed genes along the
genome might reflect, to some extent, chromosomal re-
arrangements of each genome during natural evolution
and/or genetic breeding [62, 63].

In summary, some of the genes found upregulated in
this study are interesting candidates to transfer resistance to
susceptible cultivars with other desired agronomic traits like
yield, flavor or color, but susceptible to Fol. Examples in-
clude pathogenesis-related 5-like protein (Solyc08g080670),
diacylglycerol kinase 5 (Solyc08g082190) and ethylene form-
ing enzyme (Solyc12g098850) found upregulated in IAC391
and acidic 27 kDa endochitinase (CHI17, Solyc02g082930)
found upregulated in CT1.

Conclusion

Selection of tomato cultivars in Colombia is made essen-
tially based on recommendations of commercial entities
that import and distribute seeds. Although such cultivars
may have been evaluated for resistance against patho-
gens in other countries, it does not guarantee resistance
against local biotic and environmental conditions. We
therefore recommend that introduction of new cultivars
should be anteceded by whole transcriptome analyses
like the one presented here, whenever it is possible. In
this particular case, we would recommend the cultivars
CT1 or IAC391, given that their transcriptional response
was more in line with a resistant phenotype. A limitation
of our study was that experimental plants were not
evaluated after sampling of systemic tissue for RNA-
seq analysis, which prevented observation of symp-
toms severity and assessing the impact of infection on
plants’ yield. Obviously, transcriptome analyses should
be complemented with pathogenicity field experiments
evaluating crop yield and inoculum abundance of Fol
in each cultivar.

Methods

Isolation and activation of the fungus

Fusarium oxysporum f. sp. lycopersici (Fol) strains used
in this study were provided by the laboratory of Plant
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Pathology of the Universidad de Caldas. The pathogenic
(Fol-UDC10, Race 2) and non-pathogenic isolates
(Fol-UDC7) [64] were isolated from tomato fields of
the Caldas department. Both isolates were reactivated
in 30-day-old seedlings of the cultivar IAC391 produced
in vitro. Once symptoms were observed, infected plant
tissue was cultured on PDA medium (39 g.L~ L of water)
supplemented with 3.9 gL~ extracts of macerated roots
of TAC391 seedlings, to promote fungus growth. Plants
were incubated for 10days at 27°C, in darkness. The
presence or absence of virulence genes in each isolate
were verified by PCR [64].

Collection of macro- and microconidia

After sporulation was observed, five confluent Petri
dishes were washed with 4 mL of distilled water for each
of the isolates. Conidia were counted in a hemocytometer
and diluted to a concentration of 1 x 10° conidia/ml. This
was the inoculum. A day before inoculations in the field, a
pathogenicity test was carried out in vitro, inoculating
IAC391 seedlings with 10 uL of the conidial suspension
and incubating them at 28°C for 1 week. Disease symp-
toms were then evaluated to confirm that the inoculum
used in the field was viable.

Field infection experiments

Infection experiments were conducted in the farm
Montelindo property of Universidad de Caldas. Such farm
is located in Santdgueda, in the Palestina municipality in
the department of Caldas, at 1050 m.a.s., with an annual
average temperature of 28 °C, relative humidity of 76% and
annual precipitation of 2100 mm. Average temperature
during the experiments period was 28 °C. Seedbeds were
prepared using the soil fumigant dazomet (Basamid® GR).
Thirty days after germination, seedlings were transplanted
to individual 5kg plastic bags filled with sterilized soil.
Plants were placed onto 50cm-tall benches inside a
greenhouse with restricted access, to prevent cross-
contamination. Plant material were two commercials (CT1,
CT2) and one wild (IAC391) cultivars known to be resist-
ant to Fol infection but with unknown genetic background.
Management of plants was as is conventional in this zone.
For each cultivar: Commercial Tomato 1 (CT1), Commer-
cial Tomato 2 (CT2), both regarded as resistant to Fol race
2 and TAC391 (with unknown response to Fol); five plants
were inoculated with 75 mL of the conidial suspension (1 x
10° conidia/ml) of the pathogenic isolate (Fol-pt), five with
the non-pathogenic isolate (Fo-npt) and five were mock-
inoculated with water. Inoculum was administered to the
soil, at the stem-soil junction, without causing any damage
to the stem. Two different experiments were conducted.
Initially the cultivar IAC391 was evaluated. Based on re-
sults derived from this experiment, the two commercial
cultivars frequently planted in the zone were selected for a
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second round of experiments. For RNAseq analysis, two
(2) plants from each treatment were selected randomly,
and from each of them ca. 100 mg of systemic leaves were
collected in darkness, 36 h post inoculation. This short
time until sampling was intended to capture early plant
defense responses induced by Fol. Collected material was
snap-frozen in liquid nitrogen, and subsequently lyophi-
lized and sent to NOVOGENE, Hong Kong for RNA ex-
traction, library construction and sequencing.

Library construction and sequencing

Total RNA was extracted with TRIzol reagent (Invitro-
gen). RNAseq libraries were constructed from 500 ng of
total RNA using the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina (NEB). Polyadenylated
mRNAs were enriched with oligo dTs conjugated to
paramagnetic beads. Enriched mRNAs were fragmented
chemically and used for cDNA synthesis. cDNA was end-
repaired and A-tailed, ligated to linkers and finally indexed
by PCR, to enable multiplexing during sequencing. Se-
quencing was done on a HiSeq2500 instrument, following
a paired-end 150 cycles protocol. Average sequencing
depth was 12 million paired-end reads per sample.

Bioinformatics analyses
Fragments were mapped to the tomato genome
(ITAG3.2; from the International Tomato Genome
Sequencing Project) using HiSat2 [65]. Counts per gene
were generated using HTSeq [66] and the corresponding
GTF file. Differential expression analysis of RNAseq data
was conducted using negative binomial generalized lin-
ear models with DESeq2 [67]. We selected DESeq2 for
analysis of our data because it has been reported to be
robust, i.e. to exhibit a low false positive rate, for data-
sets with low number of replicates, as in our case [68].
DESeq2 is a moderate statistical method that com-
pares gene counts in two groups by applying a modified
Fisher’s exact test with at least 2 degrees of freedom. All
our experiments had three degrees of freedom (n-1).
Plants that were mock-inoculated served as reference for
pairwise comparisons against plants inoculated either
with Fo-npt or Fol-pt. Gene abundance differences with
a corrected p-value < 0.05 were considered differentially
expressed. No threshold for fold-change was established,
because all values were over 1.58. Gene ontology analysis
of differentially expressed genes was conducted with
Blast2GO [33], with default parameters. Gene ontol-
ogy terms with a corrected p-value <0.05 were con-
sidered significantly enriched. Plots were generated
with in-house R scripts. Additionally the PCA was
conducted on Euclidean distances between samples
derived from gene abundance (counts) for all tran-
scripts detected following a regularized logarithmic
transformation.
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