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Abstract 

Background:  Sesame is a rare example of non-model and minor crop for which numerous genetic loci and can-
didate genes underlying features of interest have been disclosed at relatively high resolution. These progresses 
have been achieved thanks to the applications of the genome-wide association study (GWAS) approach. GWAS has 
benefited from the availability of high-quality genomes, re-sequencing data from thousands of genotypes, extensive 
transcriptome sequencing, development of haplotype map and web-based functional databases in sesame.

Results:  In this paper, we reviewed the GWAS methods, the underlying statistical models and the applications for 
genetic discovery of important traits in sesame. A novel online database SiGeDiD (http://​siged​id.​ucad.​sn/) has been 
developed to provide access to all genetic and genomic discoveries through GWAS in sesame. We also tested for the 
first time, applications of various new GWAS multi-locus models in sesame.

Conclusions:  Collectively, this work portrays steps and provides guidelines for efficient GWAS implementation in 
sesame, a non-model crop.
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Background
Sesame (Sesamum indicum L, 2n = 2x = 26) which 
belongs to the Pedaliaceae family is one of the most 
ancient oilseed crops domesticated from the wild pro-
genitor S. malabaricum in Near East, Asia and Africa 
over 5,000 years ago [1, 2]. Sesame is reputed for its cli-
mate-resilience, high oil content, and unique antioxidant 

properties [3]. It is an important source of high-quality 
edible oil and protein food. The oil content of sesame 
seed ranges from 50-60% with a high proportion of natu-
ral antioxidants such as sesamolin, sesamin, and sesamol, 
conferring a long shelf life and stability to the oil [4, 5]. 
Ashakumary et  al. [6] reported that sesame seed con-
tains 19-25% protein and is a good source of iron, mag-
nesium, copper, calcium, vitamins B1, E and phytosterols 
that help to lower the levels of blood cholesterol. Besides, 
all essential amino acids and fatty acids are present in 
the sesame seed [7]. The sesame sector is a billion-dol-
lar industry that supports the livelihoods of millions of 
farmers throughout the world [8]. The total production 
has significantly increased over the last ten years, reach-
ing 6 million tons in 2017 (Food and Agriculture Organi-
zation Statistical Database [9]. Sesame production and 
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productivity, however, face different constraints, includ-
ing limited numbers of improved varieties, shattering of 
capsules at maturity, non-synchronous maturity, poor 
stand establishment, profuse branching, low harvest 
index, drought stress, waterlogging and diseases [10–12]. 
To accelerate sesame improvement, genomics assisted 
breeding has been adopted as an efficient approach for 
developing superior varieties in a short time [13]. Hence, 
the reference genome sequence of sesame together with 
numerous essential genomic resources was delivered to 
the scientific community [14]. The haplotype map of the 
sesame genome was constructed from a re-sequencing 
project of 705 worldwide diverse cultivars and two repre-
sentative genomes were further de novo assembled [15]. 
These resources are vital to the quick advancement of 
sesame research, as they expedite the detection of genetic 
loci that control important agronomic traits using the 
genome-wide association study (GWAS) approach. 
Today, hundreds of causative genetic variants associated 
with important traits such as oil quality, abiotic stress 
resistance, seed yield have been discovered. These find-
ings facilitate the use of marker-assisted selection and 
genomic selection to advance genetic improvement and 
overall productivity of sesame. This makes sesame a rare 
case of non-model and minor crop for which genomic 
studies, particularly GWAS, have been very successful.

In this review paper, we first present the GWAS 
approach and underlying statistical models. Then, the 
ongoing efforts of genetic discovery through applications 
of GWAS in sesame are presented in detail. We conclude 
this paper with important guidelines for better applica-
tions of GWAS in sesame.

Main text
GWAS approach, underlying statistical models 
and applications in plants
GWAS approach
Genome-wide association study (GWAS) also known as 
association mapping or linkage disequilibrium (LD) map-
ping takes the full advantage of high phenotypic variation 
within a species and the high number of historical recom-
bination events in the natural population. It has become 
an alternative approach over the conventional quantita-
tive trait locus (QTL) mapping to identify the genetic 
loci underlying traits at a relatively high resolution [15]. 
GWAS in general is applicable to study the association 
between single-nucleotide polymorphisms (SNPs) and 
target phenotypic traits. Nowadays, SNP identification is 
becoming much easier using advanced high throughput 
genotyping techniques. GWAS, quantitatively is evalu-
ated based on LD by genotyping and phenotyping vari-
ous individuals in a natural population panel. Unlike the 
traditional QTL mapping approach, which makes the use 

of bi-parental segregating populations, identification of 
causal genes for traits of interest in GWAS is performed 
in natural populations. A key advantage of GWAS is that 
the same genotyping data and the same population can 
be used over and over for different traits.

GWAS has been successfully applied to identify asso-
ciations at a high resolution, detect candidate genes and 
dissect the quantitative traits in human, animals, and 
plants [16, 17]. GWAS in various economically valuable 
crops has been used to gain insight into the genetic archi-
tecture of important traits, including days to heading, 
days to flowering panicle architecture, resistance to rice 
yellow mottle virus, fertility restoration, and agronomic 
traits in rice [18–21]; pattern of genetic change and evo-
lution [22, 23], compositional and pasting properties 
[24], stalk biomass [25] and leaf cuticular conductance 
[26] in maize; plant height components and inflorescence 
architecture [27], grain size [28] and grain quality [29] in 
sorghum; harvest index in maize [30], flowering time in 
canola [31], stress tolerance, oil content and seed qual-
ity [32] in brassica; oil yield and quality [15], yield related 
traits [33, 34], drought tolerance [35], vitamin E [36] in 
sesame.

Statistical models underlying GWAS approach
Single‑locus models
Marker-trait association using GWAS has been widely 
detected using one-dimensional genome scans of the 
population [19, 37–39]. In this method, one SNP is evalu-
ated at a time. Following the use of general linear model 
(GLM) which is described as Y = β0 + β1X [40] (where Y 
= dependent/predicted/ explanatory/response variable, 
β0 = the intercept; β1 = a weight or slope (coefficient); X 
= a variable), a popular model referred as a Mixed Linear 
Model (MLM) (Q+K method) which is described as Y = 
Xβ + Zu + e [41], (where Y = vector of observed phe-
notypes; β = unknown vector containing fixed effects, 
including the genetic marker, population structure (Q), 
and the intercept; u = unknown vector of random addi-
tive genetic effects from multiple background QTL for 
individuals/lines; X and Z = known design matrices; 
and e = unobserved vector of residuals) was developed 
to control the multiple testing effects and bias of popula-
tion stratification in GWAS. Then, the accuracy of asso-
ciation mapping has been reported partially improved 
[17, 42, 43]. Subsequently, numerous advanced statistical 
methods based on the MLM have also been suggested 
to resolve certain limitations such as false-positive rates, 
large computational consequences, and inaccurate pre-
dictions [44]. Efficient mixed model association (EMMA) 
[45], compressed mixed linear model (CMLM) and pop-
ulation parameters previously determined (P3D) [46], 
and random-SNP-effect mixed linear model (MRMLM) 



Page 3 of 19Berhe et al. BMC Plant Biol          (2021) 21:283 	

[47] are some of the latest improved single-locus genome 
scans MLM-based approaches proposed so far. Such 
advanced statistical models are powerful, flexible, and 
computationally efficient. EMMA was proposed to mini-
mize the computational load exhibited in the MLM prob-
ability functions by considering the quantitative trait 
nucleotide (QTN) effect as a fixed effect [17, 44, 45]; 
while CMLM was proposed to control the size of huge 
genotype data by grouping individuals into groups and, 
thus, the group kinship matrix is derived from the clus-
tered individuals [46]. Generally, despite its limitation for 
efficient estimation of marker effects in complex traits, 
the single-locus model approach has a good ability to 
handle several markers [47], and this is one of its worthy 
reported features.

Although the single-locus model analysis was a com-
mon approach for association analysis between each SNP 
and phenotype in GWAS, some earlier reports suggested 
that the use of a single-locus model analysis has limita-
tions to resolve potential effects caused by multiple tests, 
historical genotype effects and pleiotropic effects [17, 
48]. They reported that the interaction between the avail-
able genetic variants throughout the genome is not pro-
foundly explored when only on SNP is tested at a time. 
Similarly, the Bonferroni correction employed to control 
the false-positive error (FDR) due to multiple testing is 
also very stringent in this approach, hence significant 
numbers of important loci may not be identified by the 
single-locus models particularly for large errors due to 
phenotypic data and multi-locus effects [49, 50]. Thus, it 
has been suggested that these single-locus genome scan 
methods are not convenient to test quantitative traits 
regulated by a few and/or many genes with large and 
minor effects, respectively [17, 49]. Besides, the genetic 
epistatic effects generated within close genes could not 
be explored in single-locus methods [51].

Haplotype‑based models
To address some of the limitations in the single-locus 
model analysis, haplotype-based models, which is con-
ducted based on a random SNP effect mixed linear 
model (MRMLM) described as: Y =Xβ + Zkyk + u + e 
(where Y = a vector of estimated genotypic value for all 
lines is an incident matrix for fixed effects as population 
structure, β is a vector of the fixed effect, Zk = a vector 
of genotype indicators for kth SNP, Yk = random effect 
of marker k with ~N (0, Kσ2

k), u= vector of polygenic 
effects described by the kinship matrix (K) with ~N (0, 
σ2

a) and e = vector of residuals errors with ~N (0, Iσ2
e)), 

was developed and implemented for some major crops 
such as wheat, rice, and soybean [52, 53]. Several neigh-
boring markers in high LD are clustered into a single 
multi-locus haplotype in this multivariate method, thus 

the haplotypes are evaluated in a multiple GLM sys-
tem rather than individual SNPs, and the associations 
between the haplotypes and the traits under selection 
have been observed [48, 52, 54]. The haplotype-based 
model is relatively more efficient and reliable than the 
traditional single-locus models in GWAS as it helps 
to accurately capture the allelic diversity, optimize the 
use of high-density marker data, enhance the power of 
epistatic interactions discovery and minimize multiple 
testing [51, 52].

Multi‑locus models
Multi-locus models are newly developed alternative 
methods in GWAS involving two-stage algorithms 
[55–57] consisting of a single locus scan of the entire 
genome to detect all possible associated SNPs (QTNs) 
and then testing all associated SNPs using a multi-locus 
GWAS model to detect true QTNs. These newly devel-
oped multi-locus GWAS models are ideal for testing 
complex quantitative traits regulated by multiple genes/
loci and less influenced by population structure. Some 
advantages of multi-locus models over single-locus mod-
els are for example, the detection of multiple genes gov-
erning a given trait with high power and efficiency, low 
false-positive rate and no need of Bonferroni correc-
tion for multiple testing known to potentially exclude 
important loci [17, 47, 58, 59]. Multi-locus models have 
also resulted in substantial improvements of the qual-
ity and depth of the association results in GWAS [17, 
42, 53, 57, 60, 61]. The models currently largely imple-
mented in GWAS include a multi-locus mixed model 
(MLMM) [57], multi-locus random SNP-effect mixed 
linear model (mrMLM) [47], integrative sure independ-
ence screening expectation-maximization Bayesian least 
absolute shrinkage and selection operator model (ISIS 
EM-BLASSO) [50], fast multi-locus random-SNP-effect 
efficient mixed model association (FASTmrEMMA) [17], 
polygene-background-control-based least angle regres-
sion plus Empirical Bayes (pLARmEB) [62], Kruskal-Wal-
lis test with empirical Bayes under polygenic background 
control (pKWmEB) [58] and fast multi-locus random-
SNP-effect mixed linear model (FASTmrMLM) [59, 
63]. Among the numerous multi-locus models recorded 
to date, Segura et  al. [57] proposed a MLMM method 
which has an advantage over other existing multi-locus 
methods, including penalized logistical regression [64], 
Stepwise regression [65], Bayesian-inspired penalized 
maximum likelihood, computational efficiency, false 
discovery rate detection and addressing the problems 
of population structure in GWAS. Similarly, Korte et al. 
[66] also proposed a mixed model method referred to 
as a multi-trait mixed model (MTMM) that detects the 
causal loci for precisely correlated multiple phenotype 
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traits and simultaneously deals with both intra-trait and 
inter-trait variance components. Likewise, Klasen et  al. 
[61] suggested a Quantitative Trait Cluster Association 
Test (QTCAT) analysis of multi-locus associations with-
out employing population correction techniques and this 
model showed better results in limiting the false posi-
tive/negative associations due to correction strategies 
to mitigate confounding impacts. Multi-Trait Analysis 
of GWAS (MTAG) was also another specific approach 
developed by Turley et al. [67] to analyze summary statis-
tics (meta-analysis) in GWAS. Zhan et al. [68] also pro-
posed another method, named Dual Kernel Association 
Test (DKAT) that includes two individual kernel matrices 
to explain phenotype and genotype similarities. Some of 
DKAT’s advantages over existing methods include being 
able to test the relationship between multiple traits and 
multiple SNPs without making parametric assumptions, 
correcting Type I error rates, being statistically highly 
efficient and computationally scalable [60, 68].

Recently, different comparative studies have been con-
ducted to assess the capacity of these different GWAS 
models in detecting marker-trait associations in different 
plant species. Globally, it has been found that the multi-
locus models were more efficient and powerful than the 
single-locus models to detect highly significant associa-
tion results for the traits of interest (Table 1). However, 
integrating both single-locus and multi-locus models 
have been proved to enhance the power and validity 
of the association analysis of complex traits in GWAS 
because single-locus models could detect some loci that 
multi-locus models fail to identify [54, 70].

Use of pan‑genome vs single reference genome for GWAS
The common approach to study a given population’s 
genetic variation relies on the interpretation of genes 
and variants annotated from the sequences of the exist-
ing reference genome [74]. Currently, reference genome 
sequences of many crops, including rice [75–77], sor-
ghum [78], maize [79], Brassica rapa [80], barely [81, 
82], millet [83], potato [84], tomato [85], and sesame [14] 
have been reported. Following the generation of high-
quality reference genome sequences, several GWAS have 
been carried out to discover the natural variation among 
diverse populations. However, the reference-genome-
based GWAS approach may not be sufficient to distin-
guish any difference between or within the population in 
which certain relevant genes may be inactive in the refer-
ence genome but may be expressed in the studied popu-
lations [86].

Since the discovery of pan-genome in Streptococ-
cus agalactiae [87], different pan-genomes have been 
constructed through comparison of multiple genomes 
derived from de novo sequences assembly of various 

individuals of the same species including, rice [88, 89], 
maize [90]), soybean [91], B. napus [92], wheat [93] 
and recently in sesame [94] (Table  2). Unlike the refer-
ence genome sequencing-based GWAS approach which 
depends on SNPs among the entire panel under investi-
gation, the pan-genome approach is more inclusive and 
could detect copious variation including structural varia-
tion (SV), copy number variation (CNV), present/absent 
variation, inversion and translation variations [30, 86]. In 
this regard, Song et  al. [96] reported a direct detection 
of causal structural variation for the target traits (silique 
length, seed weight and flowering time) in Brassica napus 
based on the PAV-based genome-wide association study 
(PAV-GWAS) using the pan-genome assembled from 
eight high-quality genomes. They also reported that the 
SNP-GWAS approach that involves the single reference 
genome indicated no detection of causal structural vari-
ation for the same population. The result of their study 
indicates that the pan-genome based association study 
is a powerful approach that can complement the single-
reference genome approach in detecting new SNP-trait 
associations. Likewise, the physical position of the sugar-
cane mosaic virus resistance gene (ZmTrxh) in maize was 
discovered using a pan-genome assembled from three 
different genotypes, but not with the use of the single ref-
erence genome [90]. Other pan-genomes based GWAS 
have been conducted in important crops such as rice and 
pigeon pea [89, 97].

Diversity and development of GWAS populations 
in sesame
Morphological and genetic diversity
Sesame is a diploid species and belongs to the divi-
sion Spermatophyta, subdivision Angiospermae, class 
Dicotyledoneae, order Tubiflorae, family Pedaliaceae, 
and genus Sesamum. Pedaliaceae is a small family of 
16 genera and 60 species of which 37 species belong to 
Sesamum genus and only Sesamum indicum L. is the 
most commonly cultivated species [10, 39, 98–100]. 
A high number of varieties and ecotypes are reported 
with high adaptation to various ecological conditions 
in the world. There are three cytogenetic groups in 
Sesamum of which 2n = 26 consists of the cultivated S. 
indicum along with S. alatum, S. capense, S. schenckii, 
S. malabaricum; 2n = 32 consists of S. prostratum, S. 
laciniatum, S. angolense, S. angustifolium; while S. 
radiatum, S. occidentale and S. schinzianum belong 
to 2n = 64 [101–103]. So far, extensive morphologi-
cal variations including plant height, height to the first 
capsule, height to first branch, number of branches, 
flowering period, flower color, number of flowers per 
axil, number of capsule per axil, capsule edge number 
days to maturity, number of seeds per capsule, number 
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of capsule per plant, seed coat color, seed size, seed 
oil content, seed yield, and branching habit have been 
reported in the cultivated sesame [11, 14, 104–107]. 
Besides the huge phenotypic variation harbored in ses-
ame germplasm, various molecular marker-based high 
levels of genetic diversity were also documented within 
many landraces and cultivars collected from different 
areas around the world (Table  3) [1, 14, 15, 104, 106, 
109, 110, 115–134]. Recently, advances in next-gener-
ation sequencing technologies have facilitated SNP-
based genetic diversity analysis in sesame. Globally, 
high levels of genetic diversity in diverse sesame germ-
plasm from Asia, Europe, America, and Africa were 
reported (Table 4) [14, 15, 36, 135, 136].

Development of GWAS populations
In China, there are over 8,000 accessions of sesame 
deposited in the National Mid-term Gene Bank of China 
located in the Oil Crops Research Institute of Chinese 
Academy of Agricultural Sciences (OCRI-CAAS) [14]. 
Similarly, about 4,500 sesame accessions conserved in the 
National Long-term Gene bank in Beijing [107] (Fig. 1). 
Based on these large collections, strategies to build a 
sesame core collection have started early in the year 2000 
using morphological descriptors and later, molecular 
tools [14, 15, 106, 107, 137]. Ultimately, a sesame core 
collection encompassing 705 diverse accessions including 
405 landraces, 95 cultivars from China, and 205 acces-
sions from 28 other countries was established at OCRI 

Table 2  Summary of pan genome assembly in various plant species

NA data not available

Plants Number of 
assembled genome

References genome Pan-genome

Number of total 
genes

% core gene % of dispensable 
gene

References

Brassica 21 Darmor-bzh 105,672 56 42 [80]

Sesame 5 Zhongzhi13 26,472 58.21 41.79 [94]

Maize 3 B73 59,080 48.6 51.4 [90]

96 B73 4,400,000 74% 26% [30]

Rice 66 Nipponbare 42,580 61.94 30.06 [89]

Arabidopsis 18 TAIR10 37,789 69.8 30.2 [95]

Soybean 7 GmaxW82 NA 48.6 51.4 [91]

Table 3  Summary of molecular marker based genetic diversity and population structure analysis in sesame

PIC Polymorphism Information Content

Number of 
accessions

Source of 
collection

Marker type Marker size Detected 
alleles

Number of 
allele per 
locus

PIC Genetic 
diversity

Sub 
populations 
identified

References

96 Asia and Africa 
(22 countries)

SSR 33 137 4.15 0.45 0.508 5 [108]

153 Worldwide (22 
countries)

SSR 16 121 7.6 0.42 0.46 3 [109]

404 Chinese core 
collection

SRAP and SSR 14 126 9 0.39 0.24 2 [107]

453 Chinese core 
collection

SRAD and SSR 14 126 9 0.3467 0.2218 9 [106]

49 India SSR 20 NA 3 0.718 NA 2 [110]

277 15 countries SSR 14 158 11.3 0.568 NA 4 [111]

96 China SSR and InDels 44 113 2.6 0.31 0.37 2 [104]

545 390 from China, 
155 outside 
China

SSR 42 106 NA 0.41 0.645 3 [112]

216 Chinese core 
collection

SSR, SRAD and 
AFLP

79 338 2 0.25 0.2090 2 [113]

216 Chinese core 
collection

SSR, SRAD and 
AFLP

79 608 2 0.16 0.13 2 [114]

130 China SSR and InDels 88 325 3.69 0.36 0.432 2 [115]
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[15]. The entire panel was re-sequenced on Illumina 
HiSeq 2000 (http:/www.​ncgr.​ac.​cn/ SesameHapMap), 
in which a total of 5,407,981 SNPs were detected in the 
genome with an average of 2 SNP per 50 bp (Fig. 2). This 
panel shows ideal characteristics for the implementation 

of GWAS, including high phenotypic variability, low 
population structure and genetic differentiation among 
groups, and a moderate decline in LD (~88 kb) [15]. 
However, most of the accessions (70.1%) included in 
this panel represent only one country while the other 

Table 4  Summary of SNP marker based genetic diversity and population structure analysis in sesame

Number of 
accessions

Sources of 
accessions

Number of 
effective 
SNPs

SNPs 
detection 
approach

Average 
marker 
density/SNP

Average 
nucleotide 
diversity of 
the panel

Genetic 
distance

Average 
gene 
diversity

Number of 
subgroups 
identified

References

95 Mediter-
ranean 
sesame core 
collection 
(21 geo-
graphical 
regions)

5,292 ddRAD 46SNP/kb NA 0.023 to 
0.524

0.28 [119]

366 HSRC-HAAS 89,924 SLAF-seq 1SNP/2.6kb 1.1×10-3 0.01 to 0.42 0.17 3 [122]

705 China gene 
bank

254,781 Whole-
genome 
sequencing

1SNP/50bp 2.4×10-4 0.02 2 [15]

29 China gene 
bank

127,347 Whole-
genome 
sequencing

NA 1.5 × 10-4 NA NA NA [14]

Fig. 1  Flow chart showing key steps in GWAS implementation in sesame (prepared based on works at OCRI-CAAS)

http://www.ncgr.ac.cn/
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28 countries are represented only by 29.9% of the acces-
sions. Furthermore, a limited number of African sesame 
(~3%) was included in this study, although Africa is the 
main source of diverse sesame landraces [108]. There-
fore, for exploiting the genetic bases of important agro-
nomic traits and detection of potential causative genes, 
there is a need to update this GWAS population panel 
by including more materials representing diverse agro-
ecological origins across the world. Another association-
mapping panel population was developed by the sesame 
research group in Henan Sesame Research Center, Henan 
Academy of Agricultural Sciences (HSRC-HAAS) [122, 
136] consisting of 366 germplasm accessions represent-
ing about 89.9% from China and the rest 10.1% from 11 
countries. This population also showed high phenotypic 
and genetic diversity, relatively good SNP density (1 SNP 
per 2.6 kb with 42,781 SNPs in total) and moderate decay 
in LD (~99 kb) [122]. However, this panel also has lim-
ited geographical representation. Further GWAS panel 
populations have been recently built from Korean core 
collections. However, the population size and SNP den-
sity were very low: 96 accessions and 5,962 SNPs [36]; 87 
accessions and 8,883 SNPs [135]. Overall, to explore the 
genetic bases of economically important agronomic traits 
and identify possible causative genes, these developed 
GWAS panels need to be updated by providing more 
materials reflecting diverse agro-ecological backgrounds 
worldwide.

Advantages and limitations for GWAS implementation 
in sesame
Advantages
Implementation of GWAS based on high-quality 
genome sequences results generally in a more accurate 
prediction and mining of potential causative genes. The 
high-resolution positioning of SNPs in the genome along 
the entire chromosomes can unravel the genetic archi-
tecture of target traits; hence, GWAS can detect more 
significant associations, candidate genes, and genomic 
locations with high power and efficiency. Since 2014, 
the development of a high-quality draft genome of the 
sesame genotype ‘Zhongzhi13’ [14] has opened the door 
for genomic research in sesame. Sesame has a small 
diploid genome estimated at 350 Mb, of which 274 Mb 
draft genome was assembled, and 27,148 protein-coding 
genes were predicted. Another genome sequence was 
also published during the same period from the modern 
cultivar ‘Yuzhi1’ [138]. Progresses in genome sequencing 
technologies associated with the reduction of sequenc-
ing costs have created opportunities for additional 
genome sequencing projects in sesame. The reference 
genome was updated to have a higher resolution [39] 
and the genome sequences of different sesame landraces 
including ‘Baizhima’ and ‘Mishuozhima’ [15] and a mod-
ern cultivar ‘Swetha’ [139] were also published. Further-
more, the assembly of a sesame pan-genome from five 
different genomes identified 15,890 dispensable genes, 

Fig. 2  Single-nucleotide polymorphism distributions on the 16 linkage groups (LGs) of the sesame genome assembly v1. The horizontal axis shows 
the LG length; the 0∼27841 legend insert shows the SNP density
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providing a rich resource for comprehensive gene dis-
covery and superior allele mining through GWAS [94]. 
Similarly, the availability of tremendous transcriptome 
data from diverse sesame tissues, various growth condi-
tions and from wild Sesamum species such as S. radia-
tum and S. mulayanum (Table  5) (https://​www.​ncbi.​
nlm.​nih.​gov/​biopr​oject/?​term=​((sesam​e)%​20AND%​
20%​22Ses​amum%​20ind​icum%​22[orgn:__​txid4​182])%​
20AND%​20bio​proje​ct_​sra[filte​r]%​20NOT%​20bio​proje​
ct_​gap[filter]) facilitates post-GWAS works particularly 
for pinpointing candidate genes and their functional 
analysis. The availability of several mapping populations 
[11] is also very useful for validating or polishing GWAS 
findings. Besides, the availability of functional genomic 
databases such as Sinbase (http://​ocri-​genom​ics.​org/​
Sinba​se/​index.​html), SesameFG (http://​sesame-​bioin​fo.​
org/​Sesam​eFG/) and Sesame HapMap that have been 
deployed to facilitate genome excavation, comparative 
genomics, gene expression analysis, are highly useful for 
post-GWAS investigations [15, 105, 140].

To further facilitate the exploitation of GWAS results 
as well as all genetic discoveries available in sesame, we 
have developed a novel database named Sesamum indi-
cum Genetic Discovery Database (SiGeDiD) (http://​
siged​id.​ucad.​sn/). SiGeDiD is a flexible online catalog 
of all genetic and genomic discoveries including, candi-
date genes, QTLs and functional molecular markers in 
sesame (Fig.  3). It is an essential platform for compara-
tive analysis of GWAS projects in sesame and facilitates 
gene discovery, particularly the identification of pleio-
tropic genomic regions/genes that have been identified 
from different GWAS and other genetic/genomic studies. 

The website is user-friendly and we integrated a module 
allowing researchers to upload directly their findings in 
SiGeDiD. Currently, the BLAST functionality is unavail-
able but SiGeDiD will be updated to make it more inter-
active and fully functional.

Collectively, the availability of enormous genomic 
resources, the small genome size of sesame, comprehen-
sive GWAS panels, diverse mapping populations, high 
genetic diversity, low population structure, and relatively 
low LD are advantageous for GWAS implementation in 
sesame.

Limitations
While GWAS provides an opportunity to investigate a 
range of novel genes associated with important agro-
nomic traits, this method does not necessarily identify 
causal variants and genes [141]. When GWAS is com-
pleted, it is often necessary to take additional steps to 
investigate the functional and causal variants and their 
target genes in which transgenic experiments may ulti-
mately be implemented. Sesame, however, is a recal-
citrant plant for genetic transformation, so there are 
limited validations of GWAS-identified SNPs using a 
transgenic approach. Besides, although the LD decay 
rate in sesame is relatively lower than that of other self-
pollinating crops, including rice (~100-350 kb) [142, 143], 
soybean (~574 kb) [144, 145] and brassica (~405 kb) 
[146], it showed a higher LD decay rate than other cross-
pollinating species, including maize (~5.39-15.53 kb) 
[147]. Consequently, the modest level of LD decay rate 
(88 kb) reported in sesame suggests that GWAS resolu-
tion may not easily resolve to the causative gene unless 

Table 5  Summary of RNA-seq data available for various investigated tissues in sesame

Tissue sample Condition/topic Sample size SRA accession numbers

Root Salt 30 PRJNA524278

Root Osmotic stress 12 PRJNA552167

Seed and capsule Seed and carpel development 22 SRR6010084-
SRR6010093-
SRX396185-SRX396196

Root Drought 30 SRP095661

Root, leaf, stem and shoot apical Growth habit KU240042

Flower buds Fertile and sterile flower buds 2 SRP095661

Root Waterlogging 6 SRR2886790

Leaf Fusarium wilt disease 8

Leaf, root, stem and flower Multiple tissues SRA122023

Seed Seed developmental stage 12 SRP034617

Seedling Fusarium wilt disease SRA047567.1

Seedling Growth and development 24 SRA047563.1

Seed Oil content 6 JK045130-JK086377

Root, leaf, flower, developing seed, and shoot 
tip

Multiple tissues 5 SRP006700

https://www.ncbi.nlm.nih.gov/bioproject/?term=((sesame)%20AND%20%22Sesamum%20indicum%22%5borgn:__txid4182%5d)%20AND%20bioproject_sra%5bfilter%5d%20NOT%20bioproject_gap%5bfilter%5d)
https://www.ncbi.nlm.nih.gov/bioproject/?term=((sesame)%20AND%20%22Sesamum%20indicum%22%5borgn:__txid4182%5d)%20AND%20bioproject_sra%5bfilter%5d%20NOT%20bioproject_gap%5bfilter%5d)
https://www.ncbi.nlm.nih.gov/bioproject/?term=((sesame)%20AND%20%22Sesamum%20indicum%22%5borgn:__txid4182%5d)%20AND%20bioproject_sra%5bfilter%5d%20NOT%20bioproject_gap%5bfilter%5d)
https://www.ncbi.nlm.nih.gov/bioproject/?term=((sesame)%20AND%20%22Sesamum%20indicum%22%5borgn:__txid4182%5d)%20AND%20bioproject_sra%5bfilter%5d%20NOT%20bioproject_gap%5bfilter%5d)
https://www.ncbi.nlm.nih.gov/bioproject/?term=((sesame)%20AND%20%22Sesamum%20indicum%22%5borgn:__txid4182%5d)%20AND%20bioproject_sra%5bfilter%5d%20NOT%20bioproject_gap%5bfilter%5d)
http://ocri-genomics.org/Sinbase/index.html
http://ocri-genomics.org/Sinbase/index.html
http://sesame-bioinfo.org/SesameFG/
http://sesame-bioinfo.org/SesameFG/
http://sigedid.ucad.sn/
http://sigedid.ucad.sn/
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a high marker density is used. GWAS, therefore, could 
have a limited efficiency on trait-based QTL regions or 
causative genes detection in the absence of high marker 
density. Another limitation of GWAS in sesame is that 
many sesame cultivars are highly photosensitive, so 
field phenotyping and collecting reliable data in various 
regions of the world is difficult.

GWAS applications in sesame
From 2015, several GWAS projects have been success-
fully implemented in sesame to uncover the genetic 
bases of key agronomic traits such as oil content, oil 
nutrient composition, seed yield, and yield-related com-
ponents, seed coat color, morphological characteristics, 
disease resistance salt tolerance, waterlogging resist-
ance, drought tolerance, root traits and nutritional val-
ues [15, 33–36, 135, 136, 148]. As to our knowledge, all 
GWAS projects conducted so far in sesame were based 
on a single-locus method (EMMA) and the major-
ity was implemented on the GWAS panel developed 
at OCRI-CAAS. In this work, we summarize all of the 
results of GWAS reported by different groups of sesame 
researchers (Table  6 and Fig.  4). A large scale GWAS 
was conducted by investigating the natural variation of 
705 sesame accessions based on 169 sets of phenotypic 
data including, oil content, nutrient composition, yield 
components, morphological characteristics, growth 

cycle, coloration and disease resistance. In total, 
1,805,413 SNPs were used. This has led to the identi-
fication of 446 significantly associated SNPs with the 
phenotypic variation. Following in-depth analyses of 
the major loci, a total of 46 causative genes including 
genes related to flower lip color (SiGL3), petiole color 
(SiMYB113 and SiMYB23), oil content (SiPPO), fatty 
acid biosynthesis (CXE17 and GDSL-like lipase) and 
yield (SiACS) were identified [15]. Similarly, GWAS of 
39 yield-related traits was also conducted [34] using 
the same population as the previous study [15]. In total, 
646 loci associated with traits of interest and 48 poten-
tial genes significantly associated with the functional 
loci were identified. They reported several candidate 
homologs genes involved in seed formation and some 
novel candidate genes (SiLPT3 and SiACS8) which may 
control capsule length and capsule number [34]. Like-
wise, variations in PEG-induced drought stress and 
salt stress tolerance were investigated in 490 diverse 
sesame accessions (representing 33 countries in Asia, 
Africa, America and Europe) based on GWAS [33]. A 
total of 132 significant SNPs resolved to nine QTLs and 
151 total genes of which SiEMF1, SiGRV2, SiCYP76C7, 
SiGRF5, SiCCD8, SiGPAT3, SiGDH2, SiRABA1D 
were detected as potential genes regulating drought 
stress while for salt tolerance, a total of 120 significant 
SNPs resolved to 15 QTLs and 241 genes of which of 

Fig. 3  SiGeDiD: an online catalogue of functional genomic discoveries in sesame (http://​siged​id.​ucad.​sn/)

http://sigedid.ucad.sn/
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Table 6  Summary for GWAS results reported so far in sesame

Sample size Targeted 
traits

Group of traits SNP size SNP density Significant 
associations 
identified

Number of 
candidate 
genes

Potential genes References

705 56 Oil content, nutrient 
composition, yield 
components, 
morphological 
characteristics, 
growth cycle, col-
oration and disease 
resistance

1,805,413 1SNP/50bp 446 46 - SiGL3 ~flower in lip 
colour

- SiMYB113 & SiMYB23 
~ petiole colour

- SiPPO ~oil content, 
seed coat color, 
protein content

- SIN_1016759 
encodes a pre-
dicted PPO ~seed 
coat color

- CXE17 & GDSL-like 
lipases ~ encoding 
lipase

- SIN_1019167 & 
SIN_1009923 
~encoding lipid 
transfer protein

- SiACNA, SiDGAT2, 
SiFATA​, SiFATB and 
SiSAD~ fatty acid 
composition

- SiFAD2 ~ oleic acid 
desaturase

- SiACS~ seed yield

[15]

705 39 Yield index, seed 
traits, capsule 
number, capsule 
size, and capsule 
pericarp

1,805,413 1SNP /50bp 646 48 - SiACS8 ~capsule 
number

- SiLPT3 ~ capsule 
length

[34]

490 4 Drought and salt 
tolerances

1,005,413 2,7SNP / kb 252 40 - SiOPR3 ~ increase of 
abscisic acid during 
desiccation

- SiWRKY69 ~ func-
tioning in response 
to dehydration 
stress

- SiCCD8 ~ functions 
as a carotenoid 
cleavage dioxyge-
nase

- SiMLP31~ salicylic 
acid synthesis

- SiANTH ~ phospha-
tidic acid-binding 
protein

- SiHKT1 ~ sodium 
transporter

- SIN_1021330, 
SIN_1021327, 
SIN_1021326, 
SIN_1021325, 
SIN_1021324, 
SIN_1021323 and 
SIN_1021322~ 
encoding sesame 
peroxidase

[33]
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SiLHCB6, SiMLP31, SiPOD, SiHSFA1, SiDUF538, 
SiCC-NBS-LRR, SiUDG, SiGPAT3, SiNAC43, SiGDH2, 
SiCP24, SiWRKY14, SiXXT5, SiXTH15, and SiG6PD1 
were detected as potential genes [33]. Later on, GWAS 
was conducted to investigate genetic variants govern-
ing drought tolerance in 400 sesame accessions [35]. 
A total of 140 reliable and stable QTLs were identified 
and resolved to 10 QTLs. Similarly, 120 genes, of which 
SiABI4, SiTTM3, SiGOLS1, SiNIMIN1, and SiSAM hav-
ing high potentials to modulate drought tolerance in 
sesame, were identified [35]. Their study was the first to 
validate the function of a candidate gene from GWAS 
using transgenic approach. They demonstrated that 
sesame accessions originated from drought-prone agro-
ecological regions have fixed several drought-tolerant 

alleles, though alleles contributing to high yielding 
under drought conditions are far from being fixed. 
Hence, sesame is mostly considered as a resilient crop 
because of the long-term adaptation to drought-prone 
agro-ecological regions. Additional new GWAS results 
were also reported recently [36, 135, 136] (Table  6). 
Based on genotyping by sequencing (GBS) method, 
[36] conducted GWAS on vitamin E and identified 
eight strongly linked SNPs and 12 genes with various 
regulatory functions, including transcription regula-
tor HTH, zinc ion binding protein, glycosylphosphati-
dylinositol (GPI)-anchor biosynthesis and ribosome 
protein. They also identified, two loci, LG_03_13104062 
containing seven genes (SIN_1022039–SIN_1022045) 
and LG_08_6621957 containing five genes 

Table 6  (continued)

Sample size Targeted 
traits

Group of traits SNP size SNP density Significant 
associations 
identified

Number of 
candidate 
genes

Potential genes References

400 5 Drought (stem 
length, survival 
rate, wilting level, 
capsule number 
and seed yield)

1,000,939 5SNP /kb 569 102 - SiABI4 ~ involved in 
abscisic acid signal 
transduction

- SiTTM3, SiGOLS1, 
SiPOD3 & SiNIMIN1 
~ involved in 
drought tolerance

- SiSAM ~ modulates 
polyamine levels

[35]

96 1 Vitamin E 5,962 2.3SNP /100 kb 8 12 - LG08_6621957 loci 
~ γ-tocopherol

- SLG03_13104062 
loci ~β-tocotrienol

[36]

87 1 Phytophthora 
disease-resistant

8,883 NA 44 68 - SIN_1019026 & 
SIN_1019021~ regu-
lation of pathogen-
induced signaling

- SIN_1019014 & 
SIN_1018999~ 
encoded F-box

- SIN_1019019 & 
SIN_1018986~ 
cytochrome P450 
family protein

- SIN_1019026 & 
SIN_1019021~ 
encoding ubiq-
uitin ligases and 
ubiquitin-related 
modifiers

[135]

366 1 Seed coat color 42,781 1SNP/2.6kb 224 92 - SIN_1016759 ~ PPO
- SIN_1023237 ~ 

laccase3
- SIN_1006022 ~ 

cytochrome P450
- SIN_1023226 & 

SIN_1024895 ~ 
WRKY and bHLH130

[136]

327 7 Root traits 1,000,000 5SNP /kb 409 32 - SiBRB [148]
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(SIN_1001936–SIN_1001940), detected simultane-
ously on LGs 3 and 8, respectively, by employing two 
different models (GLM and MLM). Hence, the authors 
suggested that these two simultaneously detected loci 
have high potentials to control vitamin E in sesame. 
However, due to the limited numbers of SNPs (5,962) 
and small panel size used in this GWAS, potential loci 
for this important trait may have been missed [136]. 
used genotype data from 42,781 SNPs and seed coat 
color trait from an association-mapping panel consist-
ing of 366 sesame germplasms to identify 224 signifi-
cantly associated SNPs. Based on the four most stable 
peaks/SNPs significantly associated with sesame seed 
coat color, they retained 92 candidate genes. Of these 
genes, SIN_1016759 (encoding predicted PPO) was also 
reported in previous GWAS by [15] and QTL mapping 
study by [39]. Using a mapping association of 87 ses-
ame accessions and 8,883 SNPs, a GWAS on phytoph-
thora blight resistance was conducted [135]. The result 
of this study suggested that SIN_1019016 was one of 
the candidate genes identified closely associated with 
phytophthora blight resistance in sesame. The limited 
SNP numbers called from the GBS approach and rela-
tively small size of sesame accessions used in this study 
could have affected the GWAS output associated with 

trait under investigation. More recently, a comprehen-
sive GWAS conducted by Dossa et  al. [148] unrave-
led the genetic basis of seven root related traits. They 
reported 409 significant signals, 19  QTLs containing 
32 candidate genes associated with sesame root traits. 
More importantly, they discovered an orphan gene 
named ‘Big Root Biomass’ (SIN_1025576) which modu-
lates sesame root biomass through the auxin pathway 
[148]. In addition to the published GWAS findings, 
the OCRI-CAAS sesame research group has also sev-
eral unpublished GWAS outputs on various agronomic 
traits including, waterlogging, chlorophyll, salt stress at 
the seedling stage and interestingly a metabolite based 
GWAS has been completed. These results will illumi-
nate the genetic basis of important metabolites such as 
sesamin/sesamolin variation in sesame. All candidate 
genes, QTLs and SNPs will be regularly loaded into 
SiGeDiD (http:/sigedid.ucad.sn/) for further uses in 
sesame breeding projects.

Potential of new statistical models to improve the accuracy 
and power of GWAS in sesame
To our knowledge, multi-locus models have not yet 
been employed in sesame GWAS research and no previ-
ous study has compared different GWAS models (single 

Fig. 4  GWAS applications in sesame. a Circos plot summarizing genetic findings of important agronomic traits in sesame. (A) Pseudomolecules 
(LG), (B) gene density, (C) QTL position, (D) -log(p) of the peak SNPs, (E) pleiotropic QTLs; b Schematic diagram showing potential candidate genes 
discovered so far related to important agronomic traits in sesame. The image of the sesame plant has been specifically designed in this study
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locus and multi-locus models) in sesame. Herein, we 
tested the applications of new GWAS models in sesame 
based on quantitative (root length) and qualitative (seed 
coat color) traits. Natural variation in root length of 350 
sesame accessions was collected from a field experiment 
following the methodology developed by Su et al. [149], 
and the genotypic data were obtained from 1,000,000 
common SNPs. For the seed coat color GWAS, the 600 
sesame accessions, and 1,000,000 common SNPs were 
used [15]. To investigate the phenotypic natural vari-
ation for the seed coat color, matured seeds from five 
capsules per genotype were collected and photographed 
with a high-resolution digital camera and the seed –coat 
color data, which was based on the red, green, and blue 
(RGB) values, were recorded following the methodologi-
cal approach adopted by Zhang et al. [150]. Subsequently, 
three separate GWAS models, including two multi-locus 
models (mrMLM FASTmrEMMA and mrMLM ) and 
one single locus model (EMMAX) were selected (mainly 
because they do not require extensive phenotypic and 
genotypic data formatting) and were implemented using 

the phenotypic and genotypic data. We further compared 
the results of these three models to evaluate their poten-
tials to reveal higher number of marker-trait associations 
and discover more candidate genes.

Our GWAS results for the two traits showed that a 
total of 190, 181 and 162 significant SNPs (-log10(p) > 
6) associated with root length were detected by FASTm-
rEMMA, mrMLM and EMMAX, respectively. Similarly, 
67, 492 and 143 significant SNPs associated with seed 
coat color were detected by FASTmrEMMA, mrMLM 
and EMMAX, respectively (Fig. 5a-f; Table 7; Table S1). 
Of the significant SNPs associated with root length, 163 
SNPs were identified simultaneously by all three models; 
all the SNPs identified by EMMAX were also identified 
simultaneously by both multi-locus models, while 18 
SNPs were simultaneously and only detected by FAST-
mrEMMA and mrMLM (Fig.  5g). For the seed coat 
color associated SNPs, 67 and 27 SNPs were detected 
by all the three models and by two models (mrMLM 
and EMMAX), respectively (Fig.  5h). By considering 
all SNPs co-clustered with peak SNPs within a window 

Fig. 5  Application of new statistical multi-locus models in sesame. a and b Negative log10 P-values for association of root length (Y-axis) are 
plotted against SNP positions (X-axis) using the multi-locus models, mrMLM and FASTmrEMMA, respectively; c Negative log10 P-values for 
association of root length (Y-axis) are plotted against SNP positions (X-axis) using the single-locus model, EMMAX; d and e Negative log10 P-values 
for association of seed coat color (Y-axis) are plotted against SNP positions (X-axis) using the multi-locus models, mrMLM and FASTmrEMMA, 
respectively; f Negative log10 P-values for association of seed coat color (Y-axis) are plotted against SNP positions (X-axis) using the single-locus 
model, EMMAX. For both traits, a horizontal dash–dot line indicates the significant P-value threshold (10-6) and the significant SNPs are highlighted 
by red color, vertical line indicates overlapped most significant peaks at least in two models; g Venn diagrams showing the shared and uniquely 
detected significant SNPs by each model for root length GWAS respectively; h, Venn diagrams depicting the shared and uniquely detected 
significant SNPs by each model for seed coat color GWAS. The phenotypic and genotypic data for this analysis were obtained from 350 sesame 
accessions and 1,000,000 common SNPs for root length and data from 705 sesame accessions and 1,805,413 common SNPs for seed coat color 
GWAS study
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of 200 kb as QTLs [35], a total of 19 and 34 QTLs were 
detected for root length and seed coat color, respectively, 
by all the three models (Table  S1). Within these QTLs, 
we retrieved 26 and 47 genes for root length and seed 
coat color, respectively. Based on the robust QTLs co-
detected by different models identified for root length, 
nine potential candidate genes, including SIN_1017810, 
SIN_101781, SIN_1017812, SIN_1017815, SIN_1017843, 
SIN_1007064, SIN_1007065, SIN_1020072 and 
SIN_1017818 are proposed for further functional stud-
ies to pinpoint the causative gene (s). Regarding the seed 
coat color, the potential candidate genes identified in our 
study include SIN_1007188, SIN_1007221, SIN_1023226, 
SIN_1023227 and SIN_1023228. Interestingly, three 
genes detected in this study were previously reported by 
Mei et al. [136].

Collectively, the analysis of different GWAS models 
indicates the potential of using an integrated approach 
(single and multi-locus models) to improve the capacity 
and power of GWAS in sesame. This will help to detect 
more and novel marker-trait associations and candi-
date genes, particularly when investigating quantita-
tive traits. It is also important to note that significantly 
associated regions simultaneously detected by more 
models in GWAS are more likely to be highly associated 
with the traits under investigation as compared with 
regions detected only by a single model. Hence, devel-
oping diagnostic markers for the co-detected associ-
ated regions could speed up sesame molecular breeding 
programmes.

Conclusions
Over the last five years, GWAS have been successfully 
implemented in sesame and is illuminating the genetic 
basis of many important agronomic traits. Even though a 
list of QTLs (~300) and candidate genes (~250) have been 
identified for qualitative and quantitative traits, more 
traits, including chlorophyll-yield, metabolite-GWAS, 
waterlogging, heat tolerance are under investigation. We 
envision that all these results will lead to the development 
of allele-specific diagnostic markers to be used as daily 
molecular tools in sesame breeding programmes. Though 
a high-quality sesame reference genome sequence has 
been developed, more often, there are limitations to find 
any candidate gene around the peak SNPs from GWAS. 
To overcome these limitations, we need to use the 
recently developed sesame pan-genome [94] for future 
GWAS implementations. The diversity of recently avail-
able sesame GWAS panels should be improved by inte-
grating more accessions and wild species from different 
agro-ecological origins mainly from Africa. For this, an 
international collaboration between sesame researchers 
is highly required. Furthermore, collaboration between 
researchers for generating comprehensive germplasm 
characterization data using precise phenotyping plat-
forms and in contrasting environments will permit more 
accurate dissection of the genetic architecture of complex 
traits in sesame. Efforts towards sharing genetic materials 
between research institutes are crucial for accelerating 
gene discovery. For example, the re-sequencing data of 
the 705 fully sequenced GWAS panel generated by OCRI 
is publicly available and if the germplasm, at least partly, 
could be shared with partners, more GWAS projects 
could be implemented on sesame, particularly on traits 
highly affected by environments. Similarly, working to 
develop an SNP chip can be an alternative for quick, low-
cost, and easy genotyping of novel sesame collections to 
be used for future GWAS projects.

The application of new multi-locus GWAS models 
and integration of single- and multi-locus models will 
provide more efficiency and power in future GWAS 
implementation in sesame. Up to date, very few studies 
have validated the numerous GWAS findings in sesame. 
Therefore, follow-up studies are needed for further val-
idating the favorable alleles identified from GWAS in 
independent populations and using other approaches 
(classical bi-parental QTL mapping, QTLseq, etc.). Val-
idation of GWAS findings using transgenic approach is 
also instrumental in several plant species. In sesame, 
genetic transformation protocols using tissue culture 
techniques have been reported [151]. More studies on 
this topic are needed in order to develop a more effec-
tive genetic transformation protocol in sesame, for 
example using the flower dip technique [152]. Hairy 

Table 7  Summary of significant SNPs associated with root 
length and seed coat color within the linkage groups (LG) 
identified by each model during GWAS in sesame

Trait LG GWAS models

mrMLM 
FASTmrEMMA

mrMLM Emmax

Root length LG1 167 163 162

LG4 7 6 0

LG5 7 3 0

LG7 1 1 1

LG10 5 5 0

LG15 3 3 0

Total 190 181 163
Seed coat color LG1 0 4 0

LG4 0 0 0

LG6 67 89 142

LG7 0 1 1

LG12 0 349 0

LG16 0 48 0

Total 67 491 143
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root genetic transformation is also a flexible and rapid 
technique widely adopted in several recalcitrant plants 
to study gene functions [153]. We propose to develop 
a hairy root genetic transformation protocol in ses-
ame combined with new genome editing technologies 
to confirm some important GWAS findings. Finally, 
projects aiming at developing diagnostic molecular 
markers based on GWAS peak SNPs and their favora-
ble alleles should be instigated. This will considerably 
accelerate sesame molecular breeding.
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