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Abstract

Background: Anastomosis group 1 1A (AG1-IA) of Rhizoctonia solani is the major agent of banded leaf and sheath
blight (BLSB) disease that causes severe yield loss in many worldwide crops. MicroRNAs (miRNAs) are ~ 22 nt non-
coding RNAs that negatively regulate gene expression levels by mRNA degradation or translation inhibition. A
better understanding of miRNA function during AG1-IA infection can expedite to elucidate the molecular
mechanisms of fungi-host interactions.

Results: In this study, we sequenced three small RNA libraries obtained from the mycelium of AG1-IA isolate, non-
infected maize sheath and mixed maize sheath 3 days after inoculation. In total, 137 conserved and 34 novel
microRNA-like small RNAs (milRNAs) were identified from the pathogen. Among these, one novel and 17 conserved
milRNAs were identified as potential virulence-associated (VA) milRNAs. Subsequently, the prediction of target
genes for these milRNAs was performed in both AG1-IA and maize, while functional annotation of these targets
suggested a link to pathogenesis-related biological processes. Further, expression patterns of these virulence-
associated milRNAs demonstrated that theyparticipate in the virulence of AG1-IA. Finally, regulation of one maize
targeting gene, GRMZM2G412674 for Rhi-milRNA-9829-5p, was validated by dual-luciferase assay and identified to
play a positive role in BLSB resistance in two maize mutants. These results suggest the global differentially
expressed milRNAs of R. solani AG1-IA that participate in the regulation of target genes in both AG1-IA and maize
to reinforce its pathogenicity.

Conclusions: Our data have provided a comprehensive overview of the VA-milRNAs of R. solani and identified that
they are probably the virulence factors by directly interfered in host targeting genes. These results offer new
insights on the molecular mechanisms of R.solani-maize interactions during the process of infection.
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Background

Banded leaf and sheath blight (BLSB) is one of the most
devastating disease of plants, causing severe yield losses
in maize worldwide. Rhizoctonia solani belongs to the
soil-borne Basidiomycete fungus, which is the major
agent of BLSB [1]. There are 14 anastomosis groups,
termed AGI1 to AG13 and AGBI based on their hyphal
anastomosis and physiological/biochemical characteris-
tics in R.solani. Among them, the anastomosis group 1
IA (AG1-IA) is the primary pathogen that causes BLSB
or brown patches on more than 27 families of monocots
and dicots [2]. As the causal agent of BLSB in maize,
AGI-IA often exists as an asexual fungus. Occasionally,
sexual structures from its teleomorph (Thanatephorus
cucumeris) are observed in fields [3]. Vegetative mycelia
and sclerotia are the source of primary infection for
R.solani [4]. Usually, the pathogen initially infects maize
at the first and second leaf sheath above the ground and
then spreads upward to the ear, leading to serious yield
losses [5].

To date, genetic and molecular studies of resistance to
the pathogen have been reported in diverse crops [6, 7].
In maize, it is primarily controlled by quantitative dis-
ease resistance [8]. Three significant quantitative trait
loci (QTLs) located on chromosomes 2, 6 and 10 confer
resistance to BLSB [5, 9]. Recently, an F-box-like protein,
ZmFBL41, was identified to regulate BLSB resistance in
maize by targeting secondary metabolism of lignin [10].
Interestingly, a ubiquitin-protein ligase expression was
induced dependent on R.solani-specific cis-elements in
its promoter [11]. To explore defense-related genes,
large scale sequencing technology has been used to iden-
tify hundreds of pathogen-induced genes [12, 13]. A
number of catalytic enzymes, including chitinase, gluca-
nase and phenylanine ammonia lyase, have been identi-
fied in response to the pathogen [14-16], as well as
several pathogenesis-related (PR) genes and transcription
factors involved in potential defense pathways [13, 17,
18]. For the pathogen, whole genome sequences of
strains of the rice-infecting pathogen R. solani AG1-IA
were generated in 2013 using Illumina technology, which
provided new insights into the pathogenic mechanisms
of AG1-IA and the molecular basis of pathogen-host in-
teractions [19].

MiRNAs comprise a class of endogenous, single-
stranded and non-coding small RNAs that are usually 21
or 22 nucleotides (nt) in length. Although the first
miRNA gene /in-4, was characterized from Caenorhab-
ditis elegans in 1993 [20], miRNAs were not validated as
a distinct class of biological regulators until 2000 [21].
To date, a fast growth rate of studies has demonstrated
that miRNAs play important roles in various biological
processes by regulating expression levels of their target
genes [22]. In plants, most miRNA genes are transcribed
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by RNA polymerasell into primary miRNAs (pri-miR-
NAs), which are primarily cleaved by the enzyme dicer-
like 1 (DCL1) to generate a stem-loop structure known
as the precursor miRNA (pre-miRNA). Pre-miRNAs are
further processed to produce a miRNA/miRNA duplex
by DCL1, and then miRNAs are incorporated into the
RNA-induced silencing complex (RISC) for target re-
pression at the posttranscriptional level via the activity
of ARGONAUTE (AGO) proteins, while miRNAs* are
usually degraded [23]. Although miRNAs have been
studied intensively in both plants and animals, miRNA
pathways remains poorly understood and even contro-
versial in most fungal species. Recently, small RNAs that
are distinct from those in animals and plants have been
identified in several fungi via the application of deep se-
quencing. For instance, qiRNAs were described in Neu-
rospora crassa as a new type small interfering RNA
induced by DNA damage and requiring quelling
deficient-1 (QDE-1, an RNA-dependent RNA polymer-
ase), QDE-3 (a Werner and Bloom RecQ DNA helicase
homologue) and dicer proteins [24]. However, fungi
were thought not to have miRNAs until the discovery of
miRNA-like small RNAs (milRNAs) in N.crassa. Surpris-
ingly, at least four different mechanisms that use a dis-
tinct combination of factors were discovered to produce
milRNAs. Meanwhile, dicer-independent small interfer-
ing RNAs (disiRNAs) with a size of 21 or 22 nt were also
recognized in Neurospora [25]. Afterwards, a number of
milRNAs was identified in fungi. For example, re-
searchers reported fifteen milRNAs in Metarhizium ani-
sopliae that may regulate processes of mycelium growth
and conidiogenesis [26]. In the plant pathogenic fungus
Sclerotinia sclerotiorum, two milRNAs and 42 milRNA
candidates were identified by high-throughput sequen-
cing [27], while milRNAs and their hairpin precursors
were observed in the fungus Cryptococcus neoformans
using bioinformatics and northern blotting approaches
[28]. In addition, it was reported that milRNAs recruit
different components of the RNA silencing protein ap-
paratus to generate small RNAs that vary from 19 to 25
nt in several filamentous fungi [29, 30]. These differ-
ences indicate that fungal milRNA production may have
evolved independently from that in plants and animals.
Interestingly, small RNAs of Botrytis cinerea are able to
hijack the host RNA interference (RNAi) machinery by
binding to the AGO1 protein to suppress plant immun-
ity, demonstrating that a trans-kingdom RNAI is a viru-
lence mechanism of the pathogen in fungus-plant
interactions [31]. Since then, a growing number of stud-
ies suggests that fungi small RNAs can transfer into
plants and exert bidirectional functions for their own
benefit [32]. For R.solani, Lin et al. [33] identified 177
milRNAs, including 15 pathogenic novel milRNAs, after
sequencing the six small RNA libraries derived from the
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mixed RNA of hyphal and rice leaves during different in-
fection periods.

To further understand the molecular mechanism of
host-pathogen interactions, we applied small RNA high-
throughput sequencing to identify virulence-associated
milRNAs in Maizer. solani AG1-IA. Further, the regula-
tory roles of fungal milRNAs and their maize target
genes were investigated by real-time PCR and a dual-
luciferase assay. Moreover, we validated one maize target
gene which act as a positive regulator of BLSB using two
EMS mutants. Overall, we aimed to elucidate the small
RNA transcriptome of AG1-IA in maize to understand
the function of fungal pathogenic small RNAs.

Results

High-throughput sequencing of small RNAs from AG1-1A
at infection stages

To profile small RNAs expressed in AG1-IA and to
identify milRNAs potentially involved in fungus-plant in-
teractions, we sequenced three small RNA libraries from
AGI-IA mycelium (IA), AG1-IA infected maize sheath
three days after inoculation (IA-3d) and maize sheath
(Maize) using Illumina technology. Ultimately, 14,358,
708, 11,012,296 and 14,342,801 raw reads were obtained
from IA, IA-3d and Maize, respectively. After removal of
adaptors, contaminants and low-quality sequences, 14,
345,211, 10,976,072 and 14,304,313 high-quality clean
reads with sizes of 18—30 nt were generated from IA, IA-
3d and Maize. Among these reads, 19-25 nt small RNAs
comprised the major proportion (Fig. 1a).

Clean reads of IA and IA-3d were aligned against the
whole genome sequence of R. solani AGI1-IA using
SOAP, revealing 13,929,970 and 10,611,599 total reads
corresponding to 2,215,557 and 1,681,014 unique reads,
respectively, that were perfectly matched with the fungal
genomic sequences. Also, we analyzed the reads from IA
and IA-3d libraries with maize genome and found that
9,120,804 and 8,866,147 total reads corresponding to 1,
756,096 and 858,176 unique reads from IA and IA-
3dwere mapped to the maize genome, respectively.
Meanwhile, the clean reads of Maize were mapped to
the B73(B73 RefGen_3v, released 5b+) and fungal gen-
ome, respectively. Finally, 11,698,169 total reads repre-
senting 3,414,618 unique reads matching the maize
genome were obtained, while 7,325,577 total reads
representing 599,163 unique reads were mapped to the
fungal genome (Table 1). Subsequently, we aligned all of
the reads against the exon and intron sequences of their
respective genome. It is indicated that exon-sense re-
gions are the major source for the reads production in
IA and IA-3d, accounting for 25.51 and 10.38%, respect-
ively. However, most of the maize sequences (61.85%)
were generated from intron-antisense regions (Fig. 1b).
As the small RNAs were non-coding RNAs, the reads
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mapping to exons and introns would be excluded in the
next analysis. Meanwhile, based on a BLASTN search
against the Rfam database, sequences representing
snRNA, tRNA, rRNA and other small RNAs were identi-
fied (Table 1). Unknown reads, designated as unanno-
tated small RNAs, provided an opportunity to identify
novel milRNAs in both AG1-IA and maize. Analysis of
these small RNAs also suggested a bias for U enrichment
and C suppression at the first nucleotide position (Fig.
1c), which is consistent with other observations in fungi
[25, 30, 34].

Identification of conserved and novel milRNAs in AG1-IA
To identify milRNAs in AG1-IA, a modified method for
fungal milRNA prediction by MIREAP and miRDeep2
software was used [33]. Finally, 137 conserved milRNAs
with a total of 88,161 transcripts per million (TPM) were
identified in the IA library (Supplementary Table S1).
Among the 137 conserved milRNAs, 29 had relatively
high expression greater than 1000 TPM, suggesting their
abundance in fungi. In addition, 34 novel milRNAs with
a total of 406 TPM were found in the IA library and 10
novel milRNAs exhibited expression levels more than 10
TPM (Supplementary Table S1). All of the precursors of
these milRNAs have a typical hairpin structure, and the
secondary structures of 10 randomly selected milRNA
precursors are shown in Fig. S1.

Target gene prediction of milRNAs in R. solani AG1-1A

To demonstrate the potential roles of the identified
milRNAs, target genes in the AG1-IA genome were pre-
dicted using psRNATarget. Therefore, 661 target genes
of 150 milRNAs consisting of 119 conserved and 31
novel milRNAs were identified (Supplementary Table
S2). Among the 150 milRNAs, 15 (10.00%) were pre-
dicted to have at least 10 target genes, while only 11
(7.33%) milRNAs had a single predicted target. Interest-
ingly, 579 (87.59%) of the 661 targets were predicted to
be regulated by a single milRNA with a specific targeting
site while 80 (12.10%) genes were predicted to be regu-
lated by at least two milRNAs or by a single milRNA
with several different sites, such as Rhi-milR-7566 and
AG1IA_07036. Target genes were not found for 21
milRNAs, likely due to mismatches between the AG1-IA
genome and milRNAs or a lack of target gene annota-
tion in the genome.

To investigate the potential roles of milRNAs in
pathogenicity, functional annotation of the 661 target
genes was performed. Totally, 473 genes were annotated
in the AGI-IA genome, including nine ABC trans-
porters, 15 cytochrome P450s (CYPs), 54 secreted pro-
teins and other factors (Supplementary Table S3, S4).
AGIIA_ 08015, regulated by Rhi-milR-1203, was classi-
fied into the fungal ABC transporter G family, which
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Fig. 1 Characterization of small RNAs in AG1-IA and maize. (a) Length distribution of small RNAs identified from IA, IA-3d and maize. (b) Summary
of the percentage of reads mapping to exons and introns. (c) Nucleotide bias at each position of milRNA candidates

may contribute to pleiotropic drug resistance and is as-
sociated with translocation of phospholipid molecules
[35-37]. Additionally, six transporters of AG1-IA cate-
gorized in the Transporter Classification Database
(TCDB) [38] were annotated (Supplementary Table S4).
Interestingly, a total of 54 secreted genes were predicted
to be targets of milRNAs (Supplementary Table S3),

indicating that milRNAs may act as negative regulators
of secreted genes during fungal infection. Particularly, as
candidate effectors, four cysteine-rich proteins were
characterized among the 54 secreted proteins.

Among the other candidate milRNA targets, 23 of
them were categorized as CAZymes including six glyco-
side hydrolase (GHs) and 13 glycosyl-transferase (GTs),
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Table 1 Summary of total genome-matched sequences identified from three libraries
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Maize 1A 1A-3d

Unique Total Unique Total Unique Total
Total reads® 599,163 7,325,577 858,176 8,866,147 1,756,096 9,120,804
Total reads® 3,414,618 11,698,169 2,215,557 13,929,970 1,681,014 10,611,599
SNRNA 7854 29,338 1579 17,643 6338 22,109
tRNA 25316 340,561 35,689 1,505,326 36,319 1,116,975
rRNA 215474 5,142,028 183,071 5,555,101 175,294 2,881,964
SNoRNA 4289 14,272 774 5152 5107 21,046
miRNA 11,728 1,327,871 74,129 534,082 47,280 607,097
Other small RNAs 935,240 701,340 273,045 785,262 144,535 243,513
Unannotated 2,214,717 4,142,759 1,647,270 5,526,804 1,266,141 5,718,895

2 Refer to the reads number of Maize mapped to the fungal genome and the reads number of IA and IA-3d mapped to the maize genome
P Refer to the reads number of Maize mapped to maize genome and the reads number of IA and IA-3d mapped to the fungal genome

which are involved in the biosynthesis and degradation
of glycogen in fungi [39-41]. AGLIA_08946, predicted
as the target gene of Rhi-milR-81, was annotated to en-
code a putative cellulase that may contribute to viru-
lence of fungi through degradation of the plant cell wall
[42]. Fourteen Skpl-Cull-F-box (SCF) genes were iden-
tified by alignments to known SCFs in fungi (Supple-
mentary Table S4), while AG1IA_01201 regulated by
Rhi-milR-1418-5p was predicted to encode an SCF sub-
unit. The results indicate that milRNAs are potentially
required for virulence of AGI-IA by targeting the
CAZymes, the SCF complex, MAPK and calcium signal-
ing pathways (Supplementary Table S4). Interestingly,
different target genes regulated by Rhi-milR-1418-5p
were involved in both MAPK and calcium pathways sim-
ultaneously, indicating multiple regulation points of bio-
logical processes by milRNAs in fungus.

To define the potential pathogenicity of the predicted
genes, the 473 target genes were assigned to a pathogen-
host interaction (PHI) database [43], resulting in 37
genes regulated by 42 milRNAs that were characterized
as PHIs (Supplementary Table S4). We found that 23
PHIs were related to reduced virulence, while three PHIs
were related to increased virulence. Moreover, functional
annotation of the PHIs indicated the inclusion of eight
CAZymes, four ABC transporters and two secreted pro-
teins, suggesting that milRNAs are likely to play import-
ant roles in the regulation of these target genes with
respect to pathogenicity.

To gain a better understanding of their functional
roles in AG1-IA, Gene Ontology (GO) analysis was per-
formed on the predicted target genes. Totally, 214 genes
had assignments of GO molecular function, biological
processes and cellular components categories. These
genes showed a strong affinity for binding activity, signal
transduction factors and hydrolase activity, all of which
are typically important during infection stages (Supple-
mentary Table S5). These findings indicate that

milRNAs may have multiple molecular functions or me-
diate diverse biological processes through their targets
during infection.

Identification of virulence associated milRNAs and target
genes during infection

Identification of virulence-associated milRNAs will facili-
tate our understanding of the molecular regulation of
AG1-IA during infection. For this purpose, normalized
expression levels of milRNAs greater than 2.5 TPM in
both IA and IA-3d libraries were selected and compared.
Finally, milRNAs with fold-changes greater than 1.5
(log, ratio) and P-values less than 0.05 (Chi-squared test)
were termed putative virulence associated milRNAs
(VA-milRNAs) and chosen for further analysis. As
shown in Figs. 2, 17 conserved milRNAs and the novel-
milR-108 were found to be VA-milRNAs. Among 18
VA-milRNAs, seven were upregulated, while 10 con-
served milRNAs and the novel-milR-108 were downreg-
ulated (Fig. 2; Supplementary Table S6) in IA-3d
compared to IA.

To demonstrate the potential roles of VA-milRNAs
during pathogenicity, we examined the target genes of
these milRNAs previously predicted in AG1-IA. Totally,
89 target genes regulated by these 18 VA-milRNAs were
identified (Supplementary Table S7). Among these, only
AG1IA_02109 was targeted by two VA-milRNAs (Rhi-
milR-3126-5p and Rhi-milR-8530-5p) at different sites,
while the other genes were regulated by a single VA-
milRNA.

Subsequently, functional annotation of these 89 target
genes was performed to reveal their potential roles. In
total, 58 of the 89 target genes have been functionally
annotated in the R. solani genome (Supplementary Table
S8). Among them, we identified four ABC transporters,
including AG1IA_2109, AG1IA_3327, AG1IA_3597 and
AG1IA_6835, three CYPs, three CAZymes, three SCFs
and six secreted genes containing two cysteine-rich
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Fig. 2 The expression pattern of VA-milRNAs during infection process

IA-3d

genes. In addition, AG1IA_04862, regulated by Rhi-
milR-3126-5p, was categorized in both the MAPK path-
way and as a CAZyme member, suggesting its diverse
functions during infection.

To explore the potential roles of these VA-milRNAs
and their targets, the 58 genes were assigned to the PHI
database. Nine genes regulated by ten milRNAs were
identified as PHIs (Supplementary Table S8). AG1IA_
05348 and AG1IA_05617 were relevant to loss of patho-
genicity, while the other seven genes were related to re-
duced virulence. Furthermore, functional annotation of
the nine PHIs showed that they belong to ABC trans-
porter, glycosyl-transferase, cadmium ion transporter,
isocitratelyase and DNA repair proteins. It is implied
that the ten milRNAs may participate in pathogenesis by
negatively regulating their PHI targets. GO analysis was
also performed to understand the potential roles of the
58 targets containing nine PHIs (Supplementary Table
S9). The results demonstrated that these targets are in-
volved in the cell cycle, metabolic, microtubule-based
and signal transduction processes. The above results in-
dicated that the nine VA-milRNAs targeting PHIs are
likely engaged in different molecular and biological pro-
cesses that affect pathogenicity.

Expression pattern of milRNAs and their target genes in
AG1-1A

To determine expression levels of milRNAs during cul-
ture process of R. solani, 14 milRNAs were randomly se-
lected for real-time RT-PCR analysis from 171 identified
milRNAs. As shown in Fig. 2, the milRNAs were classi-
fied into four categories due to their expression pattern.
The first, containing Rhi-milR-2110, Rhi-milR-7197-3p
and novel-19, was “gradually decreased” milRNAs during
the fungi culture process. Meanwhile, expression levels
of nine milRNAs, including Rhi-milR-4577 and Rhi-
milR-5045, showed a trend of “decreased at first and
then increased”, while Rhi-milR-31 displayed an expres-
sion pattern of “rise first and then fall”. Expression of
Rhi-milR-3126-5p was a little different from the other
three types and exhibited a trend of “increased then de-
creased and then increased again” (Fig. 3).

Among the 14 milRNA targeting genes, AG1IA_03824
and AG1IA_07031 encoded a cell division cycle (CDC)
protein and an elongation factor, respectively, and were
predicted to be the targets of Rhi-milR-7197-3p. Mean-
while, AG1IA_00782, encoding a WD-repeat containing
protein, was predicted to be regulated by Rhi-milR-2110.
These results demonstrate that Rhi-milR-7197-3p and
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Rhi-milR-2110 may participate in the propagation of R.
solani in maize by regulating their targets. In addition,
the novel milR-19, which targeted AG1IA_00523,encod-
ing a glycosyl-transferase was decreased during infection.
Generally, the decrease of milRNA abundances was

correlated with the increase of target genes, suggesting
that propagation of AG1-IA requires regulation by mul-
tiple milRNAs and diverse signal transduction pathways.
These results suggest that these milRNAs exist in AG1-
IA and participate in pathogenic propagation in maize.
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To validate expression patterns of the abovel8 VA-
milRNAs, we performed real-time RT-PCR. Results
showed that expression patterns of 15 VA-milRNAs
were consistent with those detected by high-throughput
sequencing, while Rhi-milR-100-5p, Rhi-milR-222a-5p
and novel-milR-108 were slightly different (Fig. 4). Add-
itionally, expression levels of VA-milRNAs during infec-
tion stages of 12h,24h and 5d were determined. As
shown in Fig. 4, expression of several VA-milRNAs, in-
cluding Rhi-milR-199a-3p and Rhi-milR-4104-5p,con-
tinuously decreased over 12h, 24 h, 3d and 5d stages,
suggesting upregulation of their targets and implicating
these VA-milRNAs as having a role in pathogenicity. In
addition, a few VA-milRNAs, such as Rhi-milR-222a-5p
and Rhi-milR-8530-5p, were nearly constantly upregu-
lated during infection, suggesting that expression of their
target genes was suppressed and implying that these tar-
gets might negatively regulate virulence.

To determine the expression pattern of VA-milRNA tar-
geted genes in AGI-IA, 19 candidates regulated by 12
milRNAs were examined by real-time RT-PCR. As shown
in Fig. 5, all 19 genes exhibited their highest expression
levels at 24 h after infection, indicating the intensive expres-
sion of virulence related genes at this stage. To assess
whether these target genes were negatively regulated by
milRNAs, correlation analysis between the expression levels
of milRNAs and their target genes was performed. Among
the 19 genes, expression levels of 12 target genes were mod-
erate negatively correlated (- 0.6 < r < — 0.3) with their milR-
NAs, while five genes displayed only weak negative
correlations (- 0.3 < r < 0) with their milRNAs. These results
suggest that the target genes are negatively differentially reg-
ulated by VA-milRNAs. However, expression of AGIIA_
01120 and AGI1IA_04507 were positively correlated with
expression levels of VA-milRNAs. This might be due to the
target genes being regulated through translational repres-
sion by milRNAs or coregulated by other unknown factors.

Predicting the targeted host genes for VA milRNAs
Small RNAs of pathogens also act as direct virulence
factors that manipulate host target genes [31]. Therefore,
we analyzed the putative targets of 18 VA-milRNAs in
maize. Except for Rhi-milR-92a-3p and Rhi-milR-222a-
5p, which have no putative target genes, the other 16
VA-milRNAs have been identified to target a total of 56
maize genes (Supplementary Table S10). Among them,
Rhi-milR-3126-5p and Rhi-milR-5045 were revealed to
target ten and eight genes, respectively. In contrast, a
single gene in maize may also be targeted by different
milRNAs. For instance, GRMZM2G009555 was matched
by both Rhi-milR-4577 and Rhi-milR-3126-5p at distinct
target sites.

To determine the function of VA-milRNAs in fungus-
host interactions, functional annotation of their target
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genes in maize was performed. The results revealed that
28 genes had been annotated in the B73 genome data-
base (Supplementary Table S11) as tightly associated
with plant immunity. Among these genes, five transfer-
ases including DNA methyl-transferase, glutathione
transferase and GIcNAc-1-p transferase, were character-
ized. The GRMZM2G064628 encoding Teosinte
branched/Cycloidea/Proliferating cell factor 18 (TCP18),
which is a class of plant-specific transcription factors in-
volved in controlling the fate of plant organ growth and
regulating part of hormone biosynthesis and signal
transduction pathways [44, 45], was also identified to be
a putative target of Rhi-milR-5045. Notably,
GRMZM2@G154449 encoding a Thaumatin-like protein
(TLP), was predicted to be targeted by Rhi-milR-4104-
5p. Previous studies have revealed that plant TLP is clas-
sified into the PR protein family 5 (PR5) and exhibits an
antifungal property [46]. These results indicated that
Rhi-milR-4104-5p may negatively regulate resistance of
maize by targeting TLP genes. Furthermore, the putative
target of Rhi-milR-7237-3p, GRMZM2G357399, encodes
an ADP-ribosylation factor, which could induce expres-
sion of PR genes and resistance to fungal pathogens in
tobacco [47]. In addition, the formin-like protein, WD-
40 repeat family protein, transporter MRS2 and ATPase,
were also identified among the target genes.

GO analysis was performed for these VA-milRNAs
targets. Only four genes, consisting of AC148152.3,
GRMZM2G025592, GRMZM2G033219 and
GRMZM2G036720, were categorized with GO terms
(Supplementary Table S11). The biological process terms
were assigned to carbohydrate metabolic process (GO:
0005975), DNA methylation (GO: 0006306), chromatin
assembly or disassembly (GO: 0006333), riboflavin bio-
synthetic process (GO: 0009231) and protein folding
(GO: 0006457). Within the GO molecular function cat-
egory, the terms hydrolase activity, DNA binding, chro-
matin binding and peptidyl-prolyl cis-trans isomerase
activity were identified. It is inferred that fungal milR-
NAs may respond to signals from pathogen-host interac-
tions by activating diverse biological processes and
multiple molecular functions through regulating their
host target genes during the infection process.

To further elucidate the mechanism of target genes
associated with fungus-host interactions, the 1500
base pair (bp) upstream promoter sequences of the
58 targets in maize regulated by the VA-milRNAs
were analyzed using PlantCARE (http://intra.psb.
ugent.be:8080/PlantCARE). As listed in Supplementary
Table S12, multiple cis-elements related to stress
responsiveness were identified, such as the ABA-
response elements (ABREs), P-box (gibberellin-respon-
sive element) and MYB binding site (MBS) involved
in drought inducibility. It is implied that the maize
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AG1IA_04507
(Rhi-milR-98295p, r=0.526)

target of VA-miRNAs are more prone to select the
stress responsive genes.

Expression pattern of putative target genes for VA-
milRNAs in maize

To better understand the regulation of maize targets
by Rsolani VA-milRNAs, we selected 11 predicted
target genes to analyze expression patterns through
qRT-PCR (Figs.6 and 7e). Correlation analysis be-
tween expression levels of VA-milRNAs and their

maize target genes revealed that GRMZM2G353548
and GRMZM2G412674 were strongly negatively cor-
related (-0.8<r<-0.6) with their VA-milRNAs,
while  three target genes GRMZM2G086983,
GRMZM2G357399 and GRMZM2G414002 were mod-
erately negatively correlated (-0.6<r<-0.3) with
their VA-milRNAs. Thus, these maize target genes
appear to be negatively regulated by the VA-
milRNAs. However, expression levels of the other six
genes were not negatively correlated with their
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milRNAs. Overall, these results demonstrated that
part of the AGI1-IA VA-milRNAs might regulate
maize genes during fungi-host interactions.

GRMZM2G412674 is a target of Rhi-milR9829-5p and
involved in the response to R. solani

According to  the  bioinformatics  prediction,
GRMZM2G412674 possesses a Rhi-milR9829-5p binding
site located in the 3'UTR (Fig. 7a). To determine
whether this target gene was negatively regulated by
Rhi-milR9829-5p, a dual-luciferase (LUC) assay was per-
formed in tobacco leaves. We found that luciferase activ-
ity of GRMZM2G412674 3'UTR was decreased in
response to co-expression with Rhi-milR9829-5p, while
the negative control containing a mutated Rhi-milR-

9829-5p targeting site did not affect luciferase expression
levels (Fig. 7b). Consistent with the qRT-PCR results
(Fig. 7e, g), these results indicate that
GRMZM2G412647encoding a member of the Kelch
motif family is a genuine target of Rhi-milR9829-5p.

To assess the involvement of GRMZM2G412674 in
maize BLSB, we identified two maize ethyl methane sul-
fonate (EMS) mutant lines, EMS3-001f31 (f31) and
EMS3-001f33 (f33), from the Maize EMS induced Mu-
tant Database (MEMD) [48]. The f31 and f33 mutant
line carried a nucleotide substitution at the site of 2150
bp and 1105 bp which caused an early stop codon and
synonymous mutation, respectively (Fig. 7a). Interest-
ingly, the expression levels of GRMZM2G412674 in f31
and f33 were reduced to 17 and 63% of that in the
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inbred line B73, respectively (Fig. 7c). The R. solani in-
oculation was performed in B73 and the two mutant
lines in the field. We counted the disease index at 5 and
14 dpi and found that the f31 and f33 mutants exhibited
more serious disease symptoms than B73 (Fig. 7f). The
lesion length of f31 and f33 was increased by approxi-
mately 109 and 81% at 14 dpi compared to that of B73,
respectively (Fig. 7d). Thus, these results demonstrate

that GRMZM2G412674 act as a positive regulator of
BLSB resistance.

Discussion

A large number of miRNAs have been characterized in
plants, animals and microorganisms [26, 27, 49-53]. Al-
though it has been reported that Dicer-like Argonaute
proteins exist in fungi and RNA silencing methods
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function as an antiviral defense mechanism [54, 55], the
number of miRNAs identified in plant pathogenic fungi
are not so numerous than that in plants and animals.
One explanation is that the abundance of miRNAs is
quite low or they are expressed only during specific
stress stages, making them difficult to identify with trad-
itional methods, such as microarray. Recently, with the
development of high-throughput sequencing of small
RNAgs, it has become possible to generate large libraries
of small RNAs to detect less abundant and novel miR-
NAs. In this study, hundreds of small RNAs were ob-
tained, and 171 milRNAs of R. solani were identified
using high-throughput Illumina technology. Using the R.
solani-rice interaction system, Lin et al. [33] identified
177 fungal milRNAs during the infection. Unlike the rice
system used previously [33], in this study, we used the R.
solani-maize system to identify milRNAs in AGI-
IA Although some reads that are conserved between
AGI1-IA and maize might have been missed due to the
elimination of IA-3d reads mapping to B73 genome, the
described fungal milRNAs might be more accurate. Fur-
thermore, different from the inoculation AG1-IA on rice
leaves without plants [33], we inoculated the pathogen
at the leaf sheath in living maize plants, which is much
closer to their natural interaction. Therefore, the
characterization of milRNAs in R. solani provides a use-
ful workflow to predict more fungal milRNAs. However,
further experimental approaches are needed to confirm
the function of these milRNAs.

Target genes of the 171 milRNAs were predicted in
AGI-IA, and their functional annotation revealed that
the targets have roles in multiple pathways, such as
MAPK and calcium, transport and hydrolysis. Moreover,
milRNAs differentially expressed before and after infec-
tion were identified as 18 VA-milRNAs. In fungi, targets
that function as CYPs, ABC transporters, CAZymes, se-
creted proteins and SCFs were included. Previous studies
have demonstrated that these genes play important roles
not only in growth and development but also in patho-
genesis. It was reported that the regulatory roles of spe-
cific fungal milRNAs in plant immunity may lie in
altering the expression of plant growth-associated genes
rather than modulating plant immunity, allowing more
energy or transient configurations to be devoted to
defense or tolerance [56]. Therefore, milRNAs are im-
portant pathogenic factors that regulate growth and
pathogenesis. In addition, based on the pathogenic PHI
sub network, nine genes assigned to the PHI database
were characterized, which could facilitate the under-
standing of pathogenic factors during the infection
process at the systematic level.

In maize, 58 target genes were predicted as targets of
16 VA-milRNAs, and 28 genes were annotated in the
B73 genome database. Among the target genes, one
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encoding an ADP-ribosylation factor
(GRMZM2G357399) was identified, which functions
during endomembrane trafficking and increases organ
and seed size by promoting cell expansion [57, 58]. We
also observed that the WD40 repeat family protein
encoded by GRMZM2G353548 was regulated by fungal
milRNA. WD40 proteins act in a variety of functions,
ranging from signal transduction and transcription regu-
lation to cell cycle control [59], all of which are pivotal
for pathogenesis. Moreover, the transcription factor
TCP18,which controls the fate of plant organ growth
and regulates part of hormone biosynthesis and signal
transduction pathways, was annotated [44, 45]. In
addition, GRMZM2G025592 was annotated as a DNA
methyl-transferase, which is involved in genomic stabil-
ity during development and chromatin organization as
well as the alteration of DNA methylation status in cold-
stress quiescent cells [60, 61]. GRMZM2G887276, which
encodes a MYB family transcription factor, was also an-
notated. Previous studies revealed that MYB transcrip-
tion factors play various roles, including enhancement of
abiotic resistance and regulation of the differentiation of
transfer cells [62—64]. Particularly, the thaumatin-like
protein (TLP), which plays a role in antifungal defense
[65], was also characterized. Furthermore,
GRMZM2G412674, which is a target of Rhi-milR-9829-
5p, was validated to be a positive regulator of BLSB (Fig.
7f). This result supports that analysis of small RNA
regulation between pathogen and host is a useful strat-
egy to explore the regulators of BLSB. In addition, based
on the correlation analysis of the expression patterns of
VA-milRNAs and their putative targets, only 5 targets
were tightly negatively with their VA-milRNAs, suggest-
ing them as stronger candidates for successful cross-
kingdom transfer and function in hosts. From this infor-
mation, we inferred that the VA-milRNAs of AG1-IA
may target maize genes during the infection process to
interfere in host immunity. Notably, Rhi-milR-222a-5p
and Rhi-milR-92a-3p have predicted target genes only in
AGI1IA rather than in maize, suggesting that these two
milRNAs are fungal-specific regulatory factors.
Cis-element analysis of maize target genes could
help to reveal the probable functions. After analyzing
the cis-elements of the 58 target genes in maize, we
found multiple cis-elements related to biotic and abi-
otic stress responses. Recent studies have revealed
overlaps between biotic and abiotic stress [66], and
miRNAs play crucial roles during this process [67,
68], indicating that the cis-elements responsive to abi-
otic stress may be involved in pathogenesis by regu-
lating expression of the target genes. Notably, fungal
elicitor responsive elements (Box-W1) were identified,
suggesting that these genes might be involved in the
response to fungal pathogens [12]. However,
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dissecting the molecular mechanisms involved in
these processes requires furtherinvestigation.

Conclusion

We obtained 137 conserved and 34 novel milRNAs of R
solani and characterized 18 VA-milRNAs during the in-
fection process. Target genes of the 18 milRNAs both in
fungi and maize were predicted, and functional annota-
tion and GO analysis revealed their possible involvement
in pathogenesis. Further, expression patterns of milR-
NAs during the R. solani infection process were detected
by real-time PCR and correlated with the expression of
both candidate targets in fungi and plants. Finally, we
validated that the maize gene GRMZM2G412674 was
decreased when co-transformed with Rhi-milR-9829-5p
utilizing a dual-luciferase assay and it was a positive
regulator of BLSB resistance confirmed by the inocula-
tion of R solani in the EMS mutants. These results
showed a useful strategy to explore the regulators of
BLSB in maize and AG1-IA. Overall, our study provides
new insights for revealing the regulatory roles of milR-
NAs in R.solani-maize interactions and exploring pos-
sible pathogenic mechanisms of BLSB disease in maize.

Methods

Fungal strains and plant materials

The R. solani AG1-IA strain YWK196 was cultured on
potato dextrose agar (PDA; 20% potato, 2% dextrose and
2% agar, w/v) at 28 °C. Maize (Zea mays L.) inbred line
B73 was grown in the greenhouse at 22 °C and 60% rela-
tive humidity with a 16 h/8 h light/dark cycle. The third
leaf sheath from the ground was inoculated with-
YWK196 and utilized for RNA extraction. Symptoms of
B73 sheath at different stages after inoculation were
shown in Fig. S2.To determine the lesion length of maize
EMS mutants, eight plants of each line were inoculated
and the lesion length was measured at five and seven
days post inoculation, respectively. Independent experi-
ments were repeated twice and significant analysis was
performed.

Small RNA library construction and high-throughput
sequencing

Total RNA of AGI-IA, AG1-IA-3d and maize samples
was extracted using TRNzol Universal Reagent (Tiangen,
China). Small RNAs, ranging from 18 to 30nt, were
purified from 100 pg total RNA by a 15% TBE-urea de-
naturing polyacrylamide gel electrophoresis (PAGE) and
ligated to specific adaptors at the 5 and 3’ ends. After
reverse transcription and amplification, products were
sequenced on an Illumina GAII platform. Construction
of the small RNA library and high-throughput sequen-
cing were performed twice with two independent bio-
logical replicates, and the average value was calculated
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for further analysis. The raw sequencing data was sub-
mitted to the National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (SRA) with the
BioProject accession code PRJNA596921 corresponding
to BioSample accessions SAMN13642263,
SAMN13642264, SAMN13642265, SAMNI13642266,
SAMN13642267 and SAMN13642268.

Identification of conserved and novel milRNAs

The raw reads were filtered to get the clean tags using in
house perl process. After removing adaptor/acceptor se-
quences, adaptor-adaptor ligation contaminants, insert
tags and low-quality tags, the retained clean reads were
aligned against the reference genome by SOAP software
to exclude the tags matching to exon-sense, intron-
sense, exon-antisense and intron-antisense, respectively.
Meanwhile, the clean reads were blast against all of the
noncoding RNA families annotated in the Rfam (version
13.0) with default parameters [69] and aligned with all of
the plants and fungal bunches in NCBI GenBank data-
base (ftp://ftp.ncbi.nlm.nih.gov/genbank/) to eliminate
rRNA, tRNA, snRNA, snoRNA and other small RNAs.
The remaining small RNA reads were utilized for further
analysis to identify conserved and novel milRNAs.

To identify candidate milRNAs of R. solani YWK196,
miRDeep [70] and MIREAP (http://sourceforge.net/
projects/mireap) softwares were used to find hairpin
structures among the precursors of remaining small
RNAs with the previously described criteria [71]. To re-
duce computation, expression of each tag was normal-
ized to TPM, and reads with abundance under 2.5 TPM
were excluded. Then, all candidate tags existing in both
miRDeep and MIREAP were aligned to the miRBase
database using BLASTN. Candidate milRNAs that were
matched to sequences of miRBase with less than four
mismatches were identified as candidate conserved
milRNAs, while other milRNA tags were considered
candidate novel milRNAs. Finally, the sequences of can-
didate conserved and novel milRNAs exactly matching
the R. solani AG1-IA genome sequence (accession num-
ber AFRTO00000000.1) but not the maize genome or
c¢DNA were termed conserved and novel milRNAs, re-
spectively, which were retained for further analysis.

Target gene prediction of milRNAs

To predict potential target genes of milRNAs, psRNA-
Target online (http://plantgrn.noble.org/psRNATarget/
analysis) [72] was used as previously described with de-
fault parameters. To predict target genes in AG1-IA and
maize, milRNA sequences were aligned to Ther. solani
AGI-IA genome sequences and the B73 genome (http://
www.maizegdb.org, release 5b+).
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Real-time RT-PCR of fungal milRNAs and target genes

To detect expression levels of fungal milRNAs, total
RNA was isolated using TRNzol Universal Reagent
(Tiangen, China) and treated with RNase-free DNasel
(Promega, USA) for the elimination of genomic DNA.
Then, a miRNA c¢DNA Synthesis Kit (CWBio, China)
was used for first strand cDNA synthesis with an oligo-
dT adaptor. Real-time RT-PCR of milRNAs was per-
formed using a miRNA qPCR Assay Kit (CWBio, China)
with a forward primer for mature milRNA sequences
and a universal reverse primer on a JTOWER3 touch
real-time system (Analytik Jena AG, Germany). Expres-
sion of 18S rRNA gene was used as a normalization con-
trol. The threshold cycle (Ct value) was automatically
recorded, and the AACt method [73] was used to calcu-
late relative expression levels of milRNAs. The Rhi-18S
rRNA gene was normalized as internal control in AG1-
IA. Three replicates with three biological samples were
performed for each experiment. Primers used in real-
time PCR analysis are listed in Table S13.

Total RNA of IA, IA-3d and Maize were obtained by
TRNzol Universal Reagent (Tiangen, China) and were
then used to synthesize first strand cDNA with a Prime-
Script RT Master Mix (Perfect Real Time) Kit (TaKaRa,
Japan) according to the manufacturer’s protocol. Real-
time RT-PCR was performed using a SYBR Premix Ex
Taq (TliRNaseH Plus) Kit (TaKaRa). Rhi-18S rRNA and
maize 3-Tublin gene were normalized as internal control
in fungi and maize, respectively. The AACt method was
used to determine relative expression levels. All reac-
tions were repeated three times with three biological
samples. Primer sequences are listed in Table S14.

Differential expression analysis of milRNAs

To represent normalized milRNA expression level, TPM
was used and calculated with the following formula: ac-
tual milRNA count/total count of clean reads x 1000,
000. For identification of milRNAs differentially
expressed between IA-3d and IA, fold-change = log2(IA-
3d/IA) was employed. Only milRNAs with fold-changes
>1.5 and P-values <0.01 were selected as differentially
expressed milRNAs for further analysis.

GO analysis

GO analysis on target genes was performed by Singular
enrichment analysis (SEA) (http://bioinfo.cau.edu.cn/
agriGO/analysis.php) [74]. Gene terms in molecular
functions, biological processes and cellular components
categories were regarded as significantly enriched with
P-value< 0.05.

Statistical analysis
The correlation analysis between milRNA and target
genes was performed by classical Pearson’s correlation
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tests as described previously using SPSS16.0 software
[75] and a P-value <0.05 was considered to be statisti-
cally significant. Meanwhile, the statistical analysis on
real-time RT-PCR results was performed by one-way
analysis of variance (ANOVA) followed by the Tukey
method for pairwise multiple comparisons using Graph-
pad Prism 7.0 software. P-value < 0.05 was considered to
be statistically significant and highlighted using different
lowercase letters.

Dual-luciferase reporter assay in tobacco leaves

To verify the predicted target of Rhi-milR-9829-5p (Sup-
plementary Table S10), the 3'UTR sequence of
GRMZM2G412674 was amplified from the cDNA of
maize sheath and inserted into the pCAMBIA1300-LUC.
To generate mature Rhi-milR9829-5p, the forward and
reverse sequences of mature milRNA were synthesized
by adding restriction sites (BamH I and Spe I for for-
ward sequence; Sac I and Kpn I for reverse sequence)
and ligated into the pCAMBIA1300-35-X vector. Then,
the constructed Rhi-milRNA vector was cotransformed
with the constructed vector of the target gene into Ni-
cotiana benthamiana leaves. As a negative control, a
mutated Rhi-milR-9829-5p targeting sequence (5'-
TTCGTGTTGAGTCGGCATGCC-3") of
GRMZM2G412674 was designed and cotransformed
with Rhi-milRNA after vector construction. The double
reporter (firefly luciferase and Renilla luciferase genes)
pGreenlI0800-LUC vector was used as an internal con-
trol. Firefly and Renilla luciferase activities were quanti-
fied 72 h after infiltration with Dual-Luciferase Reporter
Assay Systems (Promega) using Promega Glomax 2020
(Promega). Luciferase activity was assessed by the Fire-
fly/Renilla (F/R) ratio, and three replicates with three
biological samples were performed. Primers used are
listed in Supplementary Table S15.
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