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Abstract

Background: Caffeic acid O-methyltransferases (COMTs) play an important role in the diversification of natural
products, especially in the phenylalanine metabolic pathway of plant. The content of COMT genes in blueberry and
relationship between their expression patterns and the lignin content during fruit development have not clearly
investigated by now.

Results: Ninety-two VcCOMTs were identified in Vaccinium corymbosum. According to phylogenetic analyses, the 92
VcCOMTs were divided into 2 groups. The gene structure and conserved motifs within groups were similar which
supported the reliability of the phylogenetic structure groupings. Dispersed duplication (DSD) and whole-genome
duplication (WGD) were determined to be the major forces in VcCOMTs evolution. The results showed that the
results of qRT-PCR and lignin content for 22 VcCOMTs, VcCOMT40 and VcCOMT92 were related to lignin content at
different stages of fruit development of blueberry.

Conclusion: We identified COMT gene family in blueberry, and performed comparative analyses of the
phylogenetic relationships in the 15 species of land plant, and gene duplication patterns of COMT genes in 5 of the
15 species. We found 2 VcCOMTs were highly expressed and their relative contents were similar to the variation
trend of lignin content during the development of blueberry fruit. These results provide a clue for further study on
the roles of VcCOMTs in the development of blueberry fruit and could promisingly be foundations for breeding
blueberry clutivals with higher fruit firmness and longer shelf life.
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Background
Blueberries have become widely appreciated worldwide
because they contain phytonutrients such as flavonoids,
which were discovered in the early 1900s [1–4]. The flavo-
noids in blueberry fruits have been confirmed to control
diabetes, exert anti-inflammatory and neuroprotective, ef-
fects and protect eye health through their antioxidant ac-
tivity [5]. Because the functions of blueberry component

have made it to be accepted by an increasing number of
people as “super fruits” [6], global blueberry production
has greatly grown 35% from 2004 to 2016 [7]. However,
because of respiration, evaporation, pathogen infection
and cell wall degradation, the blueberry fruits have a char-
acteristic of high perishability [8]. How to maintain the
quality of flesh blueberry fruit is an urgent problem.
Major thrusts of research on the blueberry fruit soften-

ing are in two ways. One is on the mechanism of fruit
softening related to cell wall structure and some hydro-
lytic enzyme [9, 10], the other one is to extend shelf life
by external treatment like cold stage [11], high oxygen
treatment [12], cuticular wax preservation [13], ethylene
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absorbent treatment [14], sodium nitroprusside treat-
ment [15] and acibenzolar-S-methyl treatment [8]. The
main theory of sodium nitroprusside treatment and
acibenzolar-S-methyl treatment is to improve the activ-
ities of phenylalanine ammonia lyase (PAL) and CoA lig-
ase (4CL) in lignin metabolism pathway and Peroxidase
(POD) to catalyze the polymerization of precursors of
phenolic substances into lignin phenols, so as to make
the fruit lignified, strengthen the host cell wall and in-
hibit pathogen growth [16].
Lignin is a characteristic component of cell walls.

Treatment of fruits can induce changes in the lignin bio-
synthesis pathway to influence the metabolites to have
an effect on the pathogen infection and fruit firmness
[17]. At present, many fruit trees and vegetables have
been reported their effect of lignification on postharvest
fruits, such as strawberry [18], red raspberry [19], zuc-
chini fruit [20] and blueberry [15]. The main treatment
methods of affecting lignification are external application
after harvest. There are only a few studies on genetic
modification to increase fruit lignification to make the
preservation period prolonged effectively.
O-methyltransferases (OMTs) are a multifunctional

enzyme in the lignin and flavonoid biosynthesis pathway,
in Arabidopsis thaliana it can converse caffeic acid to
ferulic acid and 5-OH coniferaldehyde/5-OH coniferyl
alcohol to sinapaldehyde/sinapyl alcohol, forming G and
S units of lignin [21]. COMTs catalyze N-acetyl sero-
tonin into melatonin [22, 23]. The overexpression of
them also can help plant grow [24]. Sorghum bicolor
COMT can be involved in tricin biosynthesis methylated
the flavones luteolin and selgin [25]. The expression of
MOMT4 in aspen can change the structure of lignin,
which increase the crosslinking of condensed lignin sub-
units by G-units [26]. On the flavonoid biosynthesis
pathway, the antioxidant activity of flavonoids is related
to the number of hydroxyl substituents: greater numbers
of hydroxyl substituents are associated with stronger
antioxidant and prooxidant activities. O-methylation of
hydroxyl substituents inactivates both the antioxidant
and prooxidant activities of flavonoids [27]. OMTs can
be divided into two groups: PI-OMT I family and PI-
OMT II family [28]. PI-OMT I family forms by
CCoAOMTs, and COMTs belongs to PI-OMT II family.
Most of COMTs have two types of domain, Dimerisa-
tion (PF08100) and Methylransf_2 (PF00891). There are
7 motifs conserved in COMTs, among them motif A
and motif E may be the putative SAM-binding domains.
COMTs have a wider range of catalytic substrates such
as lignin precursors, alkaloids, flavonoids [29]. These
compounds play an important role in plant growth and
development and in the face of biotic and abiotic
stresses. Therefore, plant OMT enzymes have been
widely studied [2, 30, 31].

Publications of different plant genomes has enabled
analyses of COMT family genes in several species to be
carried out [32, 33]. Blueberry has been widely studied
because of its large amounts of flavonoids. The tetra-
ploid blueberry genome was released in 2019 [34]. In
this study, we identified COMTs family to find OMTs
that may related to the methylation of lignin precursors
and flavonoids during the growth and development of
blueberry fruits Based on the genome of tetraploid blue-
berry. The results of this study will build foundations for
breeding blueberry cultivars with higher fruit firmness
and longer shelf life.

Results
Phylogenetic and sequence analyses of COMT genes in
blueberry
To identify COMT genes in the blueberry genome, one
characterized sequence from Arabidopsis thaliana
(AT5G54160) and 36 identified sequences from Populus
trichoarpa were used as a set of queries in a BLASTP
search (E < 1e-5) [35]. In all, 123 candidate sequences
were retrieved from the blueberry genome. Then, all the
123 candidate sequences scanned for a Methyltransf_2
domain. Ninety-two sequences with a Methyltransf_2
domain were identified in blueberry. All of them were
mapped to pseudochromosomes (VaccDscaff1-VaccDs-
caff48) and renamed from VcCOMT1 to VcCOMT92
according to orders of location on the pseudochromo-
somes. Gene characteristics were analyzed in Table S1
(Additional file 1: Table S1). The result showed that
VcCOMT56 was the shortest protein (112 amino acid)
and the longest one was VcCOMT89. The analysis of
molecular weight showed that 92 VcCOMT proteins
ranged from 12 to 201 kDa, and the isoelectric point
ranged from 4.62 to 8.73.
A maximum likelihood (ML) phylogenetic tree created

by using blueberry COMT protein sequences showed
that the sequences were distributed into 2 groups, and
this finding was supported by high bootstrap values and
gene structure (Fig. 1a). Gene structure and conserved
domain analysis revealed that all COMTs had a C-
terminal catalytic domain named Methyltransf_2 domain
including a SAM/SAH binding pocket and a substrate-
binding site. Some of them showed a common structure
with an N-terminal domain called Dimerization [36].
The SAM/SAH binding pocket was highly conserved,
while the substrate binding sites were specific to pro-
teins in different groups [37]. The domains of the
COMTs in the same group had similar quantities and
sizes of introns (Fig. 1b). For example, one Dimerization
domain in all the groups was on the one exon. This situ-
ation of gene structure was different from Methyltransf_
2 domain. In the Group Ia and Group Ib, VcCOMTs
had Methyltransf_2 domain distributed by two exons
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which had one intron in the middle except VcCOMT6,
VcCOMT61 and VcCOMT83. They had the Methyl-
transf_2 domian distributed on three exons with two in-
trons. Although the Methyltransf_2 domain also
distributed on three exons with two introns in the
Group II, the structure of domain was different from
VcCOMT6, VcCOMT61 and VcCOMT83. The second
exon in the Group II was very small. Different from the
reported Populus trichoarpa that COMTs has only one

Methyltransf_2 domain in one sequence, some blueberry
COMTs had two or three Methyltransf_2 domains in
one sequence [38]. However, the gene structure of
Methyltransf_2 domain in VcCOMTs was similar in se-
quences in the same group. The differences in protein
sequences among the blueberry COMTs were analyzed
by using Multiple Expectation Maximization for Motif
Elicitation (MEME) online tools. In all, 11 motifs were
found in the blueberry COMT sequences [35]. Most of

Fig. 1 The polygenetic relationship, gene structure and motif analysis of the VcCOMTs from blueberry. a The phylogenetic tree was constructed
by MEGA7.0 with the ML method. b Structures of the 92 putative VcCOMT genes. c Motif distribution of VcOMTs proteins. The different motifs are
indicated by different colors for motifs 1–11, and the sequences of 11 motifs were in the Additional file 2: Fig. S1
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the motifs were same in two groups and they were in
the same order in COMT sequences within the same
group (Fig. 1c). Motifs 10 was special to Group I and
only Group II had motif 8. The similar genetic structures
and conserved motifs within groups supported the reli-
ability of the phylogenetic structure groupings.

The Tandem (TD) events and collinearity analysis of
VcCOMTs
According to previous studies, a chromosomal region
150–200 kb in length that contains two or more genes
is evidence of a tandem [33]. Nine pairs of tandem
gene pairs were found in the blueberry genome by
MCscanX (VcCOMT1/VcCOMT2, VcCOMT4/
VcCOMT5, VcCOMT25/VcCOMT26, VcCOMT43/
VcCOMT44, VcCOMT52/VcCOMT53, VcCOMT58/
VcCOMT59, VcCOMT62/VcCOMT63, VcCOMT63/
VcCOMT64, VcCOMT75/VcCOMT76). Ninety-two
COMTs were mapped to the 48 chromosomes exhib-
ited evidence of 9 TD events on blueberry pseudo-
chromosomes (Fig. 2a) [39]. Ninety-two COMTs
allowing for the detected of 83 collinear relationship
(Fig. 2b). The line of same colour between two COMT
genes on the chromosomes indicates collinearity. The col-
linearity of VcCOMTs among the different homologous
chromosomes existed in different forms. The first form
was one VcCOMT on the one chromosome while to the
other VcCOMT was on the other chromosome just like
group b, c, d, g (Fig. 2b). The other was one VcCOMT on
the one chromosome to some VcCOMTs on the other
chromosome just like VcCOMT11, VcCOMT12,
VcCOMT14, VcCOMT15 had a collinearity to the
VcCOMT3, respectively. This reasons for this
phenomenon might be attributed to its allopolyploid gen-
ome [34]. Most of the events were located in highly dupli-
cated blocks and were identified as WGD or segmental
duplication events with MCScanX. This result indicated
that the VcCOMT gene family has expanded and evolved
through genome-wide duplication.

Analysis of VcCOMT gene promoters in blueberry
The start of transcription is a key stage of gene expres-
sion, and an important event in this stage is the inter-
action between RNA polymerase and the promoter. The
structure of the promoter affects the binding affinity of
RNA polymerase, thus affecting the level of gene expres-
sion [32]. We analyzed the cis-acting elements on blue-
berry COMT genes (Fig. 3). The results for the blueberry
COMTs were similar to the results for Catalpa bungei
COMTs [33]. According to the function, the cis-acting
elements from COMTs could be divided into four clas-
ses. Light response-related motifs constituted the major-
ity of the cis-acting elements on the blueberry COMTs
and were distributed in all groups. This finding indicated

that the COMT genes in blueberry may be controlled by
light. Many cis-acting elements related to plant growth
and development were found in the promoter region
such as AACA motif and GCN4 motif related to the
endosperm, RY-element related to seed-specific regula-
tion, circadian which was a regulatory element involved
in circadian control and MSA-like element related to cell
cycle regulation. We found that there are some stress-
related cis-regulatory elements (CREs) and some hor-
mone related CREs in the promoter region of COMTs
such as LTR, ARE, TC-rich repeats and others related to
stress response, ABRE, ERE, TGA-BOX, TCA, as-1
which related to hormone. And MYB binding sites,
MYC binging sites and W-box were also found in the
promoter region which were transcription factor binding
sites with MYB, bHLH and WRKY protein. The pro-
moters of VcCOMTs within the same subgroup were
similar. Often, the sequences with higher similarities and
higher collinearity on the homologous chromosomes,
the types and even orders of the cis-acting elements of
them were similar, just like VcCOMT59 and
VcCOMT64, VcCOMT34 and VcCOMT66, VcCOMT60
and VcCOMT65 in the Group Ia, the VcCOMT26 and
VcCOMT13, VcCOMT22 and VcCOMT9 in the Group
Ib, the VcCOMT77 and VcCOMT82, VcCOMT78 and
VcCOMT75, VcCOMT16, VcCOMT71 and VcCOMT72
in the Group II, especially within the paralogous pairs
such as VcCOMT57 and VcCOMT92, VcCOMT85 and
VcCOMT91, VcCOMT31 and VcCOMT80, VcCOMT37
and VcCOMT39. Similar regulatory elements within se-
quences may greatly influence similarities among gene
expression patterns and gene functions. A large majority
of VcCOMTs had ABRE, related to the abscisic acid and
TCA motif related to the salicylic acid. The unique regu-
latory elements in different subgroups, may underlie the
different functions of the genes in different subgroups,
for example, GCN4, related to the endosperm, main dis-
tributed on VcCOMTs which were in Group Ib and
Group II, while the circadian related to the circadian
rhythm mainly distributed in Group Ia and Group Ib.

Evolutionary analysis of COMT genes in blueberry and
other species
Four hundred twenty-five COMT sequences were identi-
fied in 16 plant genomes including one Chorolphyta,
one Charophyte green algea (CGA) and 14 land plants
by Hidden Markov Model (HMM) search (Fig. 4a). The
CGA were the closest living relatives of land plants [40],
but there was no putative COMT searched in Chara
braunii. In the genome of green algae Chlamydomonas
reinhardtii, three putative COMTs were identified in it
and they did not have complete Methyltransf_2 domain.
Two of them had other domain Dimerisation2
(PF16864.5) which was different from land plant
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Fig. 2 The location of VcCOMTs on the pseudochromosomes and the collinearity of VcCOMTs between the homologous chromosome. a The
location of VcCOMTs on the Pseudochromosome. b The collinearity of VcCOMTs between the homologous chromosome, same color between
different homologous chromosome was representative the collinearity of VcCOMTs
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COMTs. The progression from Dimerisation2 in algae
to the Dimerization domain in land plants might sug-
gests the evolution of the COMTs from algae to land
plants. In the three more ancient genomes in our study,

Anthoceros angustus, Physcomitrella patens and Selagin-
ella moellendorffii, we identified 3, 7 and 34 putative
genes, respectively. Compared with the early vascular
plant Selaginella moellendorffii, the number of COMTs

Fig. 3 Predicted cis-elements in the promoter regions of VcCOMT genes
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Fig. 4 (See legend on next page.)
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in the Anthoceros angustus and Physcomitrella patens
which didn’t have vascular was 10 and 5 times higher
than those in the Anthoceros angustus and Physcomi-
trella patens, respectively. The percentage of putative
COMTs in the total number of genes as well as the num-
ber of COMTs per megabase of genome in Selaginella
moellendorffii were found higher than in Bryophyta.
They indicated that the expansion was not related neces-
sarily to an increase in the genome size but could be
determined by the development of new functions, the
deposition of lignin and the existence of abundant flavo-
noids [41]. The number of COMTs in diploid apple and
that in diploid grape was approximately half of that in
tetraploid blueberry (Table 1). In the apple genomes, the
percentage of putative COMTs was almost equal in the
total number of genes with blueberry VcCOMTs while it
was a two-fold decline in the grape genome. To study
the evolutionary relationships of the COMTs in the land
plants, candidate COMTs from 15 plant species, includ-
ing Chlamydomonas reinhardtii, Anthoceros angustus,
Physcomitrella patens, Selaginella moellendorffii, Ginkgo
biloba, Amborella trichopoda, Oryza sativa, Arabidopsis
thaliana, Populus trichocarpa, Malus domestica, Rubus
occidentalis, Vitis vinifera, Actinidia chinensis,

Rhododendron williamsianum and Vaccinium corymbo-
sum were used to construct a phylogenetic tree, and the
COMTs from the alga Chlamydomonas reinhardtii were
used as outgroups (Fig. 4b). The phylogenetic analysis
indicated that the COMTs were divided into two clus-
ters. The cluster I was red which was contained COMTs
from all the 14 land species. The cluster II (clade is
green) didn’t have COMTs in the Anthoceros angustus,
Physcomitrella patens, which indicating that they might
be orthologous genes originating from a single ancestral
gene but a new function of COMTs occurred from Sela-
ginella moellendorffii and led to gene differentiation [49,
50]. COMTs in Selaginella moellendorffii, were not clus-
tered together with those in angiosperms, and the
gymnosperm species in cluster II. The results suggested
that COMT had been recruited for S lignin biosynthesis
independently in angiosperms, the gymnosperm and
Selaginella moellendorffii [51].

The collinearity analysis, gene duplication events and Ka/
Ks analysis of COMTs in blueberry and other plant species
To infer the evolutionary mechanism of COMT genes in
tetraploid blueberry, we analyzed the collinearity among
Vitis vinifera which indicated a palaeo-hexaploid

(See figure on previous page.)
Fig. 4 Evolution of COMTs in different plant species. a The evolution relationship of 15 plants in research. b A phylogenetic trees for COMTs from
15 plants. (The red, yellow and blue characters correspond to Group Ia, Group Ib, Group II, respectively; red - Anthoceros angustus, dark blue -
Physcomitrella patens, green - Selaginella moellendorffii, orange - Ginkgo biloba, purple - Amborella trichopoda, sky blue - Oryza sativa; clade red –
cluster I; clade green-cluster II). c Synteny analysis of VcCOMT genes between blueberry and three plant species. Gray lines in the background
indicate the collinear blocks within blueberry and other plant genomes. The same color represents COMTs with collinearity in different genomes.
d Ka/Ks ratio of Vitis vinifera, Actinidia chinensis, Rhododendron williamsianum and Vaccinium corymbosum

Table 1 COMT genes in the different genomes sequenced

Plant species Predicted number of genes Putative COMTs retrieved Putative COMTs References Genome size (Mb)

Chlamydomonas reinhardtii 19,528 6 3 Ensembl plant 112

Anthoceros angustus 14,269 8 7 [42] 119

Physcomitrella patens 86,669 14 4 Ensembl plant 480

Selaginella moellendorffii 34,825 46 34 Ensembl plant 212.5

Ginkgo biloba 41,480 52 46 [43] 10,864.64

Amborella trichopoda 27,313 20 14 [44] 706

Oryza sativa 42,355 36 34 Ensembl plant 389

Arabidopsis thaliana 48,321 29 17 Ensembl plant 135

Populus trichocarpa 73,012 60 40 Ensembl plant 485

Malus domestica 40,624 62 48 Ensembl plant 750

Rubus occidentalis 33,286 61 17 [45] 293

Vitis vinifera 29,927 51 48 [46] 487

Actinidia chinensis 33,115 15 10 [47] 758

Rhododendron williamsianum 21,419 22 14 [48] 491.6

Vaccinium corymbosum 118,456 123 92 [34] 1669.12
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ancestral genome for many dicotyledonous plants [46],
Actinida chinensis which belongs to the Actindiaceae
family in Ericales [52], an early divergent lineage within
asterids and Rhododendron williamsianum which repre-
sented species-rich groups within Ericaceae [48] and
Vacciniun corymbosum (Fig. 4c). The COMTs on homo-
eologous chromosomes that showed collinearity are in-
dicated in the same colour in different plants. Two
COMTs in the Actinida chinensis had one orthologous
region in Vitis vinifera. One COMT in the Actinida chi-
nensis had two orthologous regions in Vitis vinifera.
These genes indicated that these orthologous pairs may
have already existed before the ancient paleohexaplo-
diy (γ) event. COMTs of Actinida chinensis and Vac-
ciniun corymbosum had higher collinearity. Most
types of corresponding relationship of collinearity be-
tween COMTs in the Actinida chinensis and Vacci-
nium corymbosum were two COMTs in the Actinida
chinensis to one COMT in the Vaccinium corymbo-
sum. Some of corresponding relationship of collinear-
ity between COMTs in two genomes were one
COMTs to one COMTs in different genome indicating
that some COMTs were lost during evolution. One
COMT in the Actinida chinensis that had collinearity
only with Vaccinium corymbosum among the other
species, as shown in orange. These COMTs might
have similar function. Interestingly, COMTs in Rhodo-
dendron williamsianum had highest collinearity with
COMTs in Vaccinium corymbosum. The types be-
tween them were more complex, at most appeared 8
COMTs in Vaccinium corymbosum who had collinear-
ity with one COMTs in the Rhododendron
williamsianum.
COMT duplicated gene pairs were identified in four

plants with DupGen_finder software. There were five
categories of duplicated gene pairs, including WGD, TD,
proximal duplication (PD), transposed duplication
(TRD), and DSD pairs. Among the categories, the DSD
category had the most duplicated gene pairs from the
four plant species. In blueberry, the percentage of gene
pairs derived from WGD was higher than the percent-
ages of gene pairs derived from other processes. Grape
had nearly the same numbers of PD-, TD-, and TRD-
derived gene pairs. These three categories of events
might have played almost the same roles in the evolution
of grape. The pattern for azalea was the similar as that
for grape. In addition, DSDs played a major role in the
evolution of azalea, and TDs and TRDs might have
played similar evolutionary roles. The DSDs and WGDs
were the major drivers of evolution in blueberry and
kiwi fruit. The Ks values between the homologous genes
were used to estimate the time of divergence of the dip-
loid progenitors from their most recent common ances-
tor (MRCA), which was determined to be between

approximately 0.94 and 1.02 million years ago. Accord-
ing to the eq. T = Ks/2λ (λ, synonymous substitution
rate; λ = 1.3e-8) [34], 42 COMT pairs were derived from
WGD in blueberry before the estimated time of diver-
gence of the diploid progenitors from their MRCA, while
4 were derived after that. The selection pressures on the
COMTs in the four plant species were explored based
on the Ka/Ks ratios. A Ka/Ks ratio greater than 1 indi-
cated positive selection, a Ka/Ks ratio equal to 1 indi-
cated neutral evolution, and a Ka/Ks ratio less than 1
indicated purifying selection at a low evolutionary rate.
The Ka/Ks values of the COMT pairs in the four plant
species were all less than 1 (Fig. 4d).

Gene expression analyses with differential expression
COMTs in blueberry fruits
Twenty-two VcCOMTs that were differentially expressed
during fruit development according to their expression
in the transcriptome analysis (|log2(fold change, FC)| >
1, P value < 0.05) were selected for qRT-PCR at different
fruit development stages. Based on the lignin content,
we selected three genes related to lignin changes during
fruit development, VcCOMT62, VcCOMT40 and
VcCOMT92 (Fig. 5, Additional file 4: Table S3). The ex-
pression trends of VcCOMTs and the content variation
trends of lignin in the early time were similar, which in-
creased in s1 to s2 and then decreased. The s2 was the
highest point. The trend of VcCOMT62 was consistent
with that of lignin during the fruit development, but the
relative expression content was very low. The relative
content of VcCOMT40 and VcCOMT92 was relatively
high in fruit development stage. The lowest expression
of VcCOMT40 and VcCOMT92 were different from the
lignin in the lowest lignin content during the fruit devel-
opment. VcCOMT40 and VcCOMT92 were on the hom-
ologous chromosomes which had high sequence
similarity in the gene collinearity region. After designing
a pair of primers in the collinear region between
VcCOMT40 and VcCOMT92, the expression trend was
consistent with that of lignin during the fruit develop-
ment stage. According to the results of multiple se-
quence alignment (Fig. 6), VcOMT40 and VcCOMT92
contained the same substrate binding sites with COMT
who could catalytic caffeic acid and 5-OH coniferalde-
hyde [37].

Discussion
COMTs could react to various substrates, such as phe-
nylpropanoids, flavonoids, and alkaloids; thus, they were
ubiquitous in plants because of their importance in
plants adaptation to the environment and to adversity
[30, 53]. As long ago as in the last century, scientists
began to be interested in the roles of COMT genes in
plants [54, 55]. The publication of different plant
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Fig. 5 The lignin content and relative quantification of VcCOMTs during s1-s6 fruit development. The first line is the broken line chart of lignin
content, the relative content of lignin in vertical coordinate, and the abscissa of different fruit development stages; The rest were 22 VcCOMTs
relative quantitative histogram, abscissa was different fruit development period, ordinate was relative content of genes
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genomes had enabled analyses of COMT family genes in
several species to be carried out [38, 56, 57]. Blueberry
had been widely studied because of its large amounts of
flavonoids. The tetraploid blueberry genome was

released in 2019, and 92 COMTs have been identified,
named VcCOMT1-VcCOMT92 based on their chromo-
some positions. According to phylogenetic and gene
structure analyses, these 92 COMT genes could be

Fig. 6 VcCOMT40, VcCOMT92 Multiple sequence alignment was performed with other related to lignin COMT. Green: SAM binding; Blue: Substrate
binding; Orange: catalytic residues

Liu et al. BMC Plant Biology            (2021) 21:5 Page 11 of 16



divided into 2 groups, named Group Ia, Group Ib and
Group II. The sequences and structural similarities were
greater within the same branch than between branches.
Based on analysis of the conserved motifs, the three
groups of COMTs can be roughly divided into two cat-
egories [20]. Among the Group Ia and Group Ib all con-
tain motif 10, while the other groups do not. Motif 10 is
approximately 15–50 amino acids upstream of the
VcCOMT sequence and forms the back wall of the bind-
ing pocket [36, 37, 57, 58]. Perhaps because of the differ-
ent binding substrates, the VcCOMT sequences of the
two categories are different from each other. We identi-
fied these motifs which were highly conserved in
COMTs. Some residues in four motifs (motif I: DVGGG,
motif II: DLPHV, motif III: GDMF, and motif IV: VPKG
DAIFLKWI) are related to the SAM/SAH binding site
[58]. Motif 2 of the VcCOMTs contained motif I
(DVGGG) and some of motif II (DLPHV). Motif 1 of
the VcCOMTs contained motif III (GDMF) and motif
IV (VPKGDAIFLKWI) (Additional file 2: Fig.S1) [28].
Gene duplication probably contributes to the evolution
of species and to the adaptation of species to their envi-
ronments [59]. In the blueberry genome, candidate
VcCOMTs were analyzed according to the collinearity of
homoeologous chromosomes with MCscanX [60]. The
numbers of VcCOMTs with collinearity differed on dif-
ferent chromosomes (Fig. 2b). The many-to-one ratio
may exist because some copies of COMT in different
chromosomes have been lost due to the influence of the
environment during the evolution of blueberry or be-
cause some redundant genes with incomplete domains
are present. The one-to-many ratio may be a result of
distinct subfunctionalization and neofunctionalization.
Two COMTs sequences with collinearity and high se-
quence similarity on homologous chromosomes had
similar promoter sequence in the blueberry genome.
The cis-regulatory elements present in the promoter re-
gions were the binding sites of COMTs gene with other
proteins to play a central role in regulating gene tran-
scription. There were a large number of light response
related regulatory elements, rhythm elements and regu-
latory elements that promote plant endosperm and seed
growth, which may be related to plant growth and lignin
synthesis [61, 62]. In the promoter region of the COMT
genes of blueberry, some regulatory elements related to
hormones and stress were also found, which was con-
sistent with previous studies. When plants were stressed
or treated with external hormones, the content of
COMTs increased [63–66].
In this study, different numbers of COMTs were iden-

tified in 15 plant species ranging from algae to land
plants (Table 1). The evolution of COMTs from algae to
land plants led to a change in the Dimerization domain
(Additional file 1: Table S2, Additional file 3: Fig.S2).

Furthermore, we found that the number of COMTs in
Selaginella moellendorffii was greater than the numbers
in other dicotyledonous species and less than the num-
bers in Vitis vinifera, Malus X domestica and Vaccinium
corymbosum. The development of vascular tissues un-
derlies the differences between Selaginella moellendorffii
and Bryophytes. Lignin is the main component of vascu-
lar tissue and provides plants with structural support to
stand upright. COMTs are important methyltransferases
in lignin biosynthesis that methylate components of lig-
nin similar to the S units in Selaginella moellendorffii
[51]. The present research suggests that the evolution of
lignin in land plants correlates with the evolution of
COMT genes [38].
Comparison of the collinearity of the VcCOMTs in

blueberry with the COMTs in the other plant species
showed that the VcCOMTs that had collinearity with
other COMTs were almost the same for the different
species. Some COMT collinearity gene pairs between
blueberry and kiwi fruit exhibited form of one COMT
gene in blueberry to two COMT genes in kiwi fruit,
but the collinearity pairs between blueberry and aza-
lea exhibited one-to-many form. Perhaps the results
indicated that kiwi fruit has undergone two rounds of
WGD [39, 47]. And form indicates that COMT genes
were duplicated after the differentiation of Vaccinium
corymbosum and Rhododendron williamsianum. Gene
duplication has five forms: DSD, PD, TRD, TD, and
WGD [39]. Different gene replication patterns have
different effects on the expansion of the COMT fam-
ily in different plant species. DSD was the main fea-
ture of evolution in the four plant species except
grape. Previous studies have revealed that the COMT
genes all have tandem duplicates on all of the homo-
eologous chromosomes [34]. In the current study, TD
of VcCOMTs was not identified on all of the homo-
eologous chromosomes by MCscanX. Fewer
VcCOMTs arose through TD than through WGD.
However, amplification of COMT genes in the blue-
berry genome occurred mainly through DSD and
WGD. In contrast, the main drivers of gene expan-
sion are WGD and TD in Populus [38]. In citrus, the
numbers of TD and WGD events are similar [35].
COMTs have similar gene copy numbers in maize,
rice and foxtail millet, and gene expansions in these
genomes are mainly generated by TD and segmental
duplication [32]. The WGD Ks of kiwi fruit COMTs
is less than the Ad-β mean Ks of Actinidia chinensis.
This result suggests that the WGD of kiwi fruit
COMTs occurred before the shared WGD of Ad-β.
The WGD Ks of tetraploid blueberry COMTs is also
less than the Ad-β mean Ks of diploid blueberry. This
result suggests that the WGD of tetraploid blueberry
VcCOMTs occurred before the shared Ericales WGD
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Ad-β event. The WGD Ks of Rhododendron william-
sianum COMTs is between the Ks of the Ad-β event
and the Ks of the At-γ event. This suggests that the
WGD of Rhododendron williamsianum occurred be-
tween two shared events. The Ka/Ks ratios of the five
gene replication patterns of the COMTs from the four
plant species were less than 1, indicating that the COMTs
have experienced strong purifying selection [48].
During fruit development, the content of lignin in fruit

increased first and then decreased. This phenomenon
may be related to the formation of lignin during fruit de-
velopment. In the early stage, the fruit swells and
hardens, and the lignin content becomes high. From the
green fruit stage to the colour-turning stage, the fruit be-
comes soft, and the lignin content shows a downward
trend [67]. Based on the VcCOMT differential expression
data from RNA-seq, 22 VcCOMTs were selected for de-
tection of gene expression using qRT-PCR. Three genes
had similar trend as lignin expression during fruit devel-
opment. Although VcCOMT62 had same trend as lignin
expression during fruit development. The relative ex-
pression of it during the fruit development was too low.
It indicated that it was not a main gene to related to lig-
nin content during fruit development. The relative ex-
pression of VcCOMT40 and VcCOMT92 during the fruit
development was almost highest among all the
VcCOMTs. But the expression trend of single gene was
slightly different from that of lignin during the fruit de-
velopment. Because of the high similarity of sequence, in
order to reflected the role of individual genes, primers
were designed where most of their sequences are differ-
ent. We designed a pair of primers in the homologous
region, including four VcCOMT genes (VcCOMT38,
VcCOMT57, VcCOMT40, VcCOMT92) with very high
similarity. When we performed qRT-PCR again, it found
that the trend was consistent with that of lignin during
fruit development. It is suggested that more than one
gene is responsible for the biosynthesis of lignin content.

Conclusions
Here, we identified 92 COMT genes from blueberry and
425 COMT genes from 15 other species. According to
phylogenetic analysis of COMTs, we divided the COMTs
into two groups, which indicated the existence of two
ancestor genes. DSD and WGD were revealed to be the
major forces of blueberry evolution. The Ka/Ks ratios of
the gene duplication patterns for the COMTs from the
four plant species were less than 1, indicating that the
COMTs have experienced strong purifying selection. Ac-
cording to the qRT-PCR results for 22 VcCOMTs,
VcCOMT40, VcCOMT92 were highly expressed and
may play important roles in the synthesis of lignin of
blueberry fruit. The results of this study will build

foundations for breeding blueberry cultivars with higher
fruit firmness and longer shelf life.

Methods
Plant materials
The samples were fruits of ‘Northland’ blueberry plants
at 6 stages of growth and development that were ob-
tained from the blueberry germplasm resource garden of
Jilin Agricultural University. Stages 1 to 3 were sorted by
increasing size (stage 1, 2–3.5 mm in diameter; stage 2,
4–7 mm; stage 3, 7–9mm). Stages 3 to 6 were sorted by
fruit color (stage 3, white blue, stage 4, 25–50% red skin;
stage 5, predominantly purple skin with some red; stage
6, entirely dark blue and soft texture) [67](Fig. 7). The
samples were taken from three different robust trees,
frozen in liquid nitrogen and stored at − 80 °C.

Identification of COMT genes in the genomes of
blueberry and other plants
The graft blueberry genome was downloaded from the
CoGe genome database (https://genomevolution.org/coge/
SearchResults.pl?s=Vaccinium&p=genome). To identify
complete COMT genes in the blueberry genome, one
characterized sequence from Arabidopsis thaliana
(AT5G54160) and 36 identified sequences from Populus
trichoarpa were used as a set of queries in a BLASTP
search (E < 1e-5). All the searched sequences were scanned
for a specific domain (PF00891) with HMM in Pfam
(http://pfam.xfam.org). Then, each possible sequence was
analysed with the online program CD-search (https://www.
ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) to identify
the complete domains. We further identified COMT se-
quences in Chlamydomonas reinhardtii, Anthoceros

Fig. 7 The stage of blueberry development naming s1 – s6
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angustus, Physcomitrella patens, Selaginella moellendorffii,
Ginkgo biloba, Amborella trichopoda, Oryza sativa, Arabi-
dopsis thaliana, Populus trichocarpa, Malus domestica, Ru-
bus occidentalis, Vitis vinifera, Actinidia chinensis,
Rhododendron williamsianum by HMM search.

Phylogenetic, domain motif and gene structure analyses
for the predicted VcOMT genes
First, the protein sequences of VcCOMTs from blue-
berry and other species were subjected to multiple se-
quence alignment and ML methods with 1000 bootstrap
replicates in MEGA 7.0. The domain sequences of
VcCOMTs from blueberry were predicted with CD-
search. TBtools was used to perform exon/intron struc-
ture analysis for the VcCOMT genes (https://github.
com/CJ-Chen/TBtools) with the mRNA sequences and
genomic sequences [68]. The MEME suite (http://
meme-suite.org/tools/meme) was used to analyze the
motifs of VcOMT sequences with the following param-
eter setting: out motifs, 11.

Analysis of collinearity between COMTs from blueberry
and COMTs from other species
Collinearity analysis of VcCOMTs was performed with
MCScanX (https://github.com/tanghaibao/jcvi/wiki/
MCscan-(Python-version). Software was used to ana-
lyse the collinearity of COMTs between kiwi fruit and
grape, blueberry and azalea, and blueberry and kiwi
fruit.

Analysis of COMT gene promoters in blueberry
The elements in the promoter fragments of the
VcCOMT genes (1500 bp upstream of the translation
initiation sites) were identified using the online program
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/).

Gene duplication and calculation Ka and Ks with COMTs
from four species
The gene duplication from blueberry, grape, azalea and
kiwi fruit was by DupGen_finder (https://github.com/
qiao-xin/DupGen_finder), and Ka, Ks and the Ka/Ks ra-
tio were calculated using the KaKs_Caculator by GLWL
model. Therefore, a P-value < 0.05 was retained.

Expression analysis of VcCOMTs in blueberry by qRT-PCR
Twenty-two VcOMTs were selected for qRT-PCR. The
primers for the genes were designed using Primer Prem-
ier 5.0. Total RNA was isolated from s1- s6 fruits by the
CTAB isolation method. The RNA was checked from a
1.2% agarose gel under UV light with no smearing
before concentration detection by spectrophotometry.
One microgram of total RNA was used to synthesize
cDNA with a PrimeScript™ RT Reagent Kit with gDNA

Eraser (TaKaRa, Japan) following the manufacturer’s in-
structions. The detailed methods of the experiment
followed the instructions for SYBR Premix Ex Tag (Tli
Rnase H Plus). VcOMT genes expression were analyzed
in an ABI StepOnePlus Real-Time Quantitative PCR
System (Applied Biosystems, Foster City, CA, USA). The
thermos cycling parameters were the same as those used
by Chen [69]. The EIF gene of blueberry was amplified
with EIFF and EIFR primers (Additional file 1: Table S2)
and used as a control to normalize the expression of the
VcOMTs [70]. The real-time amplification data were an-
alyzed by the Chen method, and a 40-cycle melting
curve analysis was performed to ensure the reliability of
the expression results. The results are expressed as the
normalized relative expression levels (2−ΔCT) of the
genes in various samples [69]. All experiments were run
in triplicate.

Analysis of lignin content
Acetyl bromide soluble lignin was determined in
triplicate following the procedures described in [71].
Reference substance was Lignin (Dealkaline) (CAS: 900–
53-2, Aladdin, China).
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