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Abstract

Background: Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions.
To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth,
root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice
genotypes (Nipponbare' (Nip) and ‘Upland 502" (U502)).

Results: Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant
biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the
accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in
U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation
showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-
fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline
accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline
synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but
these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in
glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent
signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between
the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline
accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas
upregulation of OsP5CST combined with downregulation of OsProDH enhanced the proline level in U502.

Conclusion: These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and
ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the
expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation
to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need
to be elucidated.
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Background

As the aerobic organisms, higher plants require oxygen
(O,) to support respiration, metabolism and growth.
However, plants often experience the hypoxic stress due
to the low O, concentration, that induced by the long-
time flooding, waterlogging, or soil compaction [1, 2].
Depletion of O,, the terminal electron acceptor in the
mitochondrial respiratory chain, induces a significant de-
crease in ATP synthesis and causes the excessive accu-
mulation of reactive oxygen species (ROS) [3, 4]. ROS
are cytotoxic and disrupt normal cell metabolism by
oxidatively damaging lipids and proteins, thus causing
pigment breakdown, leakage of cellular contents and
eventually cell death [5, 6]. Low O, also affects plant
nutrient metabolism and growth, as indicated by the
significant alterations in root morphology, nutrient
uptake and expression of genes associated with these
processes [7-9].

To cope with hypoxic stress, plants have developed
several mechanisms to reduce the negative effects of
hypoxia [9]. Morphological adaptations, including the
formation of adventitious roots and aerenchyma, and the
alterations of leaf thickness, serve as escape strategies
utilized by plants [10, 11]. Cell wall lignification and
suberization in root cortices and steles also prevent O,
loss from the roots during hypoxia [12, 13]. Compared
to hypoxia-sensitive plants, hypoxia-tolerant plants de-
velop the more adventitious root numbers and higher
radial oxygen loss to avoid O, deficiency [13, 14]. At the
cellular and physiological levels, hypoxia-tolerant plants
usually evolve a number of antioxidative enzymes to
scavenge ROS (such as hydrogen peroxidase, CAT; as-
corbate peroxidase, APX; peroxidase, POD; and super-
oxide dismutase, SOD) and several complex metabolic
adaptations [4, 15]. Mechanisms for the protection of
proline, a compatible osmolyte, have been proposed and
are particularly associated with adaptation to hypoxic
[16], osmotic [17], salinity [18], heavy metal [19], and
freezing [20] stresses. A number of possible functions
have been proposed, including enabling osmotic adjust-
ment, stabilizing protein and cell membrane structures,
and acting as free radical scavengers [21-23]. Other pro-
posed functions of proline include regulation of cytosolic
acidity, transfer of energy and reductant activity, acting
as a carbon and nitrogen reserve and as a signaling mol-
ecule [24, 25].

Plant hormones, especially abscisic acid (ABA), also
play important roles in eliciting chemical responses gov-
erning metabolism involved in plant responses to a wide
range of abiotic stresses [26]. Under hypoxic condition,
an increase in ABA content has been reported in the
roots of different species, and application of exogenous
ABA significantly increased anoxia tolerance in Arabi-
dopsis [27]. These adaptive responses to abiotic stress
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induce distinct physiological and biochemical changes,
such as activation of stomatal closure, antioxidative en-
zymes, adventitious root formation, and carbohydrates
of metabolites [28, 29]. Some authors further demon-
strated that the functions of proline and the regulation
of proline metabolism are dependent on ABA accumula-
tion [30, 31], whereas other responses occur independ-
ently of ABA, and that ABA alone cannot duplicate
drought-induced proline accumulation [32]. The re-
sponses of ABA accumulation to abiotic stress signifi-
cantly vary with the plant species, varieties and organs
[27, 33]. Therefore, understanding these protective
mechanisms will contribute to the genetic modification
of plants for improving adaptation to harsh environmen-
tal conditions.

Both lowland rice and upland rice are important rice
cultivars in northern China. The roots of these two rice
genotypes display distinctive morphological, hormone-
related and gene expression features, and these differ-
ences play important roles in detoxification, defense
against oxidative stress, maintenance of cell turgor and
integrity, and protein synthesis [34, 35]. In our study, the
differences in the accumulation of endogenous ABA and
proline, root oxidative damage, and their protective
mechanisms in rice acclimation to hypoxic stress were
investigated using hydroponic cultivation. Two different
rice cultivars, namely, the lowland rice cultivar ‘Nippon-
bare’ (Nip) and the upland rice cultivar ‘Upland 502’
(U502), were selected and cultivated under hypoxic and
normoxic conditions. Our results demonstrate that
ABA-mediated proline accumulation and antioxidant
ability in roots likely plays an important role in enhan-
cing adaptation to hypoxic stress, especially in lowland
cultivar. However, other ABA-mediated signal regulation
mechanisms involved in rice tolerance to hypoxia still
need further investigation.

Results

Rice growth and physiological characteristics

Growth and physiology-related parameters such as bio-
mass, photosynthesis rate and root activity in both geno-
types were influenced differently in response to hypoxic
stress (Fig. la-e). Compared with the normoxia treat-
ment, hypoxia significantly reduced rice biomass (e.g.,
root, shoot and whole-plant biomass) and leaf SPAD
values in the U502 cultivar, whereas these parameters in
the Nip cultivar displayed no significant changes. Both
leaf photosynthesis and root activity were significantly
suppressed under hypoxia, with 17.9 and 23.3% de-
creases, respectively, in the Nip cultivar and 34.8 and
51.6% decreases, respectively, in the U502 cultivar, and
their values in Nip cultivar were significantly higher than
those in U502 cultivar (Fig. 1d, e).
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Fig. 1 Growth traits (@), biomass (b), leaf SPAD values (c), photosynthesis (P,, d) and root activity (e) of both rice cultivars in response to
normoxic and hypoxic conditions after 14 d of cultivation. Nip and U502 represent the lowland japonica rice ‘Nipponbare’ and the upland
japonica rice ‘Upland 502/, respectively (here and below). DW represents dry weight. Data are the mean =+ SE of three independent experiments.
Different letters indicate significant differences at P < 0.05 using the least significant difference (LSD) test
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To determine the level of oxidative damage in roots
under hypoxic stress, the levels of both lipid peroxida-
tion (MDA) and protein oxidation (carbonyl groups),
and the activities of antioxidant enzymes were further
investigated. In contrast with the effects on growth, hyp-
oxia enhanced the root oxidative damage in U502, as ev-
idenced by the significantly higher MDA and carbonyl
contents in the U502 than in the Nip cultivar (Table 1).

However, hypoxia showed no significant effect on root
oxidative damage in the Nip cultivar. Correspondingly,
the activities of SOD, POD, CAT, and APX in roots sig-
nificantly increased in the U502, but only POD and APX
activities increased in the Nip, relative to the activities
under normoxic condition. Therefore, the Nip cultivar is
seemingly more tolerant to hypoxic stress than the U502
cultivar.

Table 1 The levels of lipid peroxidation (MDA) and protein oxidation (Carbonyl), and activities of antioxidant enzymes in roots of
rice plants subjected to hypoxia and normoxia conditions. Data represent means+SE (n = 3). Different letters indicate significant
differences at P < 0.05 using the least significant difference (LSD) test. DW, dry weight; Nip, Nipponbare, Oryza. Sativa L. spp.

japonica; U502, Upland rice 502

Enzymes® Nip Us02

Hypoxia Normoxia Hypoxia Normoxia
MDA (nmol gj1 ow) 242+1.1b 242+ 16b 342+0.2a 247 +2.1b
Carbony! (umol g~' Protein) 54.7+32b 50.5 + 2.6bc 674+ 1.6a 46.2+2.1¢
SOD (Ug ™ "ow) 284.7 +22.6C 3179+ 21.1c 7826+ 674a 3984+ 19.5b
POD (U 971 ow) 35,105 +4263a 16,911 +3674b 38,153 + 2063a 19,379 + 2658b
CAT (mmol min™" g ' ow) 4263 +33.2a 419.5+289a 3753 +284a 285.8+23.2b
APX (umol min™' g~ pw) 13+0.1a 07+0.1b 12+01a 08+0.1b

?MDA Malondialdehyde, SOD Superoxide Dismutase, POD Peroxidase, CAT Catalase, APX Aseorbateperoxidase
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Rice endogenous proline and ABA accumulation

To assess the mechanism of tolerance to hypoxic stress,
endogenous ABA and proline accumulation in the roots
of both cultivars were monitored. Hypoxia induced sig-
nificant accumulation of ABA and proline in the roots of
both cultivars (Fig. 2b, d). Compared with the U502 cul-
tivar, root ABA in Nip increased 2.25-fold after 14 d
hypoxic stress, but their proline contents showed no sig-
nificant differences. However, the stressed Nip cultivar
maintained higher levels of proline synthesis than did
the U502 cultivar in 3 d and 7 d of stress in experiment
2, as described in Fig. 3b. Hypoxia significantly inhibited
the accumulation of proline in the leaves of both culti-
vars but stimulated the accumulation of ABA in the
leaves of U502 (Fig. 2a, c). Analysis of gene expression
demonstrated that hypoxia upregulated the expression
of the genes OsNCED3, OsNCED4 and OsNCEDS in the
Nip and of the OsNCED4 and OsNCEDS in the U502
(Fig. S1). These results were also in line with the varia-
tions in ABA production in the roots.

Effects of exogenous ABA and ABA inhibitor on root
proline production

To investigate the role of endogenous ABA and proline
accumulation in the rice response to hypoxic stress, the
time courses of ABA and proline accumulation were
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measured in both cultivars. Hypoxic stress simultan-
eously induced ABA and proline accumulation, but the
time course variation trends of both molecules varied
widely (Fig. 3). The root ABA contents rapidly increased
and peaked after 1 d of hypoxic stress, after which the
content gradually decreased over the next 6 d, and the
levels in Nip were 1.29- and 2.40-fold higher than that
in U502 after 1 d and 7 d of stress, respectively (Fig. 3a).
The root proline contents also greatly increased under
hypoxic stress, and peaked at 5 d of stress, but their con-
tents varied little between the two genotypes except at
0.5 d and 1 d of stress (Fig. 3b). Under normoxic condi-
tions, root ABA contents decreased slightly within the
first 24 h but then remained constant, whereas the root
proline contents varied little.

The variations in ABA and proline accumulation in
roots over time raise the question of whether the in-
creased accumulation of ABA acts as a signal to increase
the production of proline under hypoxic stress. There-
fore, the changes in the levels of total amino acids, glu-
tamate, proline and ABA in response to the application
of exogenous ABA or an ABA inhibitor (Norf) were
quantified in a time course manner in experiment 2. As
shown in Fig. 4, hypoxic stress induced a great increase
in the total amino acid and proline content in both culti-
vars, with both showing higher levels in Nip than in
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Fig. 2 Effects of hypoxia on ABA and proline contents in the leaves (a, ¢) and roots (b, d) of both rice cultivars. DW represents dry weight. Data
are the mean + SE of three independent experiments. Different letters indicate significant differences at P < 0.05 using the least significant
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conditions. DW represents dry weight. Data are the mean + SE of
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U502 (Fig. 4). Under normoxic conditions, proline and
glutamate production varied little with time, despite a
slight increase in total amino acids. Hypoxia plus Norf
treatment greatly inhibited the accumulation of proline
in roots of both cultivars, whereas the glutamate (the
main precursor of proline) content greatly increased. In
contrast, treatment with exogenous ABA under hypoxia
induced a great increase in endogenous proline and
ABA content in comparison to the normoxia treatment,
and the levels in the Nip were 1.21- and 2.16-fold higher
than those in the U502 cultivar (Fig. 4c-h). Together,
these results indicate that ABA may act upstream of
proline during hypoxic stress.

Effects of exogenous ABA and ABA inhibitor on the
expression of genes encoding enzymes involved in
proline biosynthesis and oxidative damage in roots
Compared with the normoxia treatment, hypoxia treat-
ment induced a significant increase in P5CS activity and
a decrease in ProDH activity in the roots of both culti-
vars (Fig. S2), resulting in increased proline contents.
Further results showed that hypoxic stress downregu-
lated the expression of OsP5CSI and OsProDH but
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upregulated that of OsP5CS2 in Nip (Fig. 5a, b, d). Hyp-
oxia plus Norf treatment significantly downregulated the
expression of OsP5CS1 and OsP5CS2 but upregulated
that of OsProDH, correspondingly inhibiting the produc-
tion of endogenous proline, whereas exogenous ABA
significantly upregulated the expression of OsP5CSI,
OsP5CS2, and OsProDH. In the U502 cultivar, hypoxia
significantly upregulated the expression of OsP5CSI but
downregulated that of OsProDH (Fig. 6a, d) compared
with the normoxia treatment. Hypoxia plus Norf treat-
ment downregulated the expression of OsP5CSI but up-
regulated that of OsProDH, but these effects were
reversed by exogenous ABA plus hypoxia treatment. All
of the results indicate that the significant differences in
gene expression associated with proline metabolism are
mediated by ABA signaling. In Nip, hypoxia-induced
proline accumulation in roots was attributed to the up-
regulation of OsP5CS2 and downregulation of OsProDH,
whereas upregulation of OsP5CSI combined with down-
regulation of OsProDH enhanced the proline level in
U502.

To further investigate the effects of exogenous ABA
and ABA inhibitor on rice tolerance to hypoxia, we mea-
sured lipid peroxidation and protein oxidation in re-
sponse to the different treatments. After 0.5-3 d of
hypoxic stress, the variations in root MDA and carbonyl
group contents were consistent with the trends observed
in experiment 1 (Fig. 7a-d). Hypoxia plus Norf treatment
significantly aggravated the oxidative damage in both
cultivars in comparison to that in hypoxia treatment.
However, exogenous ABA significantly alleviated the
root oxidative damage, which is in line with the observed
variations in ABA and proline accumulation. The results
further confirm that ABA participates and plays a crucial
role in reducing oxidative damage under hypoxic stress.

Discussion

The Nip cultivar seems more tolerant to hypoxia than the
U502 cultivar, with higher ABA accumulation and lower
oxidative damage in roots

Under hypoxic stress, symptoms such as chlorosis,
arrested nutrient uptake and reduced growth occur in
plants because aerobic respiration and mitosis in all
eukaryotic cells are significantly inhibited due to O, defi-
ciency [9]. Hypoxic stress also induced significantly re-
duced leaf photosynthesis and root activity in both
cultivars, which is in agreement with previous findings
obtained under flooding conditions [36, 37]. However,
the response of rice growth to hypoxic stress showed
significant genotypic differences, and the Nip cultivar is
seemingly more tolerant to hypoxic stress than the U502
cultivar. The relative higher rice biomass of the Nip cul-
tivar was accompanied by adaptive traits, such as adven-
titious root development [12] and increased
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photosynthesis [8]. High photosynthetic rates enhance
the long-distance translocation of primary photoassimi-
lates from the phloem to the roots [38]. In contrast, the
higher ABA content in leaves of the U502 cultivar leads
to stomatal closure, inhibiting the photosynthetic cap-
acity and carbohydrate production [8]. This retardation
may also result from the relatively high cellular oxidative
damage in the U502 cultivar, whereby MDA and car-
bonyl groups reflect lipid peroxidation and protein oxi-
dation, respectively (Table 1). However, the higher
oxidative damage in the U502 cultivar than in the Nip

cultivar was accompanied by higher activities of the
SOD and CAT enzymes that serve as significant antioxi-
dant enzymes, which is contrary to the previous results
[6, 39]. The results suggested that the accumulation of
these antioxidant enzymes is still not sufficient for scav-
enging the ROS accumulated under hypoxia, which cor-
respondingly stimulates their increased accumulation.
Under abiotic stress, a temporary increase in the ABA
and proline content also plays an important role in en-
hancing plant adaptation to hypoxia tolerance [40, 41].
In our study, both cultivars displayed significantly
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enhanced accumulation of proline and ABA in roots, in-
dicating a stimulatory effect of hypoxia on their accumu-
lation. The expression of NCED (e.g, OsNCED3,
OsNCED4 and OsNCEDS) genes, which control the first
step of the ABA biosynthesis pathway, also supports the
conclusion that ABA synthesis is activated under hyp-
oxic stress. Regardless of the presence of hypoxic stress,
the ABA contents showed significant genotypic differ-
ences, and the value in Nip roots was significantly
greater than that in U502 roots. This result was consist-
ent with a previous result [33], which attributed the low
levels of root-sourced ABA in upland rice to the high
level of root exudation, thus improving ABA-dependent
drought adaptation. The response of ABA and proline to
hypoxic stress in roots suggests that rice growth is
tightly regulated by internal signals, with ABA likely
playing an essential role in rice acclimation to hypoxic
stress. However, the role of proline and ABA and their
relationship in rice acclimation to hypoxic stress remain
unclear.

Root ABA acts upstream of proline during hypoxic stress

Using classical toxicology, our study further demon-
strates that root ABA may act upstream of proline me-
tabolism during hypoxic stress. First, the content of
endogenous proline and ABA increased simultaneously

in a time course manner under hypoxic stress. Within
24 h of hypoxic stress, the root ABA and proline content
greatly increased. Other reports have described a similar
increase in plant ABA content and hypoxic tolerance
under hypoxic stress conditions [27, 42]. However, they
demonstrated that the ABA-induced anaerobic tolerance
was inhibited by the exogenous application of cyclohexi-
mide, which further indicates that ABA likely serve as an
early signal substance to sensing hypoxic stress and thus
inducing physiological adaptation. In our study, peak
ABA production occurred before proline was accumu-
lated in both cultivars (Fig. 3). This finding indicates that
cross talk between the ABA and proline signaling path-
ways is likely involved in hypoxia-induced acclimation
during rice growth. Although ABA accumulation after 7
d of hypoxic stress in Nip was significantly higher than
that in U502, their variation in response to exogenous
Norf or ABA treatment presented similar trends. Com-
pared with the hypoxia treatment, the accumulation of
proline increased significantly under exogenous ABA
treatment but decreased notably under Norf treatment.
Given the role of proline as an osmolyte and its ability
to balance intracellular redox homeostasis under differ-
ent stress conditions [25, 43], our results indicate that
ABA could initiate a network of signaling pathways in-
volved in proline metabolism, thus regulating rice
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acclimation to hypoxic stress. Similar relationships be-
tween ABA and proline and their involvement in abi-
otic adjustment have also been observed in other
crop plants [30, 44, 45].

Hypoxic roots also undergo several biochemical modi-
fications related to N uptake and assimilation, which
correspondingly participate in plant acclimation to hyp-
oxic stress [7, 46]. In our study, hypoxia induced a sig-
nificant increase in the contents of total amino acids in
roots. Such stress-induced amino acid accumulation
might be a mechanism to provide cells with precursors
for several compounds known to be involved in abiotic
stress responses [46, 47], such as polyamines or metabo-
lites of secondary metabolism. The content of glutamate,
the main precursor of proline, increased by 70.0% in Nip
and 167.2% in U502 after 3 d of hypoxic stress in com-
parison to normoxic conditions, thus facilitating nitro-
gen recycling [24, 48]. Hypoxia plus Norf treatment
induced a significant increase in glutamate over time but
conversely inhibited proline synthesis in both cultivars.
However, exogenous ABA treatment greatly suppressed
the hypoxia-induced accumulation of glutamate in roots,
especially at 1 and 3 d of stress. The results indicate that
Norf-induced glutamate accumulation appears to de-
pend on the inhibition of ABA biosynthesis, which also
indirectly confirms the aforementioned conclusion that
proline likely acts downstream of ABA. In addition, the
accumulation of amino acids mediated by ABA in the
Nip cultivar was much greater than that in the U502
cultivar, also playing an important role in alleviating oxi-
dative damage under hypoxic stress [23, 46].

ABA alleviates hypoxia-induced oxidative damage and
mediates the expression of the genes involved in proline
metabolism

In general, proline accumulation results from the en-
hanced activity of P5CS, the rate-limiting enzyme in-
volved in proline biosynthesis, or a decrease in ProDH
activity [21, 25]. Our study demonstrated that the ele-
vated P5CS and suppressed ProDH activities under hyp-
oxic stress jointly induced the accumulation of proline
in the roots of both cultivars. Using transgenic technol-
ogy, Aleksza et al. [49] reported that the proline content
was reduced in the P5CSI-1 mutant and enhanced in
the PDH2-2 mutant, suggesting that these two genes de-
termine proline synthesis under abiotic stress. To deter-
mine whether ABA indeed correlates with coordinated
inhibition of ProDH and induction of P5CS gene expres-
sion, the signaling cues that regulate this process were
also investigated. The expression of P5CS2 in the Nip
cultivar and P5CS1 in the U502 cultivar was significantly
upregulated under hypoxic stress, which was further
strengthened by the application of exogenous ABA but
was reversed by blocking ABA biosynthesis in the
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hypoxia plus Norf treatment. However, ProDH expres-
sion showed the opposite trends in the aforementioned
different scenarios. Previous studies of P5CS genes re-
vealed significant differences in the temporal and spatial
regulation of their transcription [30, 50], our study
found that the expression of the P5CSI and P5CS2
genes showed the significant genotypic differences. Szé-
kely et al. contributed the difference to the distinct cell-
type-specific and subcellular localization patterns in root
tips, leaves and flower organs of Arabidopsis [21]. In
addition, the transcription of P5CS genes is differentially
regulated by drought, salinity and ABA, suggesting that
these genes play specific roles in the control of proline
biosynthesis [21]. Although the intrinsic mechanisms for
the differences in gene expression still require elabor-
ation, our results suggest that proline accumulation and
the expression of the genes encoding enzymes of the
proline biosynthesis pathway, particularly the OsP5CS1I,
OsP5CS2 and OsProDH, require ABA for induction
under hypoxic stress, which is consistent with the results
recently obtained by other authors [24, 51].

Under different abiotic stress conditions, elevated pro-
line metabolism, antioxidative enzyme activities, and
gene expression levels in response to abiotic stress have
been widely reported in plants [16, 43, 47]. Our results
further demonstrate that ABA accumulation induced by
hypoxia was able to enhance rice tolerance to hypoxia
by reducing oxidative damage in roots, especially in the
Nip cultivar. Under hypoxic conditions, root oxidative
damage was significantly enhanced in the U502 cultivar
but not in the Nip cultivar in comparison to that under
normoxic conditions. However, hypoxia plus Norf treat-
ment significantly aggravated root oxidative damage by
enhancing the content of MDA and carbonyl groups in
both cultivars. These findings indicate that ABA may
play an important role in alleviating hypoxia-induced
oxidative damage in roots, which was further confirmed
by subsequent experiments in which the application of
exogenous ABA significantly alleviated hypoxia-induced
oxidative damage.

Potential mechanisms of adaptation to hypoxic stress in
the Nip and U502 cultivars

The Nip cultivar is more tolerant to hypoxia than U502,
as evidenced by the high dry matter content and lower
root oxidative damage. Focusing on the root response to
ABA and proline, our results demonstrated that, regard-
less of the differences in rice biomass and proline level,
root ABA could act upstream of proline accumulation
by regulating the expression of genes involved in proline
metabolism and significantly alleviate hypoxia-induced
oxidative damage in both cultivars. The root ABA level
in Nip was significantly higher than that in U502, which
is consistent with the variation in rice biomass. However,
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the link between growth and ABA content in aerial parts
was not as obviously consistent as it was in roots.
Hypoxia significantly enhanced the ABA content in the
leaves of the U502 cultivar but not in the Nip cultivar.
Das and Kar [52] revealed that by affecting NADPH
oxidase generated apoplastic ROS, ABA mediates differ-
ential growth responses in roots and shoots of Wilczek
seedlings under water stress. The hypoxia-induced de-
cline of photosynthesis in U502 was probably associated
with higher ABA content that lead to stomatal closure
[8], which further reduces the production and
translocation of primary photoassimilates in rice leaves.
Therefore, we conclude that the more tolerant Nip culti-
var utilizes a better protective mechanism than the
hypoxia-sensitive U502 cultivar for retaining higher
photosynthetic and antioxidant capacity mediated by en-
dogenous ABA.

Although many physiological studies have suggested
that proline is involved in multiple stress protection
mechanisms, the values showed no significant difference
between the two rice cultivars in our study. In previous
reports, higher accumulation of proline was found to be
correlated with improved stress tolerance [53], whereas
in others, such a correlation was not apparent [54].
These interesting findings suggest that proline accumu-
lation may not be the sole factor for adaptation to envir-
onmental stress. Under hypoxic conditions, perhaps
other signaling pathways in roots are also activated to
reduce the negative effects of hypoxia. The different pro-
tective mechanisms controlled by ethylene, IAA and ni-
tric oxide (NO) have been widely demonstrated in plant
adaptations to abiotic stresses [55-57]. Some authors
demonstrated that NO or ethylene likely acts as a down-
stream ABA signal molecule and participates in signal
transduction processes, thus increasing plant antioxidant
ability [10, 58]. Therefore, whether hypoxia or ABA fur-
ther stimulates the NO/ethylene production and their
roles in enhancing Nip cultivar tolerance to hypoxia still
need to be elucidated.

Conclusions

In conclusion, our plant growth data clearly show that
the Nip cultivar grew better with higher biomass and
leaf photosynthesis and was more adaptive to hypoxic
stress than the U502 cultivar, which was related to the
higher ABA amounts and enhanced ABA-mediated anti-
oxidant capacity in roots of the former cultivar. The re-
sults also demonstrate that root ABA could act
upstream of proline accumulation by regulating the ex-
pression of the genes involved in proline metabolism,
which likely improves rice acclimation to hypoxic stress
to a certain extent, especially in the Nip cultivar. How-
ever, the proline level in Nip showed no significant dif-
ference from that in U502, indicating that proline
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accumulation may not be the sole factor for adaptation
to hypoxic stress. Therefore, other signaling pathways
that enhance the tolerance of the Nip cultivar to hypoxia
still need to be elucidated.

Methods

Plant materials and growth conditions

The traditional lowland japonica rice cultivar Nippon-
bare (Nip) and upland japonica rice cultivar upland 502
(U502) were used in this study. Seeds of the Nip and
U502 cultivars were obtained from China National Cen-
ter for Rice Improvement (http://www.chinariceinfo.
com/en/AboutUs/Organization/8036.html). Rice seeds
were surface sterilized with a 1% (v/v) aqueous sodium
hypochlorite solution. Germinated seeds were trans-
ferred to a solution of 0.5 mM CaCl, (pH5.5) for well
growth of rice roots. After 3 d, seedlings were
transplanted into 1-L black plastic pots that contained a
solution composed of NHyNO; (0.5mM), NaH,.
PO,4-2H,0 (0.18 mM), KCl (0.18 mM), CaCl, (0.36 mM),
MgSO47H,O (0.6 mM),  MnCl,4H,O (9 uM),
Na;M00O4-4H,0 (0.1 pM), H3BO3 (10 uM), ZnSO4-7H,0O
(0.7 uM), CuSO, (0.3 uM), and FeSO,7H,O-ethylenedi-
aminetetraacetic acid (EDTA) (20 uM) [55]. There were
5 seedlings per pot. All seedlings were cultivated in a
growth chamber under the following conditions: 14-h/
10-h light/dark photoperiod, 400 umolm™*s™ "' light in-
tensity, 28 °C daytime and 23 °C nighttime temperature,
and 60% relative humidity (RH). The solution pH was
adjusted to 5.5 with 5 mM 2-(N-morpholino) ethanesul-
fonic acid (MES).

Experiment 1: After 1week of cultivation, six pots
with similarly sized seedlings were selected for the ex-
periment 1, and the six replications of each genotype
were equally divided into two groups: normoxia and
hypoxia treatments. For the normoxia treatment, three
of the pots containing each genotype were aerated with
an air pump, and the solution was aerated every 4 h to
maintain the dissolved O, content within a range of 1.5—
20mgL~'. For the hypoxia treatment, N, gas was
pumped into the three pots every 4 h, and the dissolved
O, content was maintained at 0.1 ~0.5mgL™". The so-
lutions were replaced every 3 d. The dissolved O, con-
tent was measured using a portable dissolved oxygen
meter (HI9143; Hanna Instruments, Padova, Italy).

After 14 d of cultivation under normoxia and hypoxia,
leaf gas exchange was measured on the youngest fully
expanded leaf using a Li-6400XT portable photosyn-
thesis system (Li-Cor Co. Ltd. UAS). Measurements
were performed from 09:00 to 12:00 h with a photosyn-
thetic photon flux density of 1500 mmol m™*s™ ', cuvette
temperature of 28°C, reference CO, concentration of
390 mmol mol ™', and the relative humidity of 60—70%.
Leaf SPAD was measured with a chlorophyll meter
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(SPAD502 Plus; Spectrum Technologies Inc., Aurora, IL,
USA). After determination of leaf photosynthesis and
SPAD, rice shoots (leaf blades and leaf sheaths) and
roots were harvested separately, frozen immediately in
liquid nitrogen, and stored at — 70 °C until use.

Experiment 2: To measure the time course of produc-
tion of ABA and proline in roots, after 1 week of cultiva-
tion, similar pretreated rice seedlings of each genotype
were grown under hypoxic and normoxic conditions, as
described in experiment 1. The roots of these seedlings
were sampled at 0, 0.5, 1, 3, 5, and 7 d, respectively, and
the contents of ABA and proline was determined.

To investigate the cross-talk between ABA and proline
in rice acclimation to hypoxic stress, after 1 week of pre-
cultivation, similar pretreated rice seedlings of each
genotype were also subjected to the following five treat-
ments: normoxia, hypoxia, hypoxia+Norf (100 pM Norf,
as an ABA synthesis inhibitor), normoxia+ABA (50 uM
ABA, as an ABA donor), and hypoxia+ABA (50 uM
ABA, as an ABA donor) [59]. Because the production of
ABA peaked at 24 h after hypoxic stress (see the Results
section), the roots of seedlings in the five treatments
were sampled after 0.5, 1 and 3 d of cultivation. Then,
the total amino acids, proline, glutamat, ABA, proline-
related metabolic enzymes, gene expression and root
oxidative damage (malondialdehyde (MDA) and car-
bonyl groups) levels were measured.

Root activity, oxidative damage and the activities of
antioxidative enzymes

Root activity was determined using the triphenyl tetrazo-
lium chloride (TTC) method, as described by Wang
et al. [60]. In brief, 0.5 g fresh root sample was immersed
in 10 mL of an equally mixed solution of 0.4% TTC and
phosphate buffer and kept in the dark at 37 °C for 2 h.
The reaction was stopped with 2mL of 1molL "
H,SO,4. Roots were dried with filter paper, and ethyl
acetate extraction was performed. The absorbance of the
extract at 485 nm was recorded. Root activity was calcu-
lated as TTC reduction intensity, and the result is
expressed as the amount of TTC reduction (ug) per dry
root weight (g) and time (h).

In accordance with the method of Velikova et al. [61],
lipid peroxidation was determined via measurement of
MDA content resulting from reactions involving thio-
barbituric acid (TBA). Oxidative damage to proteins was
estimated based on the content of carbonyl groups, as
described by Zhang et al. [62]. The protein content was
determined according to the method of Bradford [63],
with bovine serum albumin used as the standard.

Samples of fresh roots (0.5 g) was homogenized with 5
mL 10 mM phosphate buffer (pH 7.0) containing 4% (w/
v) polyvinylpyrrolidone and 1 mM EDTA. The hom-
ogenate was centrifuged at 12, 000 rpm for 15 min at
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4°C, then stored at — 70 °C for the determination of the
activities of antioxidant enzymes. The activities of SOD,
CAT, APX, and POD were estimated using the photoco-
lorimetric method of Jiang and Zhang [64]. All of these
measurements were performed in three independent
biological replicates.

Amino acids and ABA analysis

The contents of proline, glutamate and total free amino
acid in roots were determined as follows: approximately
1.0 g of fresh roots was powered in liquid N,, homoge-
nized with 3% sulfosalicylic acid (w/v) for 12h at 4°C.
The homogenate was centrifuged at 10,000 rpm for 10
min at 4 °C, then passed through a 0.22-um aqueous film
filter. Amino acid content was determined using a Hita-
chi L-8900 automatic amino acid analyzer (L-8900; Hita-
chi Corp., Tokyo, Japan), according to the method
described in Ma et al. [65].

ABA contents in roots and leaves were quantified
using a high-performance liquid chromatography-
tandem mass spectrometry system (HPLC-MS). ABA ex-
traction, purification, and determination were performed
according to Cao et al. [66]. Each treatment had three
replications.

P5CS, OAT and ProDH activities

Approximately 0.5 g of fresh root sample with three rep-
lications was extracted with 5mL of extraction buffer
comprising 50 mM Tris-HCI (pH 7.4), 7 mM MgCl,, 0.6
M KCI, 3mM EDTA, 1 mM dithiothreitol and 5% (w/v)
in soluble polyvinylpolypyrrolidone. The homogenates
were centrifuged at 39,000 rpm for 5min, after which
the supernatants were further clarified by centrifugation
at 39,000 rpm for 20 min at 4°C. The activities of 1-
pyrroline-5-carboxylate synthase (P5CS, EC2.7.2.11), or-
nithine aminotransferase (OAT, EC2.6.1.68) and proline
dehydrogenase (ProDH, EC1.5.99.8) in the supernatant
were measured in accordance with a previously reported
method [67].

Quantitative real-time PCR

Total RNA extraction, reverse transcription, and PCR
were performed according to Cao et al. [47]. Primers
were designed to amplify 150- to 250-bp fragments using
PRIMERS5 software [68]. The primers used in the assays
are listed in Supplementary Table S1. Expression levels
were normalized to that of the reference gene UBQ
using the primers UBQfw (5'-GCTCCGTGGCGGTA
TCAT-3') and UBQrv (5'-CGGCAGTTGACAGC
CCTAG-3’) [69]. The 2722¢T method was employed to
determine the relative gene transcript levels with the
mean value of triplicate experiments.
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Statistical analysis

Data were analyzed by one-way ANOVA, and the mean
values were compared by the least significant difference
(LSD) test using SPSS v. 13.0 (IBM Corp., Armonk, NY,
USA). Different letters on the figures indicate that the
mean values were statistically different at the P<0.05
level. The figures were drawn using Origin v. 8.0 (Origin
Lab Corporation, Northampton, MA, USA).
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