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Abstract

Background: Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of
yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of
these were proved to reproduce the same phenotypic impact in different populations.

Results: In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR
progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127
soybean accessions was genotyped with 1.5 M SNPs derived from genotyping-by-sequencing (GBS) and whole-

genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait
association led to discovery of a new QTL on chromosome 1 (Chr01) where resistant lines had shorter lesions on
the stem by 29 mm. A single gene (Glyma.01 g048000) resided in the same LD block as the peak SNP, but it is of
unknown function. The impact of this QTL was even more significant in the descendants of a cross between two
lines carrying contrasted alleles for ChrO1. Individuals carrying the resistance allele developed lesions almost 50%
shorter than those bearing the sensitivity allele.

Conclusion: These results suggest that the new region on chromosome 1 harbors a promising resistance QTL to

SSR that can be used in soybean breeding program.
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Background

Sclerotinia stem rot (SSR) is a significant disease that
causes yield and quality loss in soybean in the northern
United States and Canada. This disease is caused by
Sclerotinia sclerotiorum, a necrotrophic Ascomycota,
capable of infecting more than 408 different species [6].
The fungus infects the plant via the flower then spreads
through the stem causing bleaching, severe wilting and
shredding of tissue [7]. SSR was reported as the second
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most important disease-causing yield losses in Canada in
1994 and in the USA in 1994, 2004 and 2009 [18, 32].
However, the impact of this disease is very unpredictable
from year to another because fungal development is
highly influenced by temperature and humidity [20]. Its
impact could be reduced by using chemical or biological
control, but results can be variable as these methods can
fail when disease incidence is higher than 50% [33]. The
best results can be achieved when several preventive
treatments are applied each year even when SSR doesn’t
pose a threat due to unfavorable climate conditions.
Considering these facts, enhancing the genetic resistance
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of soybean cultivars seems to be the most effective solu-
tion to reduce the detrimental impacts of SSR.

The evaluation of SSR resistance is quite challenging
in variable environmental conditions. However, a reliable
inoculation method was developed by Bastien et al. [3]
wherein a mycelium suspension is applied on flower
buds in controlled greenhouse conditions. It has been
shown to produce consistent results and was used to in-
vestigate the genetic determinants of SSR resistance is
soybean [4, 13, 15].

To date, complete resistance has yet to be reported in
soybean. Partial resistance is controlled by multiple
genes or quantitative trait loci (QTL). Numerous map-
ping studies have been conducted and have identified
more than 114 QTL via conventional biparental map-
ping [1, 11, 13, 16, 17, 29, 34]. Although this method has
been widely used for QTL mapping, it is still limited to
the genetic diversity present in the two parents. More
recently, with the advancement of genotyping technolo-
gies, it was possible to screen quantitative partial resist-
ance in multiple soybean lines with thousands of
markers using GWAM. Using this method, more than
130 QTLs have also been reported in different popula-
tions [4, 15, 21, 30, 31, 34]. Such number of loci raise
some questions about their credibility especially when
fewer of these were proved to reproduce the same allelic
effect in different genetic backgrounds. One explanation
is that some of these QTLs identified based on different
methods of evaluation, could be confused with an escape
or avoidance mechanisms and not genuinely related to
the real physiological resistance to SSR [4, 17]. As a
proof, the only QTL proved to reproduce the same phe-
notyping effect in a biparental cross was identified on
chromosome 15 based on resistance evaluation under a
controlled environment [4]. These results suggest that a
reliable phenotyping method is a key factor in this study.

Compared to biparental mapping, diversity panels offer
a lower level of linkage disequilibrium (LD) between
markers and QTLs. Hence, for GWAM, a higher marker
density is needed depending on population size and diver-
sity. For higher QTL detection power, the LD between the
QTL and any flanking markers should be higher than 0.8.
To achieve such a coverage, Bastien et al. [4] estimated
that at least 12,900 SNPs in the pericentromeric regions
and 55,700 SNPs in the telomeric region would be needed
for a total of over 68 K well-distributed SNPs to cover the
entire genome. For mapping SSR resistance loci in soy-
bean, many attempts were made to achieve such converge
using different genotyping approaches like genotyping by
sequencing (GBS) [4, 15, 30] or specific locus amplified
fragment sequencing (SLAF-seq) [34]. To date, the largest
number of informative SNPs was achieved using the
SoySNP50K array in two studies. One obtained 35,683
SNPs on 466 accessions [21] and the other achieved 31,
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600 and 35,708 SNPs, respectively, in populations of 915
improved lines and 405 soybean landraces [31]. It is likely
that the marker coverage obtained in these most recent
papers still falls short of the number needed to ensure ex-
haustive genome coverage.

One alternative to the previously used genotyping
approaches is whole-genome sequencing (WGS).
However, this approach is still expensive, especially
when using large populations. In previous work, Tor-
kamaneh et al. [28] proposed a two-step approach
termed “scanning and filling”. In a first step, a large
population can be genotyped at tens of thousands of
SNP loci (using GBS or an array). In a second step,
WGS can be performed on a subset of these lines (e.g.
20%) and these can serve as a reference panel to im-
pute millions of SNP markers onto the entire set of
accessions.

In this work, we used such a combined GBS and WGS
genotyping approach to genotype an association panel
(comprising elite Canadian soybean lines) at millions of
SNPs. We then used this exhaustive marker dataset to
perform GWAM in the association panel to identify
QTLs responsible for partial resistance to SSR in Canad-
ian soybean.

Results

SSR resistance in lines of the association panel

Lesion length was measured 7 days after inoculation
on young flower buds, and the mean value for each
genotype is shown in Supplementary Table S1. As il-
lustrated in Fig. 1, lesion lengths were found to range
broadly, from as low as 29 mm to a maximum of 192
mm, with lesion length in the population averaging
114 mm. The distribution of lesion lengths was bell-
shaped suggesting that several genes control this trait.
The resistant checks (Karlo RR, S19-90 and Maple
Donovan) ranked among the lines with the shortest
lesions (1st, 3rd and 21st out of 127) while the highly
susceptible check Nattosan had the second longest le-
sions (177 mm) and the two moderately susceptible
checks (Williams 82 and OAC Bayfield) showed le-
sions slightly above the population average.

Marker distribution

To achieve extensive genome coverage, we re-analyzed
previously obtained sequence data (940 M single-end
reads from ApeKI GBS libraries prepared from DNA of
530 elite Canadian soybean lines) using an improved
SNP-calling pipeline (Fast-GBS) and a more recent ver-
sion of the soybean reference genome. This yielded
nearly 150 K SNPs on the panel of 530 lines that in-
cluded all lines of the association panel. We then used
a catalog of 4.1 M SNPs obtained from WGS of 102
lines, also included in the set of 530 lines, as a reference



Boudhrioua et al. BMC Plant Biology (2020) 20:195

Page 3 of 9

A < lesion length <B

40
35
30
w
()
£ 25
©
° 20
o)
E 15
Z
; .
\0\\
\'L ¥ \‘D t \11~ \,\0‘\\

Lesion length (mm)

Fig. 1 Distribution of mean lesion length observed seven days after inoculation among 127 soybean lines. [A, B]: A < lesion length < B. (A, Bl

qf:\ \b«g\ ,\1’5\ ojl\

\'\’16‘ \\"9‘ \'\'\'5‘

panel to impute genotypes at all the missing loci, thus
resulting in a full dataset of 4.1 M markers. Of these,
3.5 M SNPs were polymorphic in our association panel
(i.e., carried an alternate allele in at least for one of the
127 lines). After removal of SNPs mapping to scaffolds
(49.7 K SNPs), 3.4 M SNPs mapped onto one of the 20
soybean chromosomes. Finally, we removed markers
with MAF lower than 0.05, thus resulting in a final
catalog of 1,493,960 SNPs with which we performed the
GWAM analysis.

Population structure and kinship

To characterize population structure, we pruned SNPs
in high LD (r*>0.9; windows of 50 SNPs), and the
remaining 84,708 SNPs were used in fastSTRUCTURE.
The results suggested that the panel was composed of
between three and six subpopulations. Based on these
two results, we chose to perform the ensuing analysis
using K = 6 and the corresponding plot is shown in Fig. 2.
To further reduce confounding, we estimated the kin-
ship matrix between lines of the association panel.
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Fig. 2 Structure plot for the 127 Canadian soybean
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Genome-wide association mapping for SSR resistance
Marker-trait associations were estimated using the pheno-
typic data (mean lesion length) and the full set of filtered
SNP markers (close to 1.5 M markers). These were ana-
lyzed using an MLM (Q +K) and associations with p-
values corresponding to an FDR < 0.1 were considered sig-
nificant. In total, only two chromosomal regions were
found to have at least one peak SNP exceeding this
threshold (on Chr01 Chr15; Fig. 3). As detailed in Table 1,
the peak SNP on Chr01 was at position 5,594,597, showed
a p-value of 5.08 x 10> and explained 32% of the pheno-
typic variation. As shown in Fig. 4, accessions carrying the
favorable allele T (frequency = 0.38) at this locus showed
shorter lesions compared to those with succeptible allele
C. Although some accessions still exhibited lesions aver-
aging over 100 mm despite carriyng the resistance allele
on Chr0l. A second associated region was found on
chromosome 15 (chr15) with a single significantly associ-
ated marker at position 13,665,369 (p-value = 9.76 x 10™>;
FDR =0.04) and explained 15% of the variation. Acces-
sions fixed for the minor allele A (frequency =0.32) had
lesions that were 15 mm shorter than those fixed for the
major allele G (Supplementary Figure 1).

Validation experiment

As the association on Chrl5 had already been validated
in previous work [4], we focused here on validating the
candidate region for SSR resistance on Chr0l. To do
this, we used a population of Fgg lines derived from a
cross between OAC Bayfield (S) and Maple Donovan
(R). These parents were contrasted for the peak marker
on Chr01 as well for SSR resistance; Maple Donovan
carries the resistance allele and developed lesions 78.3
mm shorter than those exhibited by OAC Bayfield. The
parents were used as checks in the validation trial in
addition to 47 recombinant inbred lines (RILs) selected
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as a validation population. For each line, four plants
were genotyped using a CAPS marker developed to assay
the QTL on Chr0l. Among the 47 RILs, 21 were homo-
zygous for the resistance allele while 26 were fixed for
the susceptible allele. These RILs, along with the parents,
were then evaluated for SSR resistance in two green-
house trials. The contrast in lesion length between the
parents was still evident (60 mm). Among the RILs, the
average lesion length was 63 mm and ranged from 16 to
107 mm. Interestingly, almost all genotypes fixed for the
resistance allele developed lesions under the average,
ranging between 16 and 78 mm (average of 40 mm),
whereas lines homozygous for the susceptible allele aver-
aged 83 mm with lesion length extending from 51 to
107 mm. The phenotypic contrast between the two
genotypic classes (43 mm) (Fig. 5) was significant (p =
0.007).

The genomic landscape around the QTL on Chr01

The LD was estimated between all marker pairs between
5.4 and 5.8 Mb to investigate the genomic landscape in
the associated region on chromosome 1. When defining
LD blocks on the basis of almost perfect LD (r* < 0.98),
all of the markers showing a significant association with
lesion length resided in a small block (10 kb; block B1 in
Supplementary Figure 2) containing a single gene
(Glyma.01 g048000). The peak SNP is located inside an
intron of Glyma.01 g048000 and therefore is unlikely to
cause a change in function, whereas all the other signifi-
cant SNPs are located within the promoter of the gene
(within ~ 1 kb of the ATG). Because of the high LD be-
tween these markers, these polymorphisms essentially
define two haplotypes (alleles), the less-frequent one be-
ing associated with improved resistance. Based on the
very high degree of association between the peak SNP
and this gene, it represents a strong candidate.
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Fig. 3 Manhattan plot of genome-wide association scan for Sclerotinia stem rot (SSR) resistance in soybean. The horizontal line indicates the
significance threshold (FDR = 0.1). Peak SNP (chromosome 1:5594597; T/C)

- I 14 16 18 20




Boudhrioua et al. BMC Plant Biology (2020) 20:195

Page 5 of 9

Table 1 Characteristics of the markers most highly associated (peak SNPs) with lesion length

Chromosome (Chr) Position p-value Resistant allele/susceptible allele FDR MAF R? Allelic effect (mm)
01 5,594,597 508x107° T/C 0.02 0.38 0.32 29
15 13,665,369 976x 107 A/G 0.04 032 0.15 15

Position: The physical position of the marker on the chromosome according to the G. max reference genome [Gmax_275 (Wm82.a2.v1)] [24]

FDR False discovery rate
MAF Minor allele frequency

R?: Indicates the proportion of total phenotypic variation accounted for by the marker

Allelic effect: average change in lesion length following allele substitution

Discussion

Number of markers

In this study, we used nearly 1.5 M high-quality SNPs.
Based on the study of three chromosomal segments,
Hyten et al. [14] had estimated that the number of SNPs
needed to obtain sufficient coverage (at r>>0.8) in elite
material was somewhere between 9600 and 29,000
markers. More recently, a genome-wide estimation of
LD in telomeric and pericentromeric regions led Bastien
et al. [3] to conclude that around 60,000 SNPs would be
required to achieve extensive coverage. None of the pre-
vious GWAM studies investigating SSR resistance
achieved such a marker coverage. In two earlier studies
using SNP markers, genotyping was conducted with the
GoldenGate assay, achieving between 858 [19] and 1142
SNPs [12]. Later GWAM studies used GBS-derived SNP
catalogs of 7864 [4], 8397 [15] and 11,811 [30], while an-
other study achieved higher coverage with 25,179 SNPs
obtained using SLAF-seq [34]. The highest coverage
prior to this work had been achieved recently using the
SoySNP50K BeadChip, giving 31,600 and 35,708 SNPs
for two AM populations [31]. Here, combining GBS
data, WGS data and imputation for missing genotypes,
we significantly increased SNP coverage, ensuring for
the first time a marker coverage likely conferring ex-
haustive genome-wide coverage in our association panel.

It was previously shown that such imputed data are of
high accuracy, with 96.4% of the imputed missing geno-
types being in agreement with those obtained at loci in
common with the SoySNP50K array [28]. Given the re-
cent increase in availability of WGS data for numerous
collections of soybean germplasm, we feel the two-step
genotyping approach used in this work will tremen-
dously enhance our ability to perform genome-wide
scans with full marker coverage.

New QTL on Chr01

Within our association mapping panel of 127 Canadian
soybean lines, we identified 7 SNPs significantly associ-
ated with SSR resistance falling in small segments of
only two chromosomes 1 and 15. The first associated re-
gion on Chr01, extending over 10 kb, was novel as it did
not overlap with any of the previously reported QTLs. In
fact, this region didn’t carry any GBS-derived SNPs or
those supported by the SoySNP50K BeadChip.

The second QTL was discovered on chromosome 15
and is the exact same marker-trait association reported
previously by Bastien et al. [4]. These results were ex-
pected given that we exploited essentially the same asso-
ciation panel (except for three lines that were removed)
and the same phenotypic data. In this previous work,
three other QTLs had been reported (on Chr01, Chr19
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Fig. 4 Lesion length distribution across the 127 lines according to alleles at the peak marker on Chr01
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Fig. 5 Lesion length distribution among RILs according to the fixed allele at the peak marker on Chr01

and Chr20), but none of them were rediscovered in this
work. All three of these associations were characterized
by FDR values (ranging between 0.04 and 0.09) that were
much higher than the FDR for the QTL on Chrl5 (0.01).
To investigate possible causes for this apparent lack of
reproducibility, we compared the SNP genotypes at all
associated SNPs with their corresponding genotypes in
our more recent data set resulting from large-scale im-
putation. Surprisingly, for SNP on chromosome 15, 98%
of the genotype calls were identical whereas for the
other associated SNPs (on Chr01, Chr19 and Chr20), a
much lower level of concordance (60 to 82%) was ob-
served for genotype calls among the lines of the associ-
ation panel. Based on the work of Torkamaneh and
Belzile [26], we believe that the number of SNPs discov-
ered in the work of Bastien et al. [4] proved insufficient
to adequately capture haplotypes in this association
panel and had led to inaccurate imputation of missing
genotypic data.

QTL validation

Numerous previously reported QTLs for SSR resistance
were discovered in different genetic backgrounds, envi-
ronments, and various sampling populations. Before
considering the use of such QTLs for marker-assisted
selection, a validation step is highly recommended. The
QTL on Chrl5 was previously validated by Bastien et al.
[4] where resistance alleles reduced lesion length by 12.3
and 17.6 mm in two populations of RILs segregating for
associated marker. Such validation has rarely been re-
ported in other studies. Here, we wanted to similarly val-
idate the novel marker-trait association discovered on

Chr01 by evaluating SSR partial (or quantitative) resist-
ance (lesion length) in RILs carrying contrasting alleles
at this locus. Results showed that lines homozygous for
the resistance allele (inherited from Maple Donovan) de-
veloped lesions 43 mm shorter than those homozygous
for susceptible allele (derived from OAC Bayfield). This
phenotypic contrast was highly significant and explained
a substantial portion of the phenotypic variation between
the parents. Also, the estimated allelic effect at this locus
in the segregating RILs was more important than the
one measured in the association panel, suggesting that
fewer QTLs conditioned SSR resistance in the biparental
population than in the association panel. Taken together,
these data suggest that the region of Chr01 is associated
with SSR resistance.

QTL detection efficiency and potential uses in genomic
selection
The two regions discovered in this work, on Chr01 and
Chr15, explained 32 and 15%, respectively, of the pheno-
typic variation for this trait in our association panel. In
previous work, QTLs were reported to explain between
3 to 23% of the variance [4, 15, 21, 30, 31, 34]. Thus, the
QTL reported here on chromosome 1 constitutes the
most impactful QTL reported for this trait to this date.
As the favorable allele was present in a minority (38%)
of the elite lines in our panel, there is considerable scope
to improve SSR resistance by selecting for this partial re-
sistance QTL in future breeding efforts.

Despite this, it seems that a large proportion of vari-
ation for this trait remains uncaptured in our association
panel despite the extensive marker coverage. Thus, there
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could be other undiscovered, potentially impactful QTLs
contributing to SSR in this population. In such panels, how-
ever, it will always be difficult to capture rare alleles (MAF <
5%) potentially contributing to resistance as the associated
markers will have been filtered out. Expanding this work to
larger and more diverse panels could help in discovering
additional QTLs. Also, the remaining uncaptured heritabil-
ity may be explained by numerous small-effect QTLs that
will be difficult to discover (given the difficulties associ-
ated with phenotypic measurements) and would be of lim-
ited use in breeding programs as the benefits of a small
increase in SSR resistance might not justify the cost of
marker-assisted selection for such minor QTLs.

Candidate genes near the peak SNP on Chr01

When we investigated the associated region on Chr01, we
found a single gene in high LD with the peak marker.
Except for the peak SNP (located in an intron), all other
significantly associated markers were found in the likely
promoter of Glyma.01 g048000. Due to the strong associ-
ation between the peak SNP and this gene, it represents a
strong candidate gene. However, due to the lack of anno-
tation allowing one to hypothesize a role for this gene in
resistance to Sclerotinia, functional studies will need to be
conducted to provide definitive proof of the role of this
gene in contributing to resistance. As many of the associ-
ated SNPs are in the 5’ upstream region, it would be par-
ticularly interesting to study the regulation of this gene.

Conclusion

We conclude that the knowledge that comes out from
this study will promote the addressing of the SSR chal-
lenges under sustainable agricultural practices. We be-
lieve that this work is another step forward in rendering
GWAM data more applicable in plant breeding. We
expect that genetic region identified in this study will be-
come a key tool in soybean breeding programs for SSR
and enable geneticists and molecular biologists to iden-
tify causal resistance genes for SSR in near future.

Methods

Association mapping panel

The association mapping panel used for this study was
composed of 127 lines taken from a private breeding pro-
gram (Semences Prograin Inc.) and exhibiting a wide vari-
ation in their response to SSR [4]. These were chosen
from a larger group of 530 accessions (cultivars/advanced
breeding lines) representative of the genetic diversity in
Canadian soybean based on previous work [28]. These
127 lines belonged to maturity groups (MGs) ranging
from 000 to II except for one line, Williams 82, from MG
III. A series of six checks were also included: three culti-
vars known to offer a good level of SSR partial resistance
(Karlo RR, Maple Donovan and S19-90), two moderately
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resistant cultivars (OAC Bayfield and Williams 82) and
one highly susceptible cultivar (Nattosan) [3]. Maple
Donovan and Nattosan are commercial cultivars from the
Eastern Cereal and Oilseed Research Centre (Agriculture
and Agri-Food Canada, Ottawa, Canada), while S19-90 is
a commercial cultivar from Syngenta Seeds. Williams 82
was obtained from the American Germplasm Resources
Information Network. Seeds of the remaining lines were
obtained from Semences Prograin.

Validation panel

A total of 47 Fgg lines segregating for the candidate
QTL region on chromosome 1 (Chr01) were selected to
serve as a validation panel. These lines were generated
from a cross between the partially resistant Maple Dono-
van and the susceptible OAC Bayfield.

Phenotyping

Lines were evaluated for SSR partial resistance using the
cotton pad method described in Bastien et al. [3]. For
the association panel, the phenotypic data are those pre-
viously reported by Bastien et al. [4]. Briefly, plants were
sown in a greenhouse in a randomized complete block
design with four blocks separated in time (25 Sept, 6
Nov, 8 Dec 2009 and 29 Jan 2010). Experimental units
consisted of a total of six plants grown in three 6-L pots
(two per pot). The same experimental design was used
to characterize the validation panel but with only two
blocks separated in time (4 May and 7 Sept 2017) and
four plants per experimental unit.

The potting mix was prepared using a mixture of black
earth (50%), perlite (30%) and Promix (20%) (Premier
Tech Horticulture, Riviere-du-Loup, QC, Canada). At
sowing, seeds were inoculated with RhizoStick® inoculant
(Becker Underwood, Ames, IA). Plants were grown
under a 16-h photoperiod and the day/night temperature
was maintained at 26/22 °C.

The inoculum was prepared from strain NB-5 (pro-
vided by Dr. S. Rioux of CEROM, Quebec City, QC,
Canada) as described in Bastien et al. [3]. Briefly, S. scler-
otiorum was cultured in potato dextrose broth (PDA) for
3 days until almost reaching saturation. Inoculation was
performed once the plants started to flower. First, the
suspension was homogenized for 30 s in a blender. Then,
pieces (2.7 x5.5cm) of cotton pad were soaked in the
suspension. The inoculum was applied on the petiole of
the lowest node bearing flowers. After inoculation,
plants were transferred to a different greenhouse where
day/night temperatures were 22°C/18°C and high hu-
midity was maintained at 2.5 g/m® with a fogging system.
For the validation panel, all plants were inoculated on
the same day, while for the association panel, several
days were needed because of differences in flowering
date. Lesion length was measured 7 d after inoculation.
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SNP genotyping and imputation

The association panel was a part of a larger set of 530
Canadian elite lines on which we had previously per-
formed GBS (ApeKl, as per [10]) over time [4, 28]. To
maximize data quality and uniformity, all reads (940 M
108-bp single-end Illumina reads) were run on an im-
proved SNP-calling pipeline (Fast-GBS [27];) and on a
more recent version of the Williams 82 reference genome
(Wm82.a2.v1) [24]. This resulted in a catalogue of 150 K
SNPs on which all missing data were imputed using BEA-
GLE v5 [8] as per Torkamaneh and Belzile [26]. Subse-
quently, a set of 102 lines (of which 15 were part of the
association panel) was subjected to whole-genome se-
quencing (WGS) [28]. The resulting SNP catalogue (>4 M
SNPs) was used as a reference panel to perform large-
scale imputation of missing loci. The SNP data (4.1 M
loci) for the 127 lines of the association panel were ex-
tracted and filtered using vcftools v0.1.16 [9]. We retained
SNPs with a minor allele count (MAC) > 1 and a minor al-
lele frequency (MAF) > 0.05. Linkage disequilibrium (LD)
was estimated (using 1) for all marker pairs in a sliding
window of 50 Kb using PLINK 1.9 [22].

Analysis of population structure

Given the large size of the SNP catalogue (almost 1.5 M
SNPs), pruning was performed using PLINK 1.9 [22] to
remove markers in high LD (r* > 0.9). The resulting set of
85K SNPs was used to assess population structure using
fastSTRUCTURE [23] with K set between 1 and 12. The
most likely number of subpopulations was estimated using
the chooseK tool from fastSTRUCTURE [23].

Genome-wide association analysis

In view of GWAM, only SNPs having a minor allele fre-
quency (MAF) >5% in the association panel were used,
and this resulted in a catalog of close to 1.5 M filtered
SNPs. An association mapping analysis for SSR partial
resistance was performed using the phenotypic (mean le-
sion length) and genotypic data described above with the
Genomic Association and Prediction Integrated Tool
(GAPIT version 2) [25]. To correct for false-positive as-
sociations, a mixed linear model (Q + K model) taking
into account both population structure (Q matrix) and
relative kinship (K matrix) was used. The Q matrix (for
K =6) was derived from fastSTRUCTURE while the K
matrix was generated in TASSEL. Marker-trait associa-
tions were deemed significant when the measured p-
values were below a critical p-value corresponding to a
false discovery rate (FDR) of 0.1 [5].

QTL validation

A codominant cleaved amplified polymorphic sequence
(CAPS) marker was designed to genotype one of the
candidate SNPs (Chromosome 1: 5594765) residing in
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the haplotype block containing the peak SNP on Chr01.
Two specific primers (5'-GTTGTATGGAAGTGCAAC
TAAAGTTCT-3" and 5'- GGTACTTTTTCTTACCTT
AC GATGA-3") were used to amplify an 800-bp region
encompassing the targeted SNP. The two alleles can be
distinguished by digesting the resulting amplicon with
NmuCI. The PCR product derived from the allele associ-
ated with partial resistance to SSR (present in Maple
Donovan) will be cut once while the product obtained
after amplification of the allele from the susceptible par-
ent (OAC Bayfield) is not cut. All 47 Fgg lines of the val-
idation panel (described above), along with the two
parental lines were genotyped using this CAPS marker.

Genomic landscape around the peak SNP

LD values from PLINK [22] were extracted for a 2 Mb
window around the most significant associated SNP and
LD blocks were visualized using Haploview (V4.2) [2]
based on r” values. Information about the genes found
in the LD block containing the peak association were
obtained from SoyBase (www.soybase.org). Functional
annotation of nucleotide variation in the region was ex-
plored using SnpEFF [35].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-020-02401-8.

Additional file 1: Table S1. Responses of 127 soybean lines to SSR, 7
days after inoculation. (*) Indicates lines used for WGS (Supplementary
file “Supplementary table S1”)

Additional file 2: Figure S1. Lesion length distribution across the 127
lines according to alleles at the peak marker on Chr15

Additional file 3: Figure S2. LD block plot for the region on Chr01. The
arrow shows the position of the significantly associated SNPs.
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