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Abstract

Background: Small heat shock proteins (sHSPs) are critical for plant response to biotic and abiotic stresses,
especially heat stress. They have also been implicated in various aspects of plant development. However, the
acting mechanisms of the sHSPs in plants, especially in perennial grass species, remain largely elusive.

Results: In this study, AsHSP26.8a, a novel chloroplast-localized sHSP gene from creeping bentgrass (Agrostis
stolonifera L) was cloned and its role in plant response to environmental stress was studied. AsHSP26.8a encodes
a protein of 26.8 kDa. Its expression was strongly induced in both leaf and root tissues by heat stress. Transgenic
Arabidopsis plants overexpressing AsHSP26.8a displayed reduced tolerance to heat stress. Furthermore,
overexpression of AsHSP26.8a resulted in hypersensitivity to hormone ABA and salinity stress. Global gene
expression analysis revealed AsHSP26.8a-modulated expression of heat-shock transcription factor gene, and the
involvement of AsHSP26.8a in ABA-dependent and -independent as well as other stress signaling pathways.

Conclusions: Our results suggest that AsHSP26.8a may negatively regulate plant response to various abiotic
stresses through modulating ABA and other stress signaling pathways.
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Background

The heat shock proteins (HSPs) are virtually ubiquitous
molecules in plants that are rapidly induced by heat
stress [1, 2]. At least six types of HSPs, HSP100 (Clp),
HSP90, HSP70 (DnaK), HSP60, HSP40 (DNAJ) and
small HSPs (sHSPs) have been identified in higher
plants, of which the sHSPs with a molecular mass of 12
to 42 kDa are found ubiquitously in all kingdoms of life
[3]. The sHSPs function as molecular chaperones, both
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in vitro and in vivo, to protect cells from stress damage
by preventing irreversible protein aggregation and main-
taining denatured proteins in a folding-competent state
[2, 4-8]. Based on sequence homology, immunological
cross-reactivity and subcellular localization, the sHSPs
can be further classified into different groups. A total of
12 subfamilies of sHSPs have been identified in various
plant species, such as maize (Zea mays L.), Kashgar tam-
arisk (Tamarix hispida), creeping bentgrass (Agrostisc
stolonifera L.), poplars (Populus), Pearl millet (Pennise-
tum glaucum L.), tall fescue (Festuca arundinacea
Schreb.) [9-15]. They are localized in different places
within the cell including cytosol or nucleus, mitochon-
dria, plastids (P), endoplasmic reticulum (ER) and
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peroxisomes (Po) [15-17]. Most of the sHSP subfamily
proteins are structurally similar with a highly variable N-
terminal region, a conserved core domain of about 100
amino acids and a short C-terminal region [2, 18].

Apart from heat stress, sHSPs are induced in response
to a number of other environmental adversities such as
osmotic stress (e.g. salt, drought), oxidative stress, cold
stress, heavy metal stress and phytohormone ABA [6,
11, 15, 16, 19], suggesting its involvement in plant re-
sponse to general abiotic stresses. Additionally, their im-
plication in various aspects of plant development have
also been documented [16, 20-22].

The roles different sHSPs play in positively regulating
plant responses to heat and other environmental stresses
(drought, NaCl, mannitol and H,O,) have largely been
reported in various plant species and most of them be-
long to cytosolic sHSPs [10, 21, 23-32]. Class I and II
sHSPs have mainly contributed to the current model for
sHSP chaperone activity. These two classes of sHSPs
have both unique and overlapping functions and act in
conjunction with HSP101 to either directly or indirectly
protect specific translation factors in cytosolic stress
granules [33]. Extensive evolutionary analysis indicates
that organelle-targeted sHSPs (chloroplast, mitochon-
dria, peroxisomes, and endoplasmic reticulum) are
closely related to their class I counterparts [34-36].
Endoplasmic reticulum-located sHSP, sHSP22, together
with ABA insensitive 1 (ABI1) protein phosphatase con-
trols polar auxin transport and orchestrates ABA and
auxin  signaling crosstalk in  Arabidopsis  [37].
Peroxisome-located sHSPs activate catalase to regulate
plant abiotic stress resistance [38]. A mitochondrial
matrix-localized small heat shock protein in cotton,
GhHSP24.7, positively controls seed germination via
temperature-dependent ROS generation [39]. Overex-
pression of the chloroplast sHSP has been associated
with cold, heat and oxidative stress tolerance [21, 26]. A
typical chloroplast-localized sHSP, HSP21, has been
identified in many plant species. Several studies have
suggested that HSP21 protects the thermolabile photo-
system II (PSII) against heat stress [9, 26, 40—42] and
oxidative stress [26, 43]. HSP21 is activated by the
GUNS5-mediated retrograde signaling pathway and stabi-
lizes PSII by directly binding to its subunits under heat
stress [44]. HSP21 also interacts with plastid nucleoid
protein pTAC5 and is essential for chloroplast develop-
ment under heat stress by maintaining plastid-encoded
RNA polymerase (PEP)-dependent transcription [22]. In
addition, HSP21 is involved in extended thermomemory
in Arabidopsis. Abundant HSP21 during the memory
stage is negatively regulated by heat-induced plastid-
localized metalloprotease FtsH6 [45]. Our recent study
characterizing sHSPs in perennial grasses identified
three creeping bentgrass sHSPs, AsHSP17 (previously
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named ApHSP16.5) (KT272405), AsHSP26.7 (previously
named ApHSP26.7) (AY153761) and AsHSP26.8 (previ-
ously named ApHSP26.8) (AY153760) [9, 46-48].
AsHSP17 and AsHSP26.8 genes were significantly in-
duced in transgenic creeping bentgrass overexpressing a
rice SUMO E3 ligase gene, OsSIZ1 and exhibiting im-
proved heat tolerance compared to wild type controls
[46]. In transgenic creeping bentgrass ectopically ex-
pressing a cyanobacterial flavodoxin and exhibiting en-
hanced heat stress tolerance, AsHSP17, AsHSP26.7 and
AsHSP26.8 were all significantly induced but differen-
tially regulated in wild type (WT) and transgenic (TG)
plants [47]. Additionally, overexpression of a rice mir-
oRNA, OsmiR393 improves heat tolerance in transgenic
creeping bentgrass that is associated with enhanced ex-
pression of sHSP genes, AsHSP17 and AsHSP26.7 [48].
Further analysis of AsHSP17, one of these turfgrass
sHSPs revealed that AsHSP17 is a negative regulator at-
tenuating plant response to abiotic stress through modu-
lating plant photosynthesis and ABA-dependent and
independent signaling [15].

To better understand how sHSPs function in perennial
grasses to regulate plant stress response, we focused on
AsHSP26.8, initially obtained from A. stolonifera cv
Penncross as ApHSP26.8 [9], and cloned its ortholog
gene, AsHSP26.8a from A. stolonifera cv Penn-A4 encod-
ing a chloroplast-localized creeping bentgrass sHSP. The
cloned AsHSP26.8a was introduced into Arabidopsis
plants for characterization. Transgenic analysis revealed
that constitutive expression of AsHSP26.8a led to signifi-
cantly increased plant susceptibility to several abiotic
stresses including heat and salt as well as treatment with
hormone ABA. Our results suggested that similar to
AsHSP17, AsHSP26.8a may also function as a protein
chaperone to negatively regulate plant stress response.

Results

Cloning and sequence analysis of AsHSP26.8a and its
protein subcellular localization

In our previous study manipulating sumoylation process
in transgenic plants for enhanced tolerance to environ-
mental adversities, it was revealed that overexpression of
OsSIZ1, a rice E3 SUMO ligase in transgenic creeping
bentgrass enhances plant tolerance to a number of abi-
otic stresses including heat stress associated with altered
expression of two sHSP genes, AsHSP17 and AsHSP26.8
[46]. Further investigation of AsHSP17 uncovered its
role in modulating plant photosynthesis and ABA-
dependent and independent signaling to attenuate plant
response to abiotic stress including heat and salt stress
[15]. We were also curious about how AsHSP26.8 con-
tributes to OsSIZ1-mediated plant stress response and
therefore cloned its ortholog gene from the heat-stressed
plants of creeping bentgrass cultivar, Penn A-4 and
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designated it as AsHSP26.8a. The AsHSP26.8a gene is
729 bp long encoding a protein of 242 amino acids. The
predicted polypeptide has a molecular weight (MW) of
26.78 kD and an isoelectric point (pI) of approximately
6.03. Differences in nine nucleotides were identified be-
tween AsHSP26.8a and ApHSP26.8 DNA sequences,
which led to changes in three amino acids (Fig. S1). Se-
quence alignment of AsHSP26.8a and the representative
plant sHSPs allowed identification of a chloroplast tran-
sit peptide (I), a Met-rich region (II) and two consensus
regions (III and IV) in AsHSP26.8a (Fig. S2), which was
phylogenetically classified as a chloroplast-localized
sHSP (Fig. S3).

To further confirm its subcellular localization in the
chloroplasts, AsHSP26.8a-green fluorescent protein
(GFP) fusion gene was introduced into rice (Oryza
sativa) protoplasts. The GFP fluorescence was found to
be localized to the nucleoids inside chloroplasts, which
is mostly associated with thylakoids (Fig. 1), similar to
that of the AtHSP21 (AT4G27670), a well-characterized
homolog sHSP of AsHSP26.8a in Arabidopsis thaliana
[22]. This result indicates that AsHSP26.8a is specifically
localized to the thylakoids membranes within
chloroplasts.

AsHSP26.8a expression in response to heat stress

Our previous study showed that AsHSP26.8 is strongly
induced by heat stress in creeping bentgrass leaf [46]. To
investigate whether the AsHSP26.8a responds to heat
and other abiotic stresses and ABA stimulus, we
examined the expression pattern of the AsHSP26.8a in
creeping bentgrass under heat, salinity and drought
stress as well as exogenous ABA treatment. Total RNAs
extracted from leaves and roots were subjected to semi-
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quantitative RT-PCR analysis. As shown in Fig. 2, the
expression of AsHSP26.8a in leaves and roots was
strongly induced by heat stress, confirming our previous
observation [46]. However, no expression was detected
in creeping bentgrass leaves or roots subjected to salinity
and drought stress as well as ABA treatment (Fig. 2). It
should be noted that the very low basal expression level
of AsHSP26.8a may prevent its detection even if it does
respond to salinity, drought and ABA. With the high
sequence similarity between AsHSP26.8a and other
sHSPs such as AsHSP26.2 (AY153578), AsHSP26.7 and
AsHSP26.8, we were unable to perform quantitative-
real-time reverse transcription PCR (qRT-PCR) analysis
for AsHSP26.8a expression because of the difficulty in
designing appropriate PCR primers.

Generation of transgenic A. thaliana plants constitutively
expressing AsHSP26.8a

To further investigate the role of AsHSP26.8a in plant
response to abiotic stress, we set to manipulate AsH-
SP26.8a expression in transgenic plants. To this end, an
AsHSP26.8a overexpression vector was constructed
(Fig. 3a) for transformation into A. thaliana ecotype
Columbia. The six independent transgenic lines gener-
ated (Fig. 3b, c) did not appear different from wild type
controls, of which four homozygous lines, TG1, TG2,
TG3 and TG6 expressing different levels of AsHSP26.8a
(Fig. 3b, c) were further analyzed. It should be noted that
in this study, we chose to use wild type plants as the
control in characterizing AsHSP26.8a transgenic plants
based on the observation that their development and re-
sponse to various stresses exhibited no significant differ-
ence from that of the transgenic lines harboring an
empty vector or a gus reporter gene (data not shown).

GFP

Free GFP

AsHSP26.8a-GFP

Fig. 1 Subcellular localization of AsHSP26.8a protein. Free GFP, control with empty vector; AsHSP26.8a-GFP, AsHSP26.8a-GFP fusion. Bars =5 um
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Fig. 2 Semi-quantitative RT-PCR analysis of AsHSP26.8a expression profile in leaf (left) and root (right) tissues under heat (37 °C), salt (200 mM
NaCl), Drought, ABA (50 uM) treatment. Leaf samples were collected at 0, 0.5, 2 and 4 h after stress treatment and root samples were collected at
0 and 4 h after stress treatment. Total RNA was isolated using Trizol and 2 pg total RNA was used for reverse transcription by using reverse
transcriptase Il (NEB, USA). Creeping bentgrass ubiquitin gene AsUBQ was used as the endogenous control. The gel images were cropped to only
retain PCR products. All original, full-length gel images were included as additional files in the supplementary materials. The PCR process: 95 °C
for 5 min, 30 cycles of 95 °C for 30's, 65 °C for 30's, 72 °C for 305, for AsHSP26.8a; 95 °C for 5 min, 25 cycles of 95 °C for 30's, 60 °C for 305, 72 °C for

305, for AsUBQ.

AsHSP26.8a overexpression leads to increased heat
susceptibility in transgenic plants

To evaluate how altered AsHSP26.8a expression im-
pacts plant response to high temperature, we subject
the well-developed 3 weeks old AsHSP26.8a-overex-
pressing transgenic plants to heat stress (40°C) and
evaluated their performance in comparison with non-
transgenic plants. As shown in Fig. 4b, two-day heat
stress led to non-recoverable severe damage in the
majority of the transgenic plants, whereas the heat-
elicited damage was barely observed in wild type
controls, all of which recovered and survived the
treatment (Fig. 4c, d). Plant relative water content
(RWC) and electrolyte leakage (EL) were measured to
exam their water status and cell membrane integrity.
While similar RWC and EL were observed in both
transgenic and wild type control plants under normal
growth conditions, there was a significantly more
water loss and a more severe heat-elicited cell

membrane damage in the AsHSP26.8a-expressing
transgenics than in the control plants 2 days after
heat treatment (Fig. 4e, f), suggesting that AsH-
SP26.8a negatively impacts plant water retention cap-
acity and cell membrane integrity. Similarly, although
no significant difference in chlorophyll a, b and total
chlorophyll contents was observed between wild type
control and the AsHSP26.8a-containing plants under
normal growth conditions, the AsHSP26.8a-expressing
transgenic plants exhibited significantly lower leaf
chlorophyll a, b and total chlorophyll contents than
wild type control under heat-stress conditions (Fig.
4g) suggesting a reduced chlorophyll production in
AsHSP26.8a transgenic plants under heat stress. It
should be noted that the inconsistent phenotypes of
the TG1 plants in the three pots used for heat stress
response assessment (Fig. 4a-d) was most likely due
to random experimental errors rather than the inher-
ent difference between individual transgenic plants.
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Fig. 3 Generation and molecular analysis of the AsHSP26.8a transgenic (TG) Arabidopsis thaliana. a, Schematic diagram of the AsHSP26.8a
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control. The gel images were cropped to only retain PCR products. All original, full-length gel images were included as additional files in the

WT

Genomic
DNA

AsHSP26.8a transgenic plants exhibit increased salinity
susceptibility

To investigate possible involvement of AsHSP26.8a in
plant response to other abiotic stresses, we examined
seed germination of AsHSP26.8a overexpressing plants
subjected to salt stress (Fig. 5) and observed that trans-
genic plants exhibited significantly lower seed germin-
ation than the wild type controls when treated with 125
or 150 mM NaCl, under which the germination rate was
only approximately 60-80% in the AsHSP26.8a trans-
genics versus 100% in wild type controls (Fig. 5a, b).
Similarly, plant post-germination growth in AsH-
SP26.8a-expressing transgenic plants was also signifi-
cantly impaired compared to wild type controls under
the two different NaCl concentrations (Fig. 5a, c). These
data indicate that besides heat stress, AsHSP26.8a also
impacts how plants tackle other environmental adversi-
ties. More specifically, it negatively regulates plant salin-
ity stress response.

AsHSP26.8a overexpression impacts ABA signaling in
transgenic plants

Among various phytohormones, ABA is the central
regulator of abiotic stress resistance in plants and coor-
dinates an array of functions [49-51]. We were curious
about the possible involvement of AsHSP26.8a in plant
ABA signaling. To this end, we conducted experiments

assessing plant response to exogenous ABA treatment
(0, 0.75 and 1 uM) and found that compared to wild type
controls, seed germination and post germinative plant
growth in AsHSP26.8a transgenics were both signifi-
cantly reduced responding to ABA application (Fig. 6),
suggesting that AsHSP26.8a may function as a positive
regulator mediating ABA-associated plant development.

Genome-wide gene expression analysis in AsHSP26.8a
overexpression transgenic plants

To better understand molecular mechanisms underlying
AsHSP26.8a involvement in plant abiotic stress re-
sponse, we conducted genome-wide gene expression
analysis in wild type and AsHSP26.8a transgenic plants
to screen for differentially expressed genes (DEGs) be-
tween the two genotypes (Table S1). Among a total of
269 DEGs identified, 20 (7%) were up-regulated and 249
(93%) down-regulated. Absolute log2 fold changes
ranged from - 6.80 to 4.84 and adjusted P-value (FDR)
ranged from 1.61x 10”77 to 0.99 x 10™ %, Allocated gene
ontology (GO) term-based classification of the 269
DEGs resulted in 53 different groups. One of the most
dominant GO terms was ‘Response to stimulus’ in the
biological process category (Fig. S4). Additionally, many
genes responsive to phytohormones (ABA, ethylene, jas-
monic acid, auxin, salicylic acid, gibberellin) and abiotic
stresses (drought, cold, salinity, oxidative stress,
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Fig. 4 Responses of wild type (WT) and transgenic (TG) plants to heat stress. Two-week-old Arabidopsis thaliana WT and four AsHSP26.8a TG lines
were grown under normal conditions in a growth chamber (a). Heat stress was applied by heating the plants to 40 °C for 2 d (b). The plants
were then moved back to normal conditions, photographed 2 and 4 d after recovery (c and d). Leaf samples collected 2 d after heat stress were
used for measuring electrolyte leakage (e), relative water content (f) and chlorophyll a content (G left), Chlorophyll b content (G middle) and total
chlorophyll content (G right) (n = 3). Each column represents mean of three biological replicates. Error bars represent SE. *" or **" indicate
significant differences between TG and WT plants at P < 0.05 or 0.01, respectively by Student’s t test

cadmium ion and heat) as well as those involved in vari-
ous stress-related signaling pathways (salicylic acid me-
diated signaling pathway, jasmonic acid mediated
signaling pathway, abscisic acid-activated signaling path-
way, ethylene-activated signaling pathway) were also
identified (Fig. 7).

A total of 88 abiotic stress-related DEGs identified
from the RNA-seq data were all functionally annotated
that encode either regulatory or functional proteins
(Table 1). The regulatory proteins consist of 30 tran-
scription factors (e.g. AP2/ERF, DREB, HSF, MYB, NAC,
WRKY and Zinc finger protein), 10 signaling proteins
(e.g. calcium-binding proteins) and 17 kinases (e.g.
cysteine-rich receptor-like protein kinase, leucine-rich
repeat protein kinase, mitogen-activated protein kinase

kinase kinase 14, S-locus lectin protein kinase family
protein and wall-associated receptor kinase-like 2). The
functional proteins include six cytochrome P450 family
members, three LEA proteins, four carbohydrate
metabolism-related ~ proteins,  thirteen  nitrogen
metabolism-related proteins, four proteins involved in
oxidation-reduction process and one AAA-type ATPase
family protein. The majority of these 88 abiotic stress-
related DEGs were down-regulated except six encoding
one MYB domain protein, one protein kinase, one cyto-
chrome P450 family member, one alpha/beta-hydrolase
family protein and two proteins involved in oxidation-
reduction process). The differential expression patterns
of the four representative abiotic stress responsive genes,
DREBI1B, ERF105, HSFB2a and HSFC1 between wild
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type control and the AsHSP26.8a transgenic plants were
confirmed by qRT-PCR analysis (Table 2), further valid-
ating the RNA-seq data.

Discussion

The sHSPs, especially those in plants, are a large and
complex family of proteins [35]. The plant sHSPs are di-
vided into 12 subfamilies, of which chloroplast-localized
sHSPs family has been identified in diverse higher plant
species [52, 53]. This family of sHSPs have a Met-rich
domain and a unique amphipathic domain at their N-
terminus, not present in other sHSPs. AsHSP26.8a pos-
sesses both a Met-rich domain and a chloroplast transit
peptide at its N-terminus (Fig. S2). Phylogenetic analysis
and subcellular localization further support the classifi-
cation of the AsHSP26.8a protein as a member of the
chloroplast-localized sHSPs family (Fig. S3 and Fig. 1).

AsHSP26.8a-mediated HSP/HSF pathway and plant abiotic
stress tolerance

The major abiotic stresses such as drought, high salinity,
extreme temperature, negatively influence plant survival,
growth and productivity. As sessile organisms, plants are
unable to change their sites to escape from the unfavor-
able environmental adversities but have developed a
great degree of resilience to conditions that would be
considered harmful to many other organisms. A network

of interconnected cellular stress response systems is es-
sential for plant survival and productivity [54]. Within
the complex stress response network, transcription fac-
tors (TFs) play a core role in the conversion of stress sig-
nal perception to stress-responsive gene expression by
interacting with the promoter regions of various target
stress-responsive genes, thus activating the whole net-
work of genes to act together in enhancing plant toler-
ance to the harsh environmental conditions [55]. Heat
shock transcription factors (HSFs) are the central regula-
tors in plant cellular response to various abiotic stresses,
especially to heat stress [56, 57]. Class B HSF and Class
C HSF have been implicated in plant response to heat
stress. HSFB1 and HSFB2b repress the expression of
HSFs, but positively impact the acquired thermotoler-
ance [58]. Capsicum annuum HSFB2a forms a transcrip-
tional cascade with CaWRKY6 and CaWRKY40 to
positively regulate the response to high temperature and
high humidity [59]. Guan et al. [60] found that regula-
tion of heat stress-responsive genes including HSFC1
and other HSFs by RCF2 and its interacting partner
NAC transcription factor NACO019 is critical for thermo-
tolerance in Arabidopsis. A recent study showed that
HSFC1b from tall fescue plays a positive role in plant
tolerance to heat stress in association with the induction
and upregulation of heat-protective genes [61]. Our re-
sults showed that overexpression of AsHSP26.8a alters
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plant heat stress response (Fig. 4) and results in down-
regulated expression of the two HSFs, HSFB2a and
HSFC1 in transgenic plants (Table 1), suggesting that
AsHSP26.8a may function to repress HSF gene expres-
sion, modulating heat-responsive genes and thus attenu-
ating plant response to heat stress.

AsHSP26.8a modulates ABA-dependent stress signaling
and plant abiotic stress response

ABA, commonly known as the “stress hormone”, re-
sponds to an array of biotic and abiotic stresses [62].
Under osmotic stress condition such as drought and
high salinity stress, a number of genes functioning in
stress response and tolerance are induced, and ABA is
accumulated [49, 63, 64]. The expression of stress-
responsive genes is regulated by ABA-dependent and
ABA-independent pathways [64]. These genes encode
the late embryogenesis abundant (LEA) proteins, en-
zymes, transcription factors, protein kinases et al. LEA
accumulation is a functional adaptation of plants in
gaining tolerance against osmotic as well as oxidative
stresses [65]. Overexpression of genes encoding LEA
proteins can improve the stress tolerance of transgenic

plants [66—69]. MYB transcription factors are a large
group of proteins identified in eukaryotes and widely
distributed in plants [70-72]. Some of the MYB protein
family members are involved in ABA-dependent signal-
ing pathways regulating stress adaption and conferring
plant stress tolerance [71, 73-75]. In this study, overex-
pression of AsHSP26.8a alters plant development and
plant response to ABA and salt stress (Figs. 5 and 6) and
leads to significantly reduced expression of several genes
encoding LEA and MYB proteins (Table 1) as well as
some stress-responsive transcription factors, such as
WRKY transcription factors, involved in ABA-dependent
signaling [76]. Abiotic stresses such as heat, high salinity
and drought also induce the WRKY genes and trigger a
cascade of signaling pathways for improved plant stress
tolerance [77, 78]. Many studies showed that overexpres-
sion of a WRKY family gene confers abiotic stress toler-
ance in transgenic plants. For example, AtWRKY25 and
AtWRKY26 overexpression enhanced plant heat
tolerance in transgenic Arabidopsis [79]. Transgenic
Arabidopsis overexpressing a wheat WRKY transcription
factor, TaWRKY33 exhibited enhanced heat tolerance
[80]. In cotton, GhWRKY17 overexpression increased
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plant sensitivity to drought and salt stress as well as
ABA-mediated seed germination and root growth by re-
ducing the levels of ABA and transcripts of ABA-
inducible genes including NHPAREBI (ABA-responsive
element binding), NbDREB (dehydration-responsive
element binding), NbNCED (9-cis-epoxycarotenoid diox-
ygenase), NDERD (early responsive to dehydration) and
LEA protein, NbLEA [81]. These data suggest that AsH-
SP26.8a may function as a chaperone protein, contribut-
ing to ABA-dependent signaling in plant abiotic stress
responses.

AsHSP26.8a modulates ABA-independent stress signaling
and plant abiotic stress response

Our results also showed that AsHSP26.8a modulates
stress-related transcription factor gene expression in the
ABA-independent signaling pathways. The ABA-
independent stress-responsive gene expression is regu-
lated by DREB proteins. DREBs belong to Ethylene
Response Factor (ERF)/AP2 family and consist of two
subclasses, DREB1/CBF and DREB2 induced by cold and
dehydration/high salinity, respectively [64, 82-89].

Arabidopsis DREB1A overexpression was reported to en-
hance LEA protein levels and therefore abiotic stress tol-
erance in Arabidopsis [90, 91] and various crops
including rice, soybean, peanut and wheat [92-95].
Heterologous expression of AtDREBI1B in Salvia miltior-
rhiza enhanced plant drought tolerance by activating dif-
ferent downstream DREB/CBF genes [96]. Moreover,
AtHSFAS3 is a transcription factor that is transcription-
ally induced during heat stress by DREB2A and in turn
regulates the expression of HSP-encoding genes [97].
Overexpressing AtDREB2A in Arabidopsis plants in-
duces not only drought- and salt-responsive genes but
also heat-shock-related genes. Thermotolerance was sig-
nificantly increased in plants overexpressing DREB2A
and decreased in DREB2A knockout plants [85]. The
ERF (ethylene-responsive element binding factor) is an-
other subfamily of the AP2/ERF family of TFs and plays
vital roles in the regulation of biotic and abiotic stress
responses [98—100]. Overexpression of a tomato ERF
transcription factor, SIERF84 in Arabidopsis endows
transgenic plants with ABA hypersensitivity and en-
hanced tolerance to drought and salt stress [101].
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Table 1 Annotation of genes up-regulated or down-regulated in AsHSP26.8a overexpressing transgenic (TG) Arabidopsis compared
to wild type (WT) controls. Significant differences were corrected with FDR < 0.01 and expression ratio 2 2, (FC, fold change)

Gene #ID log2FC nr_annotation

Signal proteins

Transcription factor

AT1G68840 -1.12 AP2-EREBP family, RAVE subfamily protein RAV2
AT4G25490 —6.80 dehydration-responsive element-binding protein 1B
AT3G15210 -2.12 ethylene-responsive transcription factor 4
AT5G47230 —249 ethylene-responsive transcription factor 5
AT5G53290 -2.27 ethylene-responsive transcription factor CRF3
AT3G50260 -2.03 ethylene-responsive transcription factor ERFO11
AT1G77640 -341 ethylene-responsive transcription factor ERFO13
AT1G22190 —-1.81 ethylene-responsive transcription factor ERFO58
AT5G61600 —2.52 ethylene-responsive transcription factor ERF104
AT5G51190 -449 ethylene-responsive transcription factor ERF105
AT5G62020 -1.50 heat stress transcription factor B-2a
AT3G24520 —-1.68 heat stress transcription factor C-1
AT5G49330 1.39 myb domain protein 111
AT1G18570 -131 myb domain protein 51
AT4G37260 -135 myb domain protein 73
AT3G50060 -2.70 myb domain protein 77
AT1G25550 -1.63 myb-like transcription factor-like protein
AT5G67300 -1.39 transcription factor MYB44
AT1G69490 -1.26 NAC transcription factor protein family
AT4G31800 -1.18 WRKY DNA-binding protein 18
AT1G62300 -1.16 WRKY transcription factor 6
AT3G46620 -392 C3H4 type zinc finger protein
AT1G51700 -1.19 DOF zinc finger protein 1
AT5G59820 —4.87 high light responsive zinc finger protein ZAT12
AT3G52800 -1.56 zinc finger A20 and AN1 domain-containing stress-associated protein 6
AT1G27730 —3.74 zinc finger protein STZ/ZAT10
AT2G37430 -533 zinc finger protein ZAT11
AT5G04340 —2.28 zinc finger protein ZAT6
AT3G46090 -4.18 zinc finger protein ZAT7
AT5G67450 —-3.06 zinc-finger protein 1

Signaling
AT5G49480 -141 Ca2 + —binding protein 1
AT5G37770 —2.55 calcium-binding protein CML24
AT1G76650 -492 calcium-binding protein CML38
AT5G62570 -1.17 calmodulin binding protein-like protein
AT1G66400 -3.17 calmodulin like 23
AT2G41100 -1.02 calmodulin-like protein 4
AT3G25600 -1.50 putative calcium-binding protein CML16
AT3G29000 —4.55 putative calcium-binding protein CML30
AT5G39670 -2.02 putative calcium-binding protein CML45

AT3G10300 -1.02 putative calcium-binding protein CML49



Sun et al. BMC Plant Biology

(2020) 20:184

Page 11 of 19

Table 1 Annotation of genes up-regulated or down-regulated in AsHSP26.8a overexpressing transgenic (TG) Arabidopsis compared
to wild type (WT) controls. Significant differences were corrected with FDR < 0.01 and expression ratio 2 2, (FC, fold change)

(Continued)
Gene #ID log2FC nr_annotation
Kinase
AT4G23190 -143 cysteine-rich receptor-like protein kinase 11
AT2G19190 -2.16 FLG22-induced receptor-like kinase 1
AT1G67470 -1.37 inactive serine/threonine-protein kinase
AT5G01540 —-1.60 lectin receptor kinase A4.1
AT1G33610 -1.28 leucine-rich repeat (LRR) family protein
AT1G51790 -1.02 leucine-rich repeat protein kinase-like protein
AT3G47090 -1.02 leucine-rich repeat protein kinase-like protein
AT2G30040 -2.38 mitogen-activated protein kinase kinase kinase 14
AT1G51890 -1.73 probable LRR receptor-like protein kinase
AT2G44830 1.01 protein kinase
AT3G57640 -1.24 protein kinase family protein
AT4G11521 -1.26 putative cysteine-rich receptor-like protein kinase 34
AT4G04540 -2.83 putative cysteine-rich receptor-like protein kinase 39
AT1G51800 -151 putative leucine-rich repeat protein kinase
AT1G74360 -1.12 putative LRR receptor-like serine/threonine-protein kinase
AT1G61370 -1.21 S-locus lectin protein kinase family protein
AT1G16130 -1.09 wall-associated receptor kinase-like 2
Function protein
Cytochrome P450
ATCG00730 -1.68 cytochrome b6/f complex subunit IV
AT4G31500 -1.07 cytochrome P450 83B1
AT4G22710 —244 cytochrome P450, family 706, subfamily A, polypeptide 2
AT4G12320 1.32 cytochrome P450, family 706, subfamily A, polypeptide 6
AT5G57220 -143 cytochrome P450, family 81, subfamily F, polypeptide 2
AT2G27690 —-1.56 cytochrome P450, family 94, subfamily C, polypeptide 1
LEA
AT1G65690 —-151 late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein
AT4G23610 -2.52 late embryogenesis abundant hydroxyproline-rich glycoprotein
AT3G54200 -1.07 late embryogenesis abundant hydroxyproline-rich glycoprotein

Carbohydrate metabolism-related proteins

AT3G09020
AT5G26340
AT5G18840
AT3G49790

-1.37
-1.37
—2.66
-1.18

Nitrogen metabolism-related proteins

AT1G02920
AT2G02930
AT5G62480
AT5G02780
AT1G77760
AT1G66180

-1.26
-1.48
-2.05
-1.78
-1.38
-1.61

alpha 1,4-glycosyltransferase family protein
sugar transport protein 13

sugar transporter ERD6-like 16
Carbohydrate-binding protein

glutathione S-transferase 7/11
glutathione S-transferase F3
glutathione S-transferase tau 9
glutathione transferase lambda 1
nitrate reductase [NADH]

aspartyl protease family protein
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Table 1 Annotation of genes up-regulated or down-regulated in AsHSP26.8a overexpressing transgenic (TG) Arabidopsis compared
to wild type (WT) controls. Significant differences were corrected with FDR < 0.01 and expression ratio 2 2, (FC, fold change)

(Continued)
Gene #ID log2FC nr_annotation
AT5G19120 -1.14 aspartyl protease family protein
AT2G38860 -1.03 protease | (pfpl)-like protein YLS5
AT4G22470 -1.24 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein
AT4G14290 442 alpha/beta-hydrolase family protein
AT1G02660 -1.37 alpha/beta-Hydrolases superfamily protein
AT3G05200 -1.06 E3 ubiquitin-protein ligase ATL6
AT3G52450 -2.75 E3 ubiquitin-protein ligase PUB22
Oxidation-reduction process
AT3G09940 -1.38 monodehydroascorbate reductase (NADH)
AT4G37925 1.01 NAD(P)H-quinone oxidoreductase subunit M
AT4G11290 -1.27 peroxidase 39
AT3G47430 1.25 peroxisomal membrane protein 11B
Energy
AT3G28510 —242 AAA-type ATPase family protein

Overexpression of CmERF053 of chrysanthemum could
enhance drought tolerance [102]. In Tamarix hispida,
constitutive expression of an ERF transcription factor,
ThCRF1, increased biosynthesis of trehalose and pro-
line and the activities of SOD and POD, resulting in
an altered osmotic potential and an enhanced reactive
oxygen species (ROS) scavenging, and therefore sig-
nificantly improved salt tolerance in transgenic plants.
On the contrary, suppression of ThCRF1 led to de-
creased plant salt tolerance [103]. In this study, trans-
genic plants overexpressing AsHSP26.8a displayed
significant expression changes in ten ERF/AP2 family
genes (Table 1), for example, compared to the wild
type, DREB1B/CBF1 and ERFI105 expression in AsH-
SP26.8a transgenic plants was down-regulated over
sixty-fold and thirty-fold, respectively (Table 1). These
results suggest that AsHSP26.8a-modulated expression
of the genes in the ABA-independent signaling path-
ways may also contribute to plant response to various
abiotic stresses.

Table 2 Differentially expressed genes in AsHSP26.8a
overexpression transgenic (TG) and wild type (WT) Arabidopsis
plants by gRT-PCR analysis

Gene TG/WT (log2 FCO)

RNA-seq gRT-PCR
DREB1B —6.80 —6.35
ERF105 —449 —4.82
HSFB2a -1.68 —253
HSFCT -150 =217

Other stress signaling pathways mediated by AsHSP26.8a

and plant abiotic stress response

Calcium (Ca®") is the most widely accepted second mas-
sager and involved in plant stress responses and
cytoplasmic Ca®* signal is recognized by Ca®" sensors
including calmodulins (CaM), calmodulin-like proteins
(CMLs), calcium dependent protein kinases (CDPKs)
and calcineurin B-like proteins (CBLs) [104-111].
Overexpression of AtCML24 enhances transgenic Arabi-
dopsis tolerance to various ions including Co**, Zn**
and Mg?* [112]. CML18 directly interacts with Na*/H*
antiporter NHX1 to regulate plant salinity tolerance [113].
CMLY9 is suggested to negatively regulate ABA-dependent
salinity tolerance [114]. OsANN1, a calcium-binding pro-
tein of rice modulates antioxidant accumulation under
abiotic stress to confer abiotic stress tolerance. OsANN1-
knockdown led to increased plant sensitivity to heat and
drought stresses, whereas OsANN1 overexpression re-
sulted in improved plant growth with higher expression of
OsANNT1 under abiotic stress [115]. Receptor-like protein
kinases (RLKs), a class of single-pass transmembrane pro-
teins located in the plasma membrane, sense and transmit
a variety of signals to regulate plant growth and develop-
ment [116, 117]. Many RLKs have been implicated in abi-
otic stress responses, including the abscisic acid response,
calcium signaling and antioxidant defense. Upon drought
stress, the Arabidopsis LRK10L1.2 responds to directly or
indirectly regulate stomata closure via ABA-mediated sig-
naling [118], while a Glycine soja ABA-responsive
receptor-like cytoplasmic kinase (RLCK), GsRLCK, re-
sponds to modulate ABA sensitivity in plants by
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regulating the expression of ABA-responsive genes [119].
In Pisum sativum, salinity induced lectin receptor-like kin-
ase (PsLecRLK) gene expression and overexpression of
PsLecRLKs led to improved plants salt tolerance due to
enhanced ROS-scavenging [120]. In Medicago spp., the
LRR-RLK gene, SRLK has been shown to regulate the root
response to salt stress [121]. Large families of zinc finger
transcription factors are abundant in plants and have di-
verse functions including DNA binding and transcrip-
tional regulation [122]. Cys2/His2-type (C2H2) zinc finger
proteins are implicated in plant response to a variety of
adversities including low-temperatures, salt, drought,
oxidative stress, excessive light and silique shattering
[123-125]. One example is ZAT6 in Arabidopsis that
positively —regulates cadmium tolerance via the
glutathione-dependent pathway [126]. Another example is
the C2H2 zinc finger protein gene, Zat7 whose constitu-
tive expression suppressed growth and enhanced salt tol-
erance in transgenic Arabidopsis plants [127]. Moreover,
transgenic analysis in Arabidopsis points to the involve-
ment of ZAT10 or STZ (salt tolerance zinc finger) in de-
termining plant tolerance to drought, salt, osmotic, heat,
photo-inhibitory light and oxidative stresses [128—131]. In
this study, AsHSP26.8a overexpression led to significantly
reduced expression of the genes encoding four CMLs, fif-
teen RLKs and nine zinc finger proteins in transgenic Ara-
bidopsis (Table 1). For example, ZATI11 expression in
AsHSP26.8a TG Arabidopsis plants was down-regulated
over thirty-fold and ZAT12, ZAT7, CML38 and CML30
were down-regulated over sixteen-fold compared to wild
type controls (Table 1). These results suggest that other
than the ABA-dependent and -independent signaling
pathways, AsHSP26.8a may also participate in other sig-
naling pathways responding to abiotic stresses.

A few studies about the negative effect of HSPs on
plant response to abiotic stress have previously been re-
ported. Song et al. [132] found that transgenic Arabidop-
sis overexpressing cytosolic and organellar AtHSP90s
exhibited suppressed expression of stress-responsive
genes and consequently reduced salt and drought toler-
ance. Our previous study also showed that overexpres-
sion of AsHSP17, a creeping bentgrass sHSP, attenuates
plant response to abiotic stress by modulating plant
photosynthesis and ABA-dependent and -independent
signaling [15]. Moreover, Wang and Luthe [9] were un-
able to amplify ApHSP26.8 (renamed as AsHSP26.8 in
this study) from the heat-tolerant variant selected bent-
grass, which was regenerated from callus that survived
selection at 40 °C for 1 week, but they were able to amp-
lify the gene from the heat-sensitive variant non-selected
bentgrass, which was not subjected to heat stress. Taken
together, these data imply that similar to AsHSP17, as a
chaperone protein, AsHSP26.8a may be regulated to
maintain an appropriate level in protecting a stressed
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plant. The excessive amount of AsHSP26.8a in trans-
genic plants may negatively impact the stress response
regulatory network, compromising on plant stress toler-
ance. Indeed, our results assessing plant performance
under stressful conditions showed that the plant re-
sponse to heat stress in different transgenic lines ap-
peared quite consistent regardless of the level of the
elevated AsHSP26.8a expression (Fig. 3¢ and Fig. 4b-d).
It is therefore tempting to speculate that any change in
AsHSP26.8a expression above the basal level would have
significant impact on plant response to environmental
stress. Alternatively, AsHSP26.8a may need to stay in-
active under normal condition not to become a stress it-
self. Using transgenic approach, we are currently
investigating the impact of the regulated expression of
AsHSP26.8a in creeping bentgrass itself in order to bet-
ter understand molecular mechanisms of AsHSP26.8a-
mediated plant development and stress response.

Conclusions

We have cloned and characterized a chloroplast local-
ized sHSP gene, AsHSP26.8a, whose expression is in-
duced by heat stress. Overexpression of AsHSP26.8a in
transgenics attenuates plant response to various abiotic
stresses including heat, salt and ABA. AsHSP26.8a may
be involved in several aspects of plant stress response in-
cluding ABA-dependent and -independent signaling and
some other stress response pathways. Although the mo-
lecular mechanisms of the possible chaperone role AsH-
SP26.8a may play in plant stress response remain to be
unraveled, the results obtained from the current study
allow a better understanding of sHSPs involvement in
plant abiotic stress response providing information for
prospecting studies towards the development of novel
molecular strategies for enhancing crop performance
under adverse environments.

Methods

Plant materials and abiotic stress treatment

The creeping bentgrass cultivar ‘Penn-A4’ originally pro-
vided by HybriGene (Hubbard, OR) was clonally propa-
gated from stolon and maintained as described
previously [133]. Plants were maintained in the growth
room and subjected to heat, salt, drought and phytohor-
mone treatment as described previously [15]. The leaf
samples were collected at 0, 0.5, 2 and 4h and roots
were collected at 0 and 4 h after stress treatment for
RNA extraction to clone the AsHSP26.8a gene and
analyze AsHSP26.8a gene expression.

The wild type A. thaliana plants (ecotype Columbia)
and four transgenic lines (TG1, TG2, TG3 and TG6)
generated by Xinbo Sun were cultured in a growth
chamber and subjected to heat stress as described previ-
ously [15]. The seeds of the transgenic lines obtained are
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maintained and available in Hong Luo’s lab at Clemson
University (Clemson, SC).

Plant genomic DNA, RNA isolation and gene expression
analysis

Plant genomic DNA was extracted as described previ-
ously [134]. Plant total RNA was extracted from 100 mg
of fresh leaves/roots with Trizol reagent (Invitrogen,
Carlsbad, CA) following the manufacturers’ protocol.
First-stand cDNA was synthesized from 2 pg RNA with
SuperScript III System (Invitrogen) and oligo (dT) or
gene specific primers.

Semi-quantitative RT-PCR was conducted on 25-30
cycles based on its exponential phase. PCR products
were analyzed by electrophoresis using a 0.8% or 1.5%
(w/v) agarose gel and photographed with the BioDoc-It
imaging system (Ultra -Violet Products). The creeping
bentgrass ubiquitin gene, AsUBQ (JX570760) and A.
thaliana Actinl (AT2G37620) were used as reference
genes.

Using the Bio-Rad iQ5 real-time detection system with
12.5 pL of iQ SYBR Green Supermix (Bio-Rad Labora-
tories, Hercules, CA), quantitative real-time PCR was
conducted to verify the expression of four representative
DEGs (DREBIB, ERF105, HSFB2a and HSFCI) in WT
and TG Arabidopsis plants identified by RNA-seq ana-
lysis. The reaction mix was preincubated at 95 °C for 3
min followed by 40 cycles of denaturing at 95 °C for 30,
annealing at 60°C for 30s, extension at 72°C for 20s.
The data were collected by using iQ5 Optical System
Software version 2.0 (Bio-Rad Laboratories) with AtAc-
tinl and AtTub6 (AT5G12250), the two reference genes
as endogenous controls for A. thaliana analysis. The
AACt method was used for real-time PCR analysis with
three biological replicates [133].

Subcellular localization of GFP protein in rice protoplasts
For subcellular localization, the full-length of AsH-
SP26.8a without a stop codon was subcloned into the
pUC19/35S-EGFP vector with GFP at C terminus. The
resulting fusion construct and empty vector were trans-
formed into rice protoplasts by PEG (polyethylene gly-
col)-mediated transformation method, respectively [135].
After incubation in the dark for 16 h, the GFP fluores-
cence of transiently transformed rice protoplasts was ex-
amined and photographed under a confocal scanning
microscopy (LSM510 Meta; Zeiss). For GFP, we used
488 and 519 nm for excitation and emission, respect-
ively. For chlorophyll autofluorescence, we used 488 and
650—750 nm for excitation and emission, respectively.

Plasmid construction and plant transformation
The AsHSP26.8a overexpression construct, p35S-AsH-
SP26.8a/35S-bar contains the open reading frame of the
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turfgrass sHSP gene, AsHSP26.8a, driven by the cauli-
flower mosaic virus 35S (CaMV35S) promoter and
linked to a CaMV35S-driven bar gene for herbicide re-
sistance. The construct was introduced into wild type A.
thaliana  (Col-0) by  Agrobaterium  tumefaciens
(LBA4404)-mediated plant transformation using floral
dip. Individual transgenic plants were selected by herbi-
cide screening.

RNA-seq analysis

The 4-week-old wild type and AsHSP26.8a TG3 seed-
lings were harvested for total RNA isolation with Trizol
reagent (Invitrogen, Carlsbad, CA). RNA concentration,
purity and integrity were monitored by Nanodrop, Qubit
2.0 and Agilent 2100 Bioanalyzer. The mRNAs were iso-
lated using oligo (dT) magnetic beads and randomly
broken into 150- to 250- pieces in fragmentation re-
agent. The first strand cDNA was generated by employ-
ing random hexamer-primers and reverse transcriptase,
followed by the synthesis of the second-strand cDNA in
the presence of dNTPs, RNase H and DNA polymerase
I. The purified ¢cDNA products after end-reparation,
adaptor ligation and size selection by AMPure XP beads
were PCR-amplified and then sequenced on an Illumina
HiSeq2500 (Biomaker Technologies, Beijing, China). The
clean reads obtained after removal of low-quality reads
and adaptor sequences from the raw reads of each li-
brary were mapped to the reference Arabidopsis genome
(TAIR 10, ftp://ftp.ensemblgenomes.org/pub/ plants/re-
lease-25/fasta/arabidopsis_thaliana/)  using TopHat2
[136]. The FPKM (fragments per kilobase of transcript
per million fragments mapped) values were used to
measure Gene expression levels [137]. The FDR (false
discovery rate) values of <0.01 and the FC (fold change)
value of >2 (the absolute value of log2 ratio >1) were
used to determine differentially expressed genes (DEGs)
in the four libraries from wild type and AsHSP26.8a TG
plants (two libraries from two biological replicates for
each sample). Gene Ontology (GO) enrichment analysis
was conducted by mapping all the DEGs to GO terms in
the GO database (http://www.geneontology.org/) and
the unigene number in each term was also determined.

Pearson’s correlation coefficients [138] between each
pair of the biological replicates in WT and TG samples
calculated were both close to 1 (Fig. S5), indicating a
high RNA-seq data reliability.

We deposited the raw sequence reads into the Na-
tional Center for Biotechnology Information (NCBI)
Short Read Archive (SRA) repository with the accession
numbers SRP065638 and SRA308886.

Seed germination assays
Seed germination assays under salt stress conditions and
ABA treatment were performed as described previously
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[15]. The numbers of germinated seeds and green seed-
lings were counted on the fourth day. Each assay was re-
peated three times.

Leaf electrolyte leakage, chlorophyll, relative water
contents and photosynthesis parameters

Measurements of Leaf electrolyte leakage (EL), chloro-
phyll and relative water content (RWC) were conducted
as described previously [133, 139]. Each measurement
was conducted in three replicates.

Statistical analysis

The data were analyzed by Microsoft excel 2010
(Microsoft, USA) and significance of differences between
data sets was evaluated by SAS software 9.2 (SAS insti-
tute Inc. USA)
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Arabidopsis thaliana HSP154 (828276); Oryza sativa HSP18.8 (4343386);
Arabidopsis thaliana HSP17.4 (841843); Oryza sativa HSP17.6B (4330933);
Lilium longiflorum HSP17.6 (D21816); Zea mays HSP17.5 (X54076); Zea
mays HSP17.8 (X54075); Triticum aestivum HSP17.3 (X58279); Arabidopsis
thaliana HSP17.6 (X63443); Ipomoea nil HSP18.8 (M99430); Ipomoea nil
HSP17.2 (M99429); Glycine max HSP17.9 (X07159); Pisum sativum HSP17.7
(M33901); Arabidopsis thaliana HSP21.7 (835555); Oryza sativa HSP22.2
(4339231). Figure S4. Gene ontology (GO) classification of the annotated
unigenes or differentially expressed genes (DEGs). Unigenes with best
BLAST hits were aligned to GO database. A total of 26,326 unigenes (red)
and 261 DEGs (blue) were assigned to at least one GO term and grouped
into three main GO categories (cellular component, molecular function
and biological process) and 53 GO terms. Left Y-axis represents the
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percentages of unigenes or DEGs in each main category. Right Y-axis in-
dicates the numbers of unigenes or DEGs in each GO term. Figure S5.
Correlation assessment of a pair of biological replicates in wild type (WT)
and AsHSP26.8a transgenic (TG) plants, respectively, used for RNA-seq. A,
Pearson’s correlation coefficient between the two biological replicates of
the wild type (EO1 and E02) or AsHSP26.8a transgenic plants (EO5 and
E06). B and C, Correlation plots of a pair of biological replicates from wild
type (EOT and E02), (B) and AsHSP26.8a transgenic line TG3 (E05 and E06)
(€), respectively. Each dot in the plot represents a gene, denoting the
log10 of the gene expression (FPKM) in the two replicate samples (x-axis
and y-axis). The closer is the dot to the diagonal, the smaller is the differ-
ence in expression for the corresponding gene in the two replicates.
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