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Root system traits impact early fire blight
susceptibility in apple (Malus × domestica)
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Abstract

Background: Although it is known that resistant rootstocks facilitate management of fire blight disease, incited by
Erwinia amylovora, the role of rootstock root traits in providing systemic defense against E. amylovora is unclear. In
this study, the hypothesis that rootstocks of higher root vigor provide higher tolerance to fire blight infection in
apples is tested. Several apple scion genotypes grafted onto a single rootstock genotype and non-grafted ‘M.7’
rootstocks of varying root vigor are used to assess phenotypic and molecular relationships between root traits of
rootstocks and fire blight susceptibility of apple scion cultivars.

Results: It is observed that different root traits display significant (p < 0.05) negative correlations with fire blight
susceptibility. In fact, root surface area partially dictates differential levels of fire blight susceptibility of ‘M.7’
rootstocks. Furthermore, contrasting changes in gene expression patterns of diverse molecular pathways
accompany observed differences in levels of root-driven fire blight susceptibility. It is noted that a singular co-
expression gene network consisting of genes from defense, carbohydrate metabolism, protein kinase activity,
oxidation-reduction, and stress response pathways modulates root-dependent fire blight susceptibility in apple. In
particular, WRKY75 and UDP-glycotransferase are singled-out as hub genes deserving of further detailed analysis.

Conclusions: It is proposed that low root mass may incite resource-limiting conditions to activate carbohydrate
metabolic pathways, which reciprocally interact with plant immune system genes to elicit differential levels of fire
blight susceptibility.

Keywords: Erwinia amylovora, Disease resistance, Root growth, Root mass, Root shoot interactions, Gene
expression, Transcriptome, Co-expression network, Gene regulation, Grafting

Background
Roots play critical roles in plant function and their inter-
actions with biotic and physical environments. Plant roots
are increasingly recognized for their role in modulating
systemic defenses of plants against pathogen infections via
inter-organ signaling [1–4]. Roots can trigger physio-
logical and genetic responses leading to activation of mo-
lecular pathways to recognize and resist pathogens upon
infection [2–5]. Indeed, some root traits can act as phys-
ical barriers to soil-borne pathogens by hindering their
penetration into living tissues [6–9]. Therefore, investigat-
ing interactions between roots and pathogens, as well as
their relationships to disease susceptibility is of particular
relevance to fruit tree crops wherein specific rootstocks

are frequently chosen to confer disease resistance for sus-
ceptible scion cultivars [10, 11].
It has been reported that root system architecture (RSA)

is dictated by growth, length, diameter, density, branching
pattern, and branching angle of various root types, and it
influences resource uptake from the soil [12–15]. In gen-
eral, plant roots consist mainly of either one or more pri-
mary roots that, in-turn, produce several secondary and
tertiary roots [15, 16]. In contrast, the root system of apple
rootstocks in commercial orchards consists mainly of
adventitious roots originating from nodal junctions of
stem cuttings, via vegetative propagation, which are im-
portant for initial establishment and success of grafted
scions. Thus, growth and density of adventitious roots can
influence the nutrient acquisition capacity of a plant, both
under normal and stress prone conditions [17]. Nutrient
uptake not only supports overall plant growth, but also
contributes to plant survival under different stress
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conditions, such as wounding, flooding, drought, and nu-
trient deficiency [17–19]. However, the potential role of
adventitious roots in enhancing tolerance to biotic and
abiotic stresses remains unclear.
Rootstocks impact scion genotypes in many different

ways. They can influence scion vigor and architecture,
phenology, precocity, fruit quality, and production [20,
21]. In addition, rootstocks confer differential tolerance to
salinity, drought, and disease-prone conditions in various
crops [21–23]. For example, resistant rootstocks have
been selected and used to enhance disease tolerance of
grafted scion cultivars [11, 24–26] for sustainable disease
management in commercial apple orchards. It has been
proposed that rootstocks can modify scion phenotypes by
altering levels of abscisic acid, cytokinin, auxin, and other
hormones through long-distance signaling between roots
and shoots [27–30]. Moreover, rootstock-regulated gene
expression differences and mobile mRNA movements
may also contribute towards enhanced host defense
against pathogen infection [11, 25, 31]. For example, root-
stocks influence expression levels of disease-associated
genes of jasmonic acid and inositol pathways in grafted
apple scions under fire blight infection [11]. These
rootstock-derived mobile mRNAs may act as long-
distance signals [31] to alter expression of disease-related
molecular pathways in grafted scions. Roots also produce
secondary metabolites, such as nicotine, furocoumarins,
and aldehydes to improve plant defense mechanisms
against pathogens [4]. In contrast, foliar bacterial infection
alters secretion of malic acid in roots to recruit beneficial
soil bacteria and improve plant immunity against patho-
gen attack [32]. Furthermore, it is likely that rootstocks
may also influence scion physiology by regulating levels of
water and nutrient uptake [22, 33], which in turn can
impose limits on pathogen spread and disease infection.
Overall, root traits of rootstocks can play critical func-
tional roles in regulating above-ground plant physiology
and disease susceptibility of scions.
Fire blight, a systemic bacterial disease incited by Erwi-

nia amylovora (Burr.) [34] causes extensive apple pro-
duction losses worldwide. Fire blight infection can occur
at multiple stages of plant development with higher risks
of infection occurring particularly in new growing tissues
of young orchards [35, 36]. Apple growers mainly rely
on use of chemical treatments and of pruning of infected
twigs to control fire blight in commercial orchards, but
these preventive control measures remain inefficient
once bacteria have already invaded reproductive and/or
vegetative plant tissues. Plant resistance provides alter-
native options for sustainable control of bacterial spread,
particularly once bacteria penetrate host tissues.
Use of resistant rootstocks serves to directly manage fire

blight infection of rootstocks, but it can also limit its spread
to susceptible scions [26, 36]. For example, susceptible

scion cultivars grafted onto G.16, G.30, and G.11 apple
rootstocks from the Geneva, New York apple rootstock
breeding program have demonstrated high to moderate
levels of resistance against fire blight [26, 37]. This ob-
served rootstock-driven differential fire blight resistance of
grafted scions is attributed to changes in gene expression
of disease-related proteins and pathways, including those
of phytohormones, transcription and signal transduction
activities, as well as of various cellular and metabolic re-
sponses [11]. Rootstocks can potentially utilize several
mechanisms to confer resistance to scions, but the precise
mechanism of rootstock-defined scion resistance or toler-
ance to fire blight remains unknown.
In this study, we have tested the hypothesis that apple

rootstocks of higher root mass (g) can respond more
effectively to fire blight infection. To pursue this, the
following two experiments have been conducted. In one
experiment, a range of apple scion genotypes are grafted
onto a single apple rootstock, ‘Malling 7’ (‘M.7’), grafted
trees are allowed to grow, and are then challenged with
artificial inoculation with E. amylovora to establish the
relationship between root vigor and disease severity in
variable genetic backgrounds. In the second experiment,
non-grafted ‘M.7’ rootstocks of varying root mass are
grown, and then these are challenged with E. amylovora
to specifically test the effect of root vigor on disease se-
verity in a single genotype. Morphological characteristics
were evaluated in both the experiments that led to assess
molecular interactions between root traits of rootstock
and fire blight susceptibility of apples.

Results
Rootstock root traits and fire blight susceptibility of
grafted scions are correlated
Data from 45 grafted scions on M.7 rootstocks (Add-
itional file 9: Table S1) were used to evaluate the rela-
tionships between root, shoot, leaf, and fire blight
infection severity traits. Both root dry mass (g) and aver-
age roots per node (count) showed a wide range of vari-
ation in this population of scion genotypes. The root dry
mass of M.7 rootstocks varied from 0.67 g (g) to 6.84 g
(Additional file 1: Figure S1A), whereas average number
of roots per node ranged from 2.96 to 7.56 in M.7 root-
stocks (Additional file 1: Figure S1B). Furthermore, cor-
responding shoot and leaf traits also showed significant
(p < 0.05) variations in this population (Additional file 1:
Figure S1C-E). Specifically, shoot and leaf lengths varied
from 8.8 to 24.5 cm and 3.0 to 6.6 cm in this population,
respectively, while SPAD values for leaf chlorophyll mea-
surements ranged from 28.4 to 38.5. Moreover, shoot
traits showed moderate broad-sense heritability (H2)
values, ranging from 0.70 to 0.62, for leaf length and for
leaf chlorophyll content. Of particular interest, percent
lesion length ranged from 1.2 to 93% and showed
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significant (p < 0.05) variation in the population (Add-
itional file 1: Figure S1F). The H2 values for percent
lesion length was 0.71.
To specifically examine the relationships between

root dry mass and fire blight percent lesion length, we
performed a statistical analysis of root dry mass (g) by
dividing the 45 scion genotypes into three classes based
on percent lesion length (Fig. 1). The clustering of scion
genotypes led to increased numbers of replications per
disease severity class for more robust statistical analysis. A
significant (p < 0.05) difference was observed in the root
dry mass (g) between three disease severity classes (Fig. 1).
Similar results were obtained after removing the 20 scion
genotypes displaying high standard deviation in percent
lesion length (Additional file 9: Table S1).
Pairwise phenotypic correlations showed positive cor-

relations between root and shoot traits, and negative
correlations between root and fire blight susceptibility
traits (Additional file 10: Table S2). However, not all
correlations were significant. For instance, root dry
mass (g) had significant (p < 0.05) negative correlation
of − 0.45 with percent lesion length (Additional file 2:
Figure S2), whereas negative correlations between aver-
age roots per nodes and fire blight susceptibility traits
were not significant. Similarly, root dry mass (g) dis-
played significant (p < 0.05) positive correlations with
leaf length, but not with shoot length (Additional file 10:
Table S2). Overall, these phenotypic correlations
suggested that root dry mass of the rootstock could

influence leaf growth and fire blight susceptibility of
grafted scions.
Hierarchical clustering and multivariate analysis were

used to categorize the entire population into groups
based on their phenotypic differences. Therefore, this
population was divided into six main clusters exhibiting
distinct trait variation patterns, as illustrated in the heat
map of traits values (Additional file 3: Figure S3). Fur-
thermore, PCA of root and fire blight disease traits also
highlighted phenotypic differences of these genotype
clusters in this population (Fig. 2a). For example, root
dry mass (g) and percent lesion length (%) showed vari-
able distribution patterns of trait means among the six
identified clusters (Fig. 2b and c). In fact, clusters “C4”
and “C6” tended to consist of genotypes with relatively
lower root mass (g) and higher disease susceptibility.
However, this observed pattern was less clearly demon-
strated in the remaining clusters.
Interestingly, nine principal components (PCs) ex-

plained the total variation present in this population.
PC1 explained a maximum of 32.6% of the total vari-
ation. Although all traits contributed towards PC1 vari-
ation, root and shoot traits had positive contributions,
while fire blight disease susceptibility traits contributed
negatively to PC1 variation (Additional file 4: Figure S4).
This trend supported previously detected negative corre-
lations between root and fire blight susceptibility traits.
In addition, analysis of higher-order PCs revealed differ-
ent levels of contributions from root, shoot, and disease

Fig. 1 Box plot showing distribution of root dry mass (g) in three disease severity classes observed in 45 grafted scion genotypes on ‘M.7’
rootstocks. The percent lesion length classes were defined as Resistant (0–20% average PLL), Intermediate (21–80% average PLL), and Susceptible
(81–100% average PLL). Error bars correspond to standard deviations of means
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susceptibility traits (Additional file 4: Figure S4), as
noted by positive contributions from all root and
disease-related traits to the PC2 variation. Overall, the
PCA analysis revealed presence of considerable variation
in this population, and this was partially driven by iden-
tified correlations between root growth and disease sus-
ceptibility traits.

Rootstocks exceeding a root area threshold are less
susceptible to fire blight
To evaluate the extent to which roots can influence levels
of fire blight susceptibility, a second independent experi-
ment was conducted using non-grafted M.7 rootstocks
representing four distinct root area classes (RACs). It was
found that average root surface areas ranged from approxi-
mately 1720 (lowest RAC-1) to 4455 cm2 (highest RAC-4),
corresponding to about 1.27 to 2.59-fold change between
the lowest and the other three RACs (Fig. 3a). Moreover,
fire blight infection, measured as percent lesion length (%),
showed significant (p < 0.05) variations among the different
RACs over time (Additional file 5: Figure S5). It was ob-
served that absolute rates of disease progression from 2 to
8 dai were about 41.9 to 75.0% in RAC-4 and RAC-3;
whereas, these were higher, 84.4 to 98.3%, in RAC-1 and
RAC-2, respectively. At 8 dai, percent lesion length was
significantly (p < 0.05) different in RAC-1 from those of
RAC-3 and RAC-4, while this was not significantly differ-
ent, at p < 0.05, in RAC-2 from those of the other RACs
(Fig. 3b). Overall, total infection and progression of disease
were comparatively less in root classes of high root surface
areas (cm2) at the start of the experiment, and vice-versa.
Moreover, the highest fire blight susceptibility was ob-
served in rootstocks with a threshold of root surface area
of 3644 cm2, represented by RAC-3 (Fig. 3).

Analysis of phenotypic correlations showed a strong
correlation (r2 = 0.87; p < 0.05) of root areas (cm2) between
pre- and post-planting (and following bacterial inocula-
tion), for a total duration of 106 days of growth, thus indi-
cating that initial root area could serve as a predictor of
root area growth at later stages of root development. Simi-
larly, other root traits also demonstrated significant (p <
0.05) positive correlations (Additional file 11: Table S3).
For instance, root dry mass (g) showed high positive cor-
relations with pre- and post-plant root area (r2 = 0.82 and
0.93, respectively). Similarly, both coarse and fine root
mass showed significantly (p < 0.05) high positive correla-
tions with root area (cm2) before (r2 = 0.79 and 0.62,
respectively) and after planting (r2 = 0.85 and 0.78, re-
spectively). Some root traits also displayed significant (p <
0.05) negative correlations with fire blight susceptibility
traits. For instance, pre-plant root area (cm2) and fine root
dry mass (g) had significant negative correlations of − 0.70
and − 0.58 with percent fire blight lesion length, respect-
ively (Additional file 11: Table S3). In contrast, negative
correlations of percent lesion length against post-planting
root area (cm2), coarse root dry mass (g), and total dry
mass (g) were not significant.

Contrasting expression patterns of distinct sets of genes
are associated with root-dependent fire blight
susceptibility
Following bacterial inoculation, phenotypic analysis
identified significant (p < 0.05) differences in fire blight
infection over time in leaves of M.7 rootstocks belonging
to different RACs (Fig. 3; Additional file 5: Figure S5).
To identify molecular changes related to root-regulated
fire blight susceptibility, gene expression patterns were
characterized in leaf tissues of contrasting root area clas-
ses (RAC-1 with an average root area of 1720 cm2 vs.

Fig. 2 Genotype clustering based on principal component analysis (PCA) and hierarchical clustering of root and disease traits. (a) Six genotype
clusters obtained from a population of 45 scion genotypes grafted onto ‘M7’ rootstocks. Distribution of means and variances in each cluster for
(b) root dry mass (g) for C1–2.3, C2–2.2, C3–3.0, C4–3.8, C5–3.7, and C6–1.5; (c) percent lesion length (%) for C1–45.9, C2–22.6, C3–22.4, C4–9.4,
C5–40.5, and C6–76.7
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RAC-4 with an average root area of 4455 cm2) of non-
grafted M.7 genotypes under control and bacterial in-
oculation treatments, at 4 and 8 dai (Additional file 12:
Table S4). This gene expression analysis was conducted
in sequential steps (Fig. 4). We first compared control
leaf samples between RAC-1 and RAC-4 to identify any
differentially expressed genes (DEGs) accounting for ef-
fects of root surface area differences on leaf responses.
Next, control and bacterial-inoculated leaf samples were
analyzed over time to identify fire blight responsive
genes in leaf tissues. As a result, a set of common genes
from both analyses were identified and deemed as genes
associated with root-regulated fire blight susceptibility
responses in leaf tissues.
Subsequently, it was observed that a high PC1 variation

(82%) was present in this population (Additional file 13),
thus suggesting that root area, fire blight infection, and
sampling time contributed to the variability detected in
the gene expression dataset. Furthermore, the number of
significant (p < 0.05) DEGs increased over time in both

control and bacterial-inoculated RAC-4 samples, while
these decreased in bacterial-inoculated RAC-1 samples
over time (Fig. 4a). Interestingly, a total of 132 and 1017
DEGs were detected between RAC-1 and RAC-4 at 4 and
8 dpi, respectively (Table 1; Additional file 14). All 132
DEGs at 4 dpi were also identified at 8 dpi (Add-
itional file 6: Figure S6), which indicated that the effects of
root surface area differences persisted, and in fact they
became more severe over this developmental period. In
addition, a set of 454 out of 1017 DEGs showed significant
(p < 0.05) changes in transcript levels following bacterial
infection (Fig. 4b; Additional file 15). These DEGs
involved genes likely related to bacterial infection, whose
expression levels were also dependent on differences in
root surface areas, as noted in contrasting RACs, and re-
ferred to herein as root-regulated fire blight responsive
(RRFBR) genes.
An analysis of normalized expression for RRFBR genes

identified opposite trends in contrasting RACs at both 4
and 8 dai. For instance, about 31.7% (n = 144) DEGs
demonstrated increased expression levels in RAC-1, but
decreased expression levels in RAC-4 following bacterial
inoculation at both sampling times (Additional file 16).
Likewise, 11.4% (n = 53) DEGs demonstrated decreased
expression levels in RAC-1, but increased expression
levels in RAC-4. Interestingly, only a few genes (n = 9)
demonstrated similar patterns of changes in expression
levels between two these RACs following bacterial infec-
tion (Additional file 16). These findings suggested that
for the majority of RRFBR genes, differences in fire
blight susceptibility between RAC-1 and RAC-4 were
mostly associated with contrasting gene expression
patterns.

Interactions between genes from multiple pathways
accompany root-dependent fire blight susceptibility
Upon further gene ontology (GO) analysis, it was noted
that ~ 92% of RRFBR genes belonged to general stress
response pathways related to metabolic response (42%),
catalytic activity (40%), and oxidation-reduction (10%)
processes (Fig. 4c; Additional file 17), whereas 8% of
RRFBR genes represented functional terms related to
carbohydrate metabolic process, cell recognition, re-
sponse to biotic stimulus, protein serine/threonine kin-
ase activity, and apoplast (Fig. 4c; Additional file 17).
Moreover, expression levels of DEGs varied within these
pathways (Additional file 7: Figure S7). For example,
some DEGs in carbohydrate metabolic and protein kin-
ase pathways had lower levels of expression in RAC-1
than in RAC-4, while other DEGs displayed an opposite
trend (Additional file 7: Figure S7). Interestingly, all six
DEGs involved in defense response pathways demon-
strated reduced levels of expression in RAC-1, but in-
creased levels of expression in RAC-4 at 8 dai following

Fig. 3 Patterns of root area (cm2) and disease severity (%) in four
different root area classes (RACs) of ‘M.7’ rootstocks. (a) Different root
area classes (RACs) observed in M.7 rootstock, and (b) Disease
severity represented as percent lesion length (%) for four M.7 RACs
at 8 dai. The different letters mean significant differences at a p-
value threshold less than 0.05
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bacterial infection (Additional file 7: Figure S7; Add-
itional file 17). Overall, these findings pointed toward
likely interactions of both general stress response and
carbohydrate metabolism pathways with defense-related
genes. Indeed, these interactions would explain root-
regulated differences in fire blight susceptibility in apple.
Subsequently, weighted co-expression analysis was

used to identify co-expression patterns and putative in-
teractions among RRFBR genes by identifying those hubs

with the highest intramodular connectivity (Fig. 5a). It
was found that a singular co-expression module “C3”
represented 77.3% of RRFBR genes (Additional file 8:
Figure S8). In addition, UDP-glycosyltransferase, formate
dehydrogenase, pathogenesis-related 4, WRKY DNA-
binding protein 75, cysteine-rich RLK, cytochrome P450,
laccase 7, glucose-methanol-choline oxidoreductase pro-
tein, and glycosyltransferase family proteins were found
to be consistently present as highly connected genes in

Fig. 4 A schematic representation of differential gene expression and pathway analysis for root-dependent fire blight infection in apple. (a) Numbers
of differentially expressed genes (DEGs) obtained from analysis of control samples between RAC-1 and RAC-4, and between control and fire blight
samples within RAC-1 and RAC-4. The DEGs were identified with a log2fold change of 1.5 between control and fire blight treated samples that also
exhibit p-value of less than 0.01, (b) Venn diagram with numbers of unique and shared DEGs from two different expression analyses. (c) Pathways
showing overrepresentation from common DEGs that most likely correspond to effects of low root area and fire blight infection
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the “C3” module (Fig. 5b; Additional file 18). This sug-
gested that interactions among core genes from the
general stress response, carbohydrate metabolism, and
defense pathways determined observed differences in fire
blight susceptibility between RAC-1 and RAC-4. In
addition, detection of DNA-binding domain proteins as
hubs in the “C3” module supported transcriptional regu-
lation of co-expressed genes from these different
pathways.

Discussion
Earlier studies have reported that rootstocks and root-
stock system architecture influence various important
traits of scion genotypes grafted onto these rootstocks
[20, 21]. As it has been demonstrated that rootstocks
confer enhanced tolerance to salinity, drought, and
disease in various crops [21–23], efforts have been
undertaken to develop resistant rootstocks, which in
turn can enhance disease tolerance of grafted scion

cultivars [11, 24, 25]. In this study, it is observed that
root traits of an apple rootstock (M.7), including root
dry mass (g) and average roots per node (count), are in-
deed variable, and they do in turn influence shoot and
leaf traits, including leaf chlorophyll contents, of differ-
ent scion genotypes grafted onto this rootstock. More
importantly, these root traits also influence response
reactions of leaf and shoots of different scion genotypes
to controlled inoculations with E. amylovora, and their
susceptibility to fire blight disease. Although this latter
finding confirms earlier reports [24, 26], it provides
detailed analysis of the importance of root mass traits on
fire blight reactions of grafted scion genotypes upon
infection by E. amylovora. This finding is further sup-
ported by significant (p < 0.05) negative correlations
obtained between root mass and scion fire blight suscep-
tibility in these grafted apple trees.
Upon analysis of RACs of non-grafted ‘M.7’ rootstocks

on fire blight susceptibility of above-ground leaf tissues,

Table 1 Total number and percentage of differentially expressed (DE) genes for each comparison between two root area classes
(RACs); lowest (RAC-1) and highest (RAC-4), and between control and fire blight (FB) infected samples at two time points after
infection. The percentage of DE genes was calculated by comparing against total expressed genes (n = 35,224) in the transcriptome
dataset. The genes were defined as DE based on the p-value < 0.01 and log2Fold change of 1.5 from likelihood ratio test statistics
using DESeq2. In the RAC-1 vs RAC-4 comparisons, the induced genes have comparatively higher gene expression in RAC-1,
whereas repressed genes have comparatively higher gene expression in RAC-4

Treatment Time Comparison No. of DE Genes DE Genes (%) Induced Repressed

Root Area Classes 1 RAC-1 vs RAC-4 132 0.37 24 108

2 RAC-1 vs RAC-4 1017 2.88 412 605

Fire Blight Infection 1 RAC-1 (Control vs FB Treatment) 405 1.15 377 28

1 RAC-4 (Control vs FB Treatment) 52 0.15 39 13

2 RAC-1 (Control vs FB Treatment) 341 0.97 240 101

2 RAC-4 (Control vs FB Treatment) 980 2.78 549 431

Fig. 5 Hub genes identified from weighted gene co-expression network analysis of differentially expressed genes (DEGs). (a) Detected hub genes
and their corresponding network connectivity scores as measured by degree, EPC, MCC, and MNC algorithms, Chin et al. (2014). (b)
Interconnected sub-module of these hub genes, wherein different colors represent connectivities from highest (red) to lowest (yellow)
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it is observed that increased root surface area contrib-
uted to decreased fire blight susceptibility in these
above-ground leaf tissues, and the reverse is found to be
true as well. These observed root-dependent differences
in levels of fire blight disease susceptibility may be at-
tributed to presence of multiple defense mechanisms
[11, 25, 38–40] that interact with the pathways related
to nutrient status of a plant. Indeed, involvement of di-
verse molecular pathways related to plant metabolism,
cell cycle, oxidation-reduction, and stress response sug-
gests presence of systemic regulation of fire blight infec-
tion in apples [11, 38]. Moreover, rootstock genotypes
can significantly contribute to scion tolerance to fire
blight susceptibility via rootstock-regulated gene expres-
sion patterns [11].
It is important to note that different fire blight disease

reactions and root traits have displayed significant (p <
0.05) levels of variations in the two experiments con-
ducted in this study. The observed variation in percent
lesion length (%) could be attributed, in part, to the dif-
ferent genetic backgrounds of grafted scion cultivars,
which was supported by calculated moderate broad-
sense heritabilities of percent lesion length (%). The
grafted scions could also influence the root traits of
‘M.7’ rootstock, but the short time frame (~ 3months
since grafting and 8 days post inoculation) of each ex-
periment in this study makes it harder to notice such ef-
fects. However, the effect of scion genotypes cannot be
fully excluded and could vary depending on the scion
genotypes used. Nonetheless, the significant differences
in root traits remains apparent in three different disease
severity classes of mixed genetic backgrounds, which
supports the observed relationships between root and
disease severity traits. It has been reported that varia-
tions in root traits of rootstocks might contribute to
phenotypic plasticity due to their exposure to different
nutrient regimes, soil, and environmental conditions
during their earlier growth in the clonal rootstock [15,
41, 42]. Phenotypic plasticity of different traits can vary
among different genotypes [43–46]. Thus, identifying
genes for root phenotypic plasticity would support ef-
forts to breed for rootstocks with more uniform root
traits. This, in turn, would contribute to enhanced resist-
ance against E. amylovora infection, particularly for
young grafted apple trees grown in orchards.
In this study, detection of various DEGs, including sev-

eral disease-related and pathogenesis proteins, between
contrasting RACs point to the critical role of the central
immune system in conferring root-dependent fire blight
susceptibility/resistance reactions. Earlier studies have
reported that some of the disease-related CC-NBS-LRR
proteins confer major resistance against fire blight in
apples [39, 40]. These results suggest that gene interac-
tions between core defense pathways and system-level

metabolic and stress-responsive pathways may regulate
root-dependent fire blight susceptibility/resistance reac-
tions in apple. Moreover, these pathways may operate in
coordination with sugar and carbohydrate metabolic
pathways, which have demonstrated overrepresentation
in contrasting RACs investigated in this study. Thus, it
is likely that low root mass alters sink activities of a
plant, which in turn can modify expression patterns of
carbohydrate metabolism genes. Furthermore, changes
in carbohydrate metabolism can alter a plant’s defense
response through an inter-connected signaling network
of metabolic and stress-responsive genes. For example,
restriction of below-ground root growth can alter both
development and carbohydrate metabolism of above-
ground leaf tissues [47–49]. In addition, alteration in
metabolite levels in a source leaf can determine the
defense response against pathogen infection [50–52]. In
fact, detection of a single co-expression module, “C3”,
consisting of carbohydrate metabolism and disease-
related proteins further supports viability of such a
model in apple. Furthermore, presence of interacting
WRKY and ethylene responsive DNA-binding transcrip-
tion factors suggest transcriptional co-regulation of these
pathways. Thus, low root mass may lead to resource-
limiting conditions in the plant, thereby contributing to
changes in gene expression of pathogenesis and disease-
related proteins through carbohydrate metabolism path-
ways. It is these changes in expression in the central
plant immune system that would then eventually deter-
mine fire blight susceptibility levels in apple. These
results may add to the evidence that plants initiate a sys-
temic response against fire blight after sensing the
disease infection in inoculated scions, and transmit sig-
nals to the rootstock, which in turn contributes to dis-
ease tolerance/resistance through multiple mechanisms.
However, rootstocks can influence the disease severity in
grafted scions through multiple paths. For instance,
rootstock-regulated gene expression, mobile RNA signal-
ing between root-shoot, and nutrient-pathogen inter-
action as proposed in this study could be some of the
factors contributing towards rootstock effects on grafted
scions [4, 11, 25, 31].
It is important to point out that co-expression analysis

conducted in this study has also highlighted those core
genes with the highest intra-modular connectivity. In par-
ticular, the WRKY75 transcription factor and an UDP-
glycotransferase are the top two genes displaying highest
levels of connectivity within this network. Thus, these two
genes are deemed as worthy candidates for further studies
to assess their potential roles in various biotic and abiotic
stress conditions. Furthermore, it will be interesting to
identify those factors contributing to root-dependent dif-
ferences in levels of fire blight susceptibility/resistance,
which requires a rigorous experimental and functional
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validation of few candidate genes and is yet beyond the
scope of this manuscript.
The root system directly regulates amounts of nutrients

and water uptake, which in turn influence growth, physi-
ology, and metabolism of grafted scions [22, 33, 53]. As
smaller root systems can limit availability of nutrients or
impose partial stress conditions, this in turn can influence
levels of disease susceptibility. For instance, water deficit is
reported to increase plant susceptibility against fungal in-
fections in different plant species [54, 55]. This is partially
attributed to altered expression of host R genes and/or of
pathogen effectors [54]. In this study, contrasting expres-
sion patterns of several disease resistance genes and
leucine rich repeats have been detected between RAC-1
and RAC-4, thus suggesting incidence of changes in plant
immunity under low root surface areas. Similarly, nitrogen
availability can affect disease severity levels in plants [53,
56]; however, the precise mechanism of nutrient-
dependent changes in disease susceptibility levels remains
unknown. Therefore, further studies should be conducted
to determine the role(s) of resource limiting conditions
and those factors involved in differences in root-
dependent responses to fire blight susceptibility/resistance
reactions in above-ground plant tissues.
Future studies are also needed to obtain more accurate

estimates and interpretation of the relationships between
root traits and disease severity as high variation in dis-
ease severity between replicates of the same genotype
may have introduced noise in our analyses. Since several
factors can contribute towards the high variation within
genotypes, selection of uniform shoots at same age and
equal amount of bacterial inoculum is one simple way to
reduce this variation to some extent. In addition, using
an increased number of biological replicates might also
help to lower such variation within genotypes. Another
informative set of experiments will be to extend similar
analyses beyond the experimental time frame of this
study as the results from this study suggest that disease
progresses at different rates in plants with low and high
root surface area.

Conclusions
In summary, root traits can influence levels of fire blight
susceptibility of apples. An optimum root area threshold
is required to achieve the maximum tolerance against
fire blight; however, high plasticity of root traits can hin-
der maintenance of such an optimal root system in apple
rootstocks. Therefore, further studies should be con-
ducted to identify genes or growth conditions that con-
trol root size, branching, and root phenotypic plasticity,
as this new knowledge will assist in efforts to design
more uniform root systems for optimum vigor of clonal
apple rootstocks. In addition, manipulation of core
regulatory genes of stress-responsive pathways can

contribute to enhanced plant tolerance to abiotic and bi-
otic stresses imposed by restricted root growth and dis-
ease infection.

Methods
Plant material and growth conditions
One-year-old apple rootstocks of ‘Malling 7’ (‘M.7’), a
moderately fire blight-susceptible rootstock, were pur-
chased from Willamette Nurseries Inc. (Canby, OR), and
used in two different experiments. ‘M.7,’ a commercially
important apple rootstock, was originally selected from
traditional French rootstocks, known as ‘Doucin’, at East
Malling Research Station (UK).
To evaluate influence of root mass of rootstocks on fire

blight susceptibility of grafted scions, 45 different scion
genotypes were grafted onto 1-year-old ‘M.7’ rootstocks
(Additional file 1: Table S1). Bud-wood of scion genotypes
was collected from the US National Apple Collection that
is maintained from a long time at USDA-ARS Plant Gen-
etic Resources Unit (PGRU) located in Geneva, NY. These
grafted trees were maintained in a moist dark chamber for
a period of three months to promote healing of the graft
unions. Then, these grafted trees were planted in D40H
deepots (Stuewe and Sons, Tangent, OR), 6.5 cm in diam-
eter and 24.2 cm in depth, containing a standard Cornell
soil mix (50 peatmoss:50 vermiculite with 6.2 kg.m− 3 lime,
1.25 kg.m− 3 superphosphate, and 0.62 kg.m3 calcium
nitrate). These trees were allowed to acclimatize and grow
in a greenhouse facility at Cornell AgriTech (Geneva, NY)
maintained at 25 °C, 50% RH, and 16 h light/8 h dark
photoperiod for a period of 8 weeks. For each scion geno-
type, three replications were maintained in the greenhouse
facility at the Cornell AgriTech (Geneva, NY), and
arranged in a completely randomized block design.
To assess the effects of varying root mass (g) on fire

blight susceptibility, 21 non-grafted ‘M.7’ rootstocks
were used in a second experiment. One-year-1-year-
old ‘M.7’ rootstocks were pruned from the bottom up,
using Fiskars hedge shears, to alter the numbers of ad-
ventitious root nodes growing along each of the root-
stocks. The resulting rootstocks were photo-imaged,
and analyzed using ImageJ (https://imagej.nih.gov/ij/)
to identify four classes (RACs) that exhibit significantly
different root area from one another. These non-
grafted ‘M.7’ rootstocks were then potted in plastic
pots (26 cm in diameter and 22.5 cm in depth) using
the Cornell Soil mix as described above. For each RAC
rootstock treatment, three replications were used, and
these trees were maintained in the greenhouse facility
at Cornell AgriTech, arranged in a completely random-
ized block design, under conditions of 25 °C, 50% RH,
and 16 h light/8 h dark photoperiod for a period of
106 days.
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Fire blight inoculation and trait evaluation
Bacterial inoculum was prepared using a highly virulent
E. amylovora strain, Ea2002A obtained from Dr. Steve
Beer’s collection at Cornell University. Frozen inoculum
stock was transferred to a petri plate containing King’s B
medium (KB), and incubated for 48 h at 28 °C. Bacterial
cells were recovered in a suspension culture using 1X
PBS, and adjusted to a concentration of 109 CFU/ml on
a SmartSpec Plus Spectrophotometer (Bio-Rad Labora-
tories, Hercules, CA, USA).
Potted young trees were inoculated with either bacteria

(treatment) or water (control; only in second experiment)
for fire blight evaluation. The youngest unfolded leaf of an
actively growing shoot of a potted young tree was inocu-
lated by bisecting across the midribs using scissors dipped
in the bacterial suspension, as described earlier [38, 57].
Deionized water was used to bisect midribs of leaves of
control plants in the second experiment.
All inoculated young trees were evaluated 8 days after

inoculation (dai) for fire blight infection, and for root
traits. For both experiments, total shoot length, total leaf
length, and length of necrosis of a leaf were measured in
‘cm’ using a ruler. The percent leaf lesion length (%) was
calculated as the ratio of necrotic lesion length of a leaf to
total leaf length multiplied by 100. Furthermore, chloro-
phyll contents of control and infected leaves were
measured using a SPAD 502 Plus Chlorophyll Meter
(Spectrum Technologies, Aurora, IL, USA). Average roots
per node (count) and root dry mass (g) were simultan-
eously evaluated for all inoculated young trees (control
and fire blight treated). Average roots per node were cal-
culated by dividing total number of roots by number of
nodes of a rootstock cutting used. At the end of each ex-
periment at 8 dai, roots were shaved off each of the root-
stocks, and dried in an oven to determine dry root mass.
For the second experiment, additional root trait data

were digitally collected both at the beginning and at the
end of the experiment. The root system from each ‘M.7’
rootstock was photographed by rotating it 360 degrees
to capture the three-dimensional root surface area using
a Canon EOS Rebel T5 Digital SLR camera (Cannon
USA Inc., Melville, NY, USA). All raw images were first
converted into greyscales, and then followed by binary
conversion using the software ImageJ (https://imagej.nih.
gov/ij/). Binary images were used to calculate the total
root surface area (cm2) at the beginning of the experi-
ment. Rootstocks were categorized into four different
RACs, from lowest to highest root surface area (cm2). At
the end of the experiment, roots were carefully dug out,
and washed using a detergent and water. Roots were
then spread on a flat surface, and photographed using a
Canon EOS Rebel T5 Digital SLR camera. Photo-images
were processed using an ImageJ software to calculate
pre- and post-experiment root surface areas (cm2). Based

on digital root diameter classifications, the root system
of each young tree was separated into coarse (diameter >
1 mm) and fine (diameter < 1 mm) roots, dried in an
oven, and then used to determine fine root dry mass (g),
coarse root dry mass (g), and total root dry mass (g).

Statistical analysis
All data collected for root and shoot traits, as well as for
fire blight disease severity were used for statistical analysis.
To test the relationships between root dry mass (g) and
percent lesion length (%), the genotypes were grouped
into three categories based on percent lesion length as Re-
sistant (0–20% average PLL), Intermediate (21–80% aver-
age PLL), and Susceptible (81–100% average PLL). The
data was tested for normality using Shapiro-Wilk test in R
statistical software (http://www.R-project.org/) and log
transformation was used to normalize the non-normal
data. The normalized data was subjected to analysis of
variance (ANOVA) using an R statistical software (http://
www.R-project.org/). In addition, we also performed
Kruskal-Wallis test using the original non-normal dataset
to observe the significant differences. Mean values were
compared using Tukey’s multiple comparison test. Broad-
sense heritability (H2) was estimated as ratio of VG/VP,
where VP corresponded to the total phenotypic variance
explained by the genetic component variance (VG). The
absolute rate of disease progression was calculated as the
difference in PLL between day 8 and day 2, divided by
PLL at day 2.
Average trait values were used to calculate Pearson

correlation coefficients, as well as to perform hierarch-
ical clustering with the “hclust” function and a principal
component analysis (PCA) using “prcomp” function in R
(http://www.R-project.org/). Hierarchical clustering esti-
mated individual relationships based on extent of simi-
larities between them; whereas, PCA utilized variance
components to determine such relationships. Trait mean
values were scaled to conduct both hierarchical cluster-
ing and PCA analysis. For hierarchical clustering, scaled
trait datasets were used to generate a Euclidean distance
matrix for estimation of inter-cluster distance with
Ward’s linkage method. PCA analysis was conducted to
obtain principal component (PC) eigenvalues and rota-
tions to estimate contributions of different traits to ex-
plain variation by each PC. A PCA biplot was generated
using the first two principal components (PC1 and PC2)
to determine the overall genotypic variation and effects
of root dry mass (g) on disease severity.

Leaf sample harvesting, RNA extraction, 3’RNAseq assay
and sequencing
Leaf tissues from M.7 rootstocks of contrasting initial
root surface areas (cm2), in the second experiment, were
used for RNA extraction and for gene expression
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analysis. Leaves were collected at 4 and 8 dai from two
biological replicates of control and three biological repli-
cates of bacterial-inoculated young trees of two contrast-
ing RACs as described earlier [38, 57]. Leaf tissues were
immediately immersed in liquid nitrogen, and stored at
-80 °C until used for RNA extraction.
A SpectrumTM Plant Total RNA Kit (Sigma-Aldrich,

St. Louis, MO, USA) was used to extract total RNA as
per manufacturer’s protocol. Leaf tissues were ground
into fine powder in liquid nitrogen, and 100 mg of leaf
powder was transferred to 500 μl of lysis solution con-
taining 2% β-mercaptaethanol. Samples were thoroughly
mixed, placed at 56 °C for 5 min, and centrifuged for 1
min at 13,000 rpm. The supernatant was passed through
a filtration column at 13,000 rpm for 1 min to remove
debris. The cleared lysate was mixed with 250 μl binding
solution, and centrifuged through a binding column for
1 min at 13,000 rpm. After RNA binding, samples were
washed twice using 500 μl wash solution I, as per manu-
facturer’s recommendations. Columns were centrifuged
at maximum speed for 1 min during various washing
steps. Dry columns were transferred to a new 2ml cen-
trifuge tube, and 50 μl elution buffer was added into the
center of each binding column. Samples were kept in an
elution buffer for 1 min, centrifuged at a maximum
speed for 30 s to elute RNA, and then this was repeated
using 30 μl of elution buffer to increase RNA yield. The
amount of RNA was determined using a NanoDrop™
Spectrophotometer (Thermo Fisher Scientific, Grand Is-
land, NY, USA), and the quality of RNA samples was
assessed by running a 1% bleach agarose gel.
A total of 20 libraries were constructed and sequenced

for RNA samples from control and bacterial-inoculated
samples at the Genomics Facility at Cornell University
(Ithaca, NY, USA). Briefly, 3’RNAseq libraries were pre-
pared from ~ 500 ng of total RNA per sample using the
Lexogen QuantSeq 3′ mRNA-Seq Library Prep Kit FWD
for Illumina (https://www.lexogen.com/quantseq-3mrna-
sequencing/). Libraries were quantified on a Molecular
Devices Spectra Max M2 plate reader (with the intercalat-
ing dye QuantiFluor), and pooled accordingly for max-
imum evenness. The pooled sample was quantified by
digital PCR, and sequenced along a single lane of an Illu-
mina NextSeq500 sequencer to obtain single-end 1 × 86
bp sequences. Pooled libraries were de-multiplexed based
upon six-base i7 indices using an Illumina bcl2fastq2 soft-
ware (version 2.17; Illumina, Inc., San Diego, CA, USA).

Sequencing data processing and analysis
A Trimmomatic (version 0.36) [58] software was used to
remove Illumina adapters from de-multiplexed fastq se-
quences, as well as to remove low-quality reads for fur-
ther analysis. Poly-A tails and poly-G stretches of at
least 10 bases in length were then removed using the

BBDuk program in the package BBMap (https://source-
forge.net/projects/bbmap/), but keeping reads of at least
18 bases in length after trimming. Often, poly-G
stretches are obtained from sequencing past ends of
short fragments (G = no signal).
Trimmed reads were then aligned to the GDDH13

Version 1.1 apple genome assembly (https://iris.angers.
inra.fr/gddh13/downloads/GDDH13_1-1_formatted.fasta.
bz2) using the STAR aligner (version 2.5.3a) [59]. For the
STAR indexing step, the gff3 annotation file (https://iris.
angers.inra.fr/gddh13/downloads/gene_models_20170612.
gff3.bz2) was converted into a gtf format the gffread pro-
gram from cufflinks (version 2.2.1) [60]. Key parameters
used in the STAR indexing step (−-runMode genome-
Generate) include --genomeChrBinNbits 18 and --sjdbO-
verhang 100. The STAR alignment step used the following
key parameters: --outReadsUnmapped Fastx, −-outFilter-
MultimapNmax 10, −-outFilterMismatchNoverLmax 0.06,
−-outSAMmode Full, −-outSAMattributes Standard,
−-outFilterIntronMotifs, and RemoveNoncanonicalUnan-
notated. Output SAM files were converted to BAM using
SAMtools (version 1.6) [61], and numbers of reads over-
lapping each gene in the gff3 file along the forward strand
were counted using a HTSeq-count (version 0.6.1) [62]. A
gene was deemed to be expressed using a criterion of
detecting a minimum of five aligned high-quality read
sequences against a particular gene model.

Gene expression and enrichment analysis
The R package DESeq2 (version 1.20.0) [63] was used to
obtain normalized counts from raw read counts. These
counts were then used to conduct PCA of the 500 most
variably-expressed genes following count normalization
and variance stabilizing transformation, as well as for dif-
ferential gene expression analysis. Control and bacterial-
inoculated samples of each root class and time points were
compared by deeming root class, time point, and inocula-
tion treatment as distinct factors. The “contrast” function
in DESeq2 was used to obtain expression analysis output
for each comparison. For each gene, statistical significance
of differential expression was based on a Wald test for a
non-zero log fold change (LFC) estimate obtained from
fitting a negative binomial generalized linear model [63].
Adjustment of p-values for multiple testing followed the
Benjamini and Hochberg method [64]. Genes were
deemed differentially expressed based on a log2Fold
change threshold of 1.5 and a p-value of less than 0.01. All
upregulated genes were determined based on positive
log2Fold change values, and vice-versa.
Sets of differentially expressed genes from individual

comparisons were used to perform a gene ontology (GO)
term enrichment analysis using Fisher’s exact test with
agriGO v2.0 [65]. Differentially expressed genes (DEGs)
were compared to the complete set of fully-annotated
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genes in the GDDH13 Version 1.1 apple genome assem-
bly. Estimated p-values were corrected using the Hoch-
berg false discovery rate (FDR) correction method in
agriGO v2.0. A p-value cutoff of less than 0.05 was used
to determine significantly enriched GO terms.

Gene co-expression network analysis
A co-expression network analysis of DE genes was per-
formed using the weighted gene co-expression network
analysis (WGCNA) package in R [66] to obtain modules of
genes having similar expression patterns. A list of unique
DE genes from each comparison was established by remov-
ing redundant genes from various differential gene expres-
sion analyses. Subsequently, normalized gene expression
values for these unique DEGs were extracted to perform a
co-expression network analysis. Co-expressed gene mod-
ules were then built using a single-step network generation
and a module detection approach in WGCNA. Specifically,
a network was generated by connecting all expression
values in a dataset followed by detection of modules exhi-
biting very similar patterns of gene expression. A threshold
value for module assignments was estimated using an un-
signed topological overlap matrix (TOM); whereas, net-
works were constructed using a threshold power of 16,
branch cut height of 0.25, and a minimum module size of
30. These co-expression modules were then visualized in
Cytoscape v3.7.1 [67], and those highly connected genes,
within each module, were identified using cytoHubba plu-
gin [68] in Cytoscape. These modules were exported from
WGCNA using a threshold of 0.2, and the top 20 highly
connected genes were identified using four different algo-
rithms including MCC, MNC, Degree, and EPC, imple-
mented in cytoHubba. Finally, outputs were compared to
select those hub genes that were consistently detected from
all the four algorithms.
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