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Abstract

Background: The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera
(O), native to the Americas, and Elaeis guineensis (G), native to Africa. This work provides to our knowledge, the first
association mapping study in an interspecific OxG oil palm population, which shows tolerance to pests and
diseases, high oil quality, and acceptable fruit bunch production.

Results: Using genotyping-by-sequencing (GBS), we identified a total of 3776 single nucleotide polymorphisms
(SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrid population for 10
agronomic traits. Twelve genomic regions (SNPs) were located near candidate genes implicated in multiple
functional categories, such as tissue growth, cellular trafficking, and physiological processes.

Conclusions: We provide new insights on genomic regions that mapped on candidate genes involved in plant
architecture and yield. These potential candidate genes need to be confirmed for future targeted functional
analyses. Associated markers to the traits of interest may be valuable resources for the development of marker-
assisted selection in oil palm breeding.

Keywords: Association mapping, Elaeis guineensis, Elaeis oleifera, Genotyping-by-sequencing, Plant architecture,
Yield

Background
The oil palm is an important crop that has a higher
quality oil and a greater yield potential compared to
other oil-producing crops [1]. Colombia is the fourth-
largest oil palm producer worldwide with 1.8 million
tons produced for the year 2018 and a yield of 3.8 tons/
ha, placing the country above the average global yield
[2]. Within the Arecaceae family, the African oil palm
(Elaeis guineensis), native to West Africa, is the primary
source of most of the vegetable oil found worldwide [3].
However, another palm species known as the American

oil palm (Elaeis oleifera), which is native to the tropics of
Central and South America, is recognized for its high yield
production [3]. Both palm species are perennial monocots
with lifespans of approximately 25 years [4], which results
in slow breeding processes. The Corporación Colombiana
de Investigación Agropecuaria (Agrosavia) established a
breeding program focused on developing OxG interspe-
cific hybrids (E. oleifera x E. guineensis). The OxG is char-
acterized by having slow trunk growth [5], tolerance to
bud rot [6–9], and red ring diseases [10] in comparison to
the parent species. Additionally, these OxG populations
inherited the parthenocarpic fruit development of E. olei-
fera, which allows the production of seedless fruits [11].
Saturated genetic linkage maps are essential for the

identification of genomic regions associated with major
genes and with quantitative trait loci (QTLs) that control
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agronomic traits. Over the last 20 years, multiple genetic
maps of the oil palm have been constructed. The first
such map was generated using restriction fragment
length polymorphisms (RFLPs) and amplified fragment
length polymorphisms (AFLPs) [12, 13]. Dense genetic
maps were subsequently constructed using simple se-
quence repeats (SSRs) and single nucleotide polymorph-
ism (SNP) markers, which have also been used for QTL
identification. Using this approach, Jeennor and Volkaert
[14] identified a QTL associated with bunch weight
using a mapping population of 69 accessions and gener-
ated a genetic map with 89 SSRs and 101 SNPs. Further,
Billotte et al. [15] used a multi-parent linkage map elab-
orated with 251 SSRs and reported QTLs associated with
bunch traits. Similar approaches have enabled the identi-
fication of 164 QTLs associated with 21 oil yield compo-
nents using SSR, AFLP, and RFLP markers [16].
In recent years, advances in next-generation sequencing

technology have lowered DNA sequencing costs and
thousands of SNPs have now been obtained [17, 18]. In
particular, genotyping-by-sequencing (GBS) is a rapid,
low-cost, and robust approach for screening breeding
populations using SNPs [19]. Pootakham et al. [20] con-
structed an oil palm map using an F2 population and 1085
SNPs derived from GBS and were able to identify QTLs
for height and fruit bunch weight. Similarly, a genome-
wide association analysis (GWAS), using a larger number
of SNPs (4031) derived from GBS across a diverse panel
of E. guineensis, allowed the identification of novel QTLs
associated with the increase in trunk height [21].
GWAS has been proposed as a much more robust ap-

proach compared to QTL linkage mapping [22]. The use
of a wide range of genetic backgrounds in GWAS ana-
lyses increases the probability of detecting QTL regions
associated with traits of interest, compared to the limited
genetic variation of a bi-parental mapping population
[23]. However, the limitations of GWAS, such as the
effect of population structure, can lead to spurious asso-
ciations between a candidate marker and a specific

phenotypic trait [24]. To eliminate such association, the
mixed linear model incorporates structure data (Q) and
relative kinship effects (K), resulting in the reduction of
false-positive associations [25].
Given palm oil’s use in numerous prepared foods and

industrial and medical applications, the economic im-
portance of this crop has experienced rapid growth and
palm oil is now the second most traded vegetable oil
world-wide after soybean [26, 27]. The demand for this
crop is increasing due to a shift away from trans-fats to
healthier alternatives [28], and because its residues can
be processed to produce biofuel [27]. For these reasons,
the identification of specific genomic regions whose
genes are involved in morphological traits, such as
height and foliar area, and the relationship between
these traits and productivity, is becoming increasingly
important for this crop.
Although previous studies have identified QTLs con-

trolling morphological and yield-related traits in oil
palm, these QTLs were detected using intraspecific pop-
ulations. Our study is the first report in which molecular
markers have been mapped through association analysis
in an interspecific OxG population. Our study aims
were: (i) genotype an OxG oil palm mapping population;
and (ii) perform GWAS to identify loci or candidate
genes involved in morphological and yield-related traits
for future use in breeding programs.

Results
Analysis of phenotypic data
Means, standard deviations, and range values of the
phenotypic data for the population of 378 OxG hybrids
are shown in Table 1. The first principal component
(PC1) explained 45.6% of the total phenotypic variation,
where morphological-related traits, such as leaf area
(LA), foliar area (FA), leaf dry weight (LDW), and trunk
height (HT) contributed extensively to this component.
Meanwhile, the second principal component (PC2) ex-
plained 19.9% of the variance, associated mainly with

Table 1 Mean values, standard deviations (SD) and minimum and maximum values of the phenotypic traits used in this study

Category Trait Abbreviation Unit Mean SD Minimum value Maximum value

Morphological Trunk Diameter TD cm 88.5 6.0 62.4 102.0

Trunk Height HT cm 250.3 29.5 133.3 327.0

Rachis Length RL cm 421.5 35.3 275.5 530.0

Leaf Dry Weight LDW kg 2.2 0.3 1.3 3.7

Foliar Area FA m2 385.0 78.2 141.3 617.1

Leaf Area LA m2 8.6 1.3 4.7 12.7

Leaflet per Leaf LXL unit 234.8 14.8 184.0 294.0

Yield Bunch Weight BW kg 6.1 1.8 1.0 19.5

Bunch Number BN unit 8.8 5.0 1.0 27.0

Yield per Palm Yield kg 56.5 39.1 1.8 233.0
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yield-related traits (Fig. 1a-b). Positive correlations were
observed between most of the morphological traits (r =
0.1 to 0.8), while lower correlation values were found
between yield and most of the morphological traits (r ≤
0.3) (Fig. 1b). Notably, HT was correlated with FA, LA,
LDW and trunk diameter (TD) (r ≥ 0.6), whereas yield
was highly correlated with bunch number (BN) (r =
0.91); furthermore, it also showed a weaker correlation
with bunch weight (BW) (r = 0.57).
A hierarchical cluster analysis was performed to evaluate

the phenotypic similarity among the 378 OxG hybrids
(Fig. 2; Additional file 1: Table S1). We found phenotypic

differences between the two clusters to agree with the
variability of the morphological-related traits. Overall,
Group II showed the highest mean values for all the
morphological-related traits (Additional file 3: Figure S1),
e.g., OxG individuals from Group II were significantly taller
(HT = 269 ± 21 cm) compared to OxG from Group I (HT =
238 ± 28 cm) (p ≤ 0.0001). However, yield-related traits
had no significant differences between groups.

SNP calling
A total of 1,058,182,456 raw Illumina sequencing
reads from seven Illumina HiSeq lanes were generated

Fig. 1 a Scree plot calculated across 10 traits for a population of 378 E. oleifera x E. guineensis (OxG) individuals; b Principal components loading
plot for the population of 378 OxG for PC1 & PC2 calculated across 10 traits; c Correlation among 10 traits of the 378 OxG. TD = Trunk Diameter,
HT = Trunk Height, RL = Rachis Length, LDW = Leaf Dry Weight, FA = Foliar Area, LA = Leaf Area, LXL = Leaflet per Leaf, BW = Bunch Weight, BN =
Bunch number, and Yield = Yield per Palm. Color boxes indicate significant correlations (p≤ 0.01), and white boxes indicate coefficients
with p≥ 0.01
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for 471 palms (62 E. oleifera (O), 31 E. guineensis (G), and
378 (OxG)). The genotyping of the collection detected
131,825 SNPs covering 16 oil palm chromosomes. After
filtering, 3776 SNPs with an average of 236 SNPs per
chromosome were retained (Additional file 2: Table S2).

Cluster and association analyses
The neighbor-joining (NJ) analysis of the entire popula-
tion (471 palms) (Fig. 3a) showed two main groups con-
taining E. oleifera and E. guineensis, as well as three
groups within the OxG population, as follows: One
group was more similar to E. guineensis, another was
more similar to E. oleifera, and the largest group showed
an intermediate similarity to both parental species. The
three groups in the OxG population represented the
classic distribution of crosses between two highly hetero-
zygous diploids (Aa x Aa) with a genotypic segregation
ratio of 1:2:1.
The PCA analysis of the OxG population (378 hybrids)

showed that the first three components comprised ap-
proximately 15.47% of the total variation and allowed
the population to be categorized into three groups,
thereby supporting the results observed in the NJ tree in
accordance with the segregating nature of our popula-
tion (Fig. 3b).
We performed the association analysis on the 378

OxG hybrids and 3776 SNPs for seven morphological
traits and three yield-related traits (Table 1). Twelve
SNPs were most significantly associated with the traits
measured, based on p-values across different genomic

regions of the oil palm genome before the false discovery
rate (FDR) correction (Table 2). Common SNPs for ra-
chis length (RL) and leaflet per leaf (LXL) were observed,
as well as for HT and LA, and between yield and BN,
following the results from the phenotypic correlations.
The Q-Q plots (Fig. 4) significantly supported the evi-
dence for SNP associations with the traits (p ≤ 0.005)
and suggested that population stratification in the
GWAS model was adequately controlled.
The availability of the oil palm genome sequence [29]

enabled the association of specific QTLs with genomic
regions on the physical map and the exploration of po-
tential candidate genes and their possible functions. On
chromosomes 3, 13, and 15, we identified 10 significant
SNPs located on genomic regions harboring genes asso-
ciated with the morphological-related traits before the
FDR correction (Fig. 4 and Table 2). For yield-related
traits, we observed two SNPs into two candidate genes
on chromosomes 5 and 10, which were non-significant
after carrying out the FDR correction (Fig. 4, Table 2).
We evaluated whether the SNPs found in association
with traits were in chromosomes with a larger number
of markers to assess whether our results could have
arisen from biases in the genotyping. The associated
SNPs found in this study (chromosomes 3, 5, 10, 13, and
15) were not located in the chromosomes with higher
numbers of SNPs as identified by the GBS approach
(Additional file 2: Table S2).
The pair-wise linkage disequilibrium (LD) between the

SNPs of the chromosomes that were presented in the

Fig. 2 Hierarchical cluster analysis of the OxG population calculated across 10 phenotypic traits. Three hundred seventy-eight individuals were
clustered using Ward’s method and the squared Euclidean distance
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genomic regions associated with the evaluated traits is
illustrated in Additional file 4: Figure S2. The LD
blocks were small for all chromosomes shown, which
was expected, considering the out-crossing nature of
the species.

Discussion
Improving oil quality and increasing yield per hectare in
oil palm are major concerns in the oil processing
industry. The Corporación Colombiana de Investigación
Agropecuaria (Agrosavia), a non-profit government

Fig. 3 a Neighbor-Joining tree of 471 diverse oil palms (62 E. oleifera (O), 31 E. guineensis (G), and 378 (OxG)) based on Nei’s genetic distance; b
Principal component analysis (PCA) of 378 individuals of the OxG population separated into two groups. Both analyses were based on 3776 SNPs
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research institution, is committed to delivering solutions
to farmers, incorporating cultivars developed from breed-
ing programs that include the oil palm. Its strategy has fo-
cused on developing interspecific OxG that present
heterosis in traits such as resistance to diseases, fruit num-
ber, fruit weight, leaf length, and trunk diameter [30]. To
our knowledge, this study is the first GWAS analysis of an
OxG population.

Phenotypic data
Correlation analysis results for yield-related traits indi-
cated that BN could have the potential to be a better se-
lection criterion for production compared to BW in the
OxG population. In our study, no significant correlations
between yield and leaf-related traits (FA, LA, LDW,
LXL, RL) were found; however, a previous study in E.
oleifera and with OxG hybrids found that BN can be
higher than the number of leaves, but only at the time
when oil palms are producing multiple inflorescences
[31]. Increases in BN and BW are also expected to
correlate with increased mesocarp and kernel oil yields,
as shown in other oil palm germplasm studies [32].
Future studies directed to improve the oil yields should
be conducted considering the importance of this aspect
of oil palm breeding.

Association analysis
In the current study, we generated sequencing data using
GBS, a technology developed for crop plants [19]. GBS

relies on restriction enzymes to generate a reduced repre-
sentation of locations spread throughout the genome to
decrease its complexity and rapidly genotype samples
using interspaced SNP markers [33], that could be linked
to candidate genes responsible for important traits. For
this reason, GBS has gained popularity in crop research
and plant breeding due to its high throughput and low-
cost genotyping, being suitable for population studies,
germplasm characterization, genetic improvement, and
trait mapping in a variety of diverse organisms [34].
With the association mapping, 12 genomic regions

(SNPs) related to 10 morphological and yield-related
traits were identified (Table 2). However, only five re-
gions associated with LDW, TD, RL, and LXL remained
significant (p ≤ 0.05) after the FDR correction was
performed. Importantly, the SNPs found to have a statis-
tically significant association with the trait are not neces-
sarily the causal DNA variant, that is, a variant that has
a direct effect. The association only signifies that the
SNP locus harbors a causal variant in LD with the SNP
identified by the GWAS.
The small LD blocks in the heat map analysis could

suggest that the causal regions are located near to the
most significant SNPs. Thus, the identified SNP in this
study serves as a signpost defining an interval in the
genome for which one must do follow-up studies to de-
termine the causal variant(s).
Therefore, we describe the five most significant re-

gions and the genes located within those regions that

Fig. 4 Manhattan and Q-Q plots of the 378 OxG population, indicating genomic regions associated with leaf dry weight (LDW), trunk diameter
(TD), trunk height (HT), rachis length (RL), yield per palm, and bunch weight (BW). The red horizontal line indicates the significant
association threshold
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might be potential candidate genes involved in the ex-
pression of the phenotypic traits evaluated in this study.
For morphological traits, a significant association was
found for LDW on chromosome 3, explaining 10% of
the phenotypic variation. The most significant SNP in
this region was located in a mechanosensitive (MS) ion
channel protein 10-like (MSL10) gene. It has been pro-
posed that the MS ion channels in plants play a wide
array of roles, from facilitating the perception of touch
and of gravity to regulating the osmotic homeostasis of
intracellular organelles [35]. In addition, mechanoper-
ception genes are essential for the growth and develop-
ment of normal cells and tissue as well as for the proper
responses to an array of biotic and abiotic stresses [36].
A second significant region was identified associated
with TD on chromosome 15 that contains a gene in-
volved in nucleic acid binding that has a C2H2-type zinc
finger domain. It has been proposed that the C2H2-ZF
gene family is involved in the formation of wood and in
shoot and cambium development in species such as pop-
lar, and that it also plays a role in stress and phytohor-
mone responses [37].
For RL and LXL traits, QTLs have been reported on

chromosomes 2, 4, 10, and 16 [32]. In our study, three
SNPs were associated with three different candidate
genes for RL on chromosome 13. The SNP S13_20,856,
724 is the closest to the AGC3 gene and encodes differ-
ent G proteins. These have been reported to be involved
in a wide range of developmental and physiological pro-
cesses, and therefore have a potential for facilitating
yield improvement in crops such as rice [38]. The
second significant association was found with the SNP
S13_23,674,227, which is located in an extracellular ribo-
nuclease gene (RNase gene). The RNase genes in plants
have been studied for years and play an essential role in
plant defense [39] and development due to their ability
to modify RNA levels and thereby influence protein
synthesis [40]. Finally, the SNP S13_25,522,088 was also
significantly associated with RL and LXL, but further
studies are necessary to determine its role, if any, in
regulating these traits.
Seven SNPs were no longer significant after the FDR

correction, possibly due to the reduced sample size used.
QTL and association studies are limited by the relatively
small mapping population sizes, resulting in low statistical
power and thus rendering small or even medium-effect
QTLs that are statistically non-significant and difficult to
detect. Such statistically underpowered populations may
also suffer from severe inflation of effect size estimates
(the so-called Beavis effect) [41]. Hence, increasing the
population size and marker density is required to enable
estimations that are unbiased by the Beavis effect and
achieve higher statistical power [41–43]; nonetheless, for
perennial populations (long generation time) with limited

offspring numbers, the size increase would require a con-
siderable investment.
For the oil palm, the harvesting of fruit bunches after

the palm has reached a certain age is an arduous task
due to the height of the trunk. For this reason, genotypes
with reduced HT and TD are preferred among oil palm
farmers. Likewise, a larger foliar area (dependent on RL
and LDW) is related to greater photosynthetic produc-
tion, which could be involved in higher productivity.
Nevertheless, most importantly, increasing the number
and weight of fruits means a higher productivity per
palm and therefore a higher income for farmers. For this
reason, leveraging QTLs or genes related to these traits
(such the ones we identify in this study) could contribute
to the development of plant breeding strategies, such as
marker-assisted selection that help with the selection of
promising accessions in earlier stages (i.e., greenhouse
conditions) and therefore reduce the breeding cycle.
There is need for further work that focuses on the bio-
logical functions of the set of potential candidate genes
found in our research since the correlations we have
identified in our association study cannot, as yet, be
dubbed as causations.

Conclusions
Our study is the first to report five significant genomic
regions associated with morphological and yield-related
traits based upon GWAS on an interspecific OxG oil
palm population. Genes whose functional annotations
are potentially related to the corresponding traits are lo-
cated within these regions and, therefore, these might
represent candidate genes for the QTLs. Our results will
provide the groundwork for the development of marker-
assisted breeding in the oil palm and will serve as a
strong base for future functional studies to determine
the drivers of high yield production.

Methods
Plant material
A total of 471 diverse oil palms (62 E. oleifera (O) acces-
sions, 31 E. guineensis (G) accessions, and 378 OxG
hybrids) from the El Mira and La Libertad research cen-
ters of the Corporación Colombiana de Investigación
Agropecuaria (Agrosavia) [44], were included in this
research. The OxG population was obtained through
eight different crossings (eight different E. oleifera acces-
sions as female progenitors were crossed with one E.
guineensis accession as the male progenitor); however,
the parents of these crossings are currently dead. Details
of the crosses and the origins of individuals are given in
Additional file 1: Table S1. The plant material belongs to
the National Germplasm Collection of Colombia main-
tained by Agrosavia. All samples were collected follow-
ing national regulations.
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Phenotyping
Phenotypic data were collected for the subset of 378
OxG hybrids, that were planted in a quincunx or tri-
angular system with 10m between the plants at El Mira
research center of Agrosavia in Tumaco, Colombia.
Plants were randomly distributed using a completely
randomized block design with four blocks.
A total of 10 traits (Table 1) distributed between two

categories (morphological and yield-related), were evalu-
ated as follows: i) Morphological category (seven traits):
Trunk Diameter (TD, trunk circumference at the mid-
section), Trunk Height (HT, distance between the lowest
green leaves and the fruit), Rachis Length (RL, measured
on fully expanded leaves), Leaf Dry Weight (LDW, mean
dry weight per leaf multiplied by the number of leaves
produced), Foliar Area (FA, mean area per leaf multi-
plied by the number of leaves per palm), Leaf Area (LA,
mean area per leaf), and Leaflet per Leaf (LXL, length of
the largest leaflet). ii) Yield-related category (three
traits): Bunch Weight (BW, the weight of fruits during
harvest), Bunch number (BN, the number of fruits per
palm during harvest), and Yield per Palm (Yield, kg of
fruits per palm per year). Each trait was measured
according to the methodology presented by Corley et al.
[45] and Breure [46].

Statistical analysis of phenotypic data
The correlations among traits were calculated using
Pearson’s correlation coefficient (r) with p ≤ 0.05. To as-
sess the relationships between the studied traits, a prin-
cipal component analysis (PCA) was carried out. Finally,
a hierarchical cluster analysis using Ward’s method was
carried out to analyze the relationships between hybrids.
Differences between clusters by trait were established
using a t-test with p ≤ 0.0001. All statistical analyses were
performed using the R v3.42 software [47].

Genotyping
Genomic DNA of 471 palms was extracted from leaf
tissue using the DNeasy Plant Mini Kit (QIAGEN,
Germany). The DNA quality was estimated using the
HindIII enzyme and visualized by electrophoresis on 2%
agarose gels. The GBS libraries were constructed with
the methylation-sensitive restriction enzyme PstI (CTGC
AG). Sequencing was performed with 100-bp single-end
reads using the Illumina HiSeq 2000 platform (Illumina
Inc., United States) at the Institute of Genomic Diversity
(Cornell University, Ithaca, NY, United States).

SNP discovery and data processing
Illumina reads were demultiplexed using the standard
pipeline from Tassel v4.5.9 software [48]. Then, reads
were mapped to the oil palm reference genome of E. gui-
neensis [49] using Bowtie2 [50] employing the very-

sensitive option. SNP calling was performed using the
following parameters: minor allele frequency (MAF) <
5%, minimum locus coverage (mnLCov) of 0.9, mini-
mum site coverage (mnScov) of 0.7 and minimum taxon
coverage (mnTCov) of 0.5. Finally, SNPs were filtered
using the VCFtools v0.1.13 software [51] to remove 95%
of missing data and to retain biallelic SNPs.

Cluster and marker-trait association analyses
The clustering analysis for all 471 oil palms was per-
formed by a neighbor-joining algorithm using Tassel
v4.3.5 [48] and was visualized with Figtree v1.4.0 [52].
The population structure for the 378 OxG hybrids was
evaluated through a PCA using the SNPrelate [53] pro-
cedure in the R package. Associations between molecu-
lar markers and phenotypic data were computed using
the mixed linear model in the software GAPIT (Genome
Association and Prediction Integrated Tool) [54]. To
avoid any possible bias caused by population structure,
we included the first five principal components of the
PCA and a relatedness (kinship) matrix from GAPIT in
the mixed linear model. Quantile-quantile (Q-Q) plots
using the observed −log10 p-values and the expected
−log10 p-values were generated to study the appropriate-
ness of the GWAS model. A false discovery rate (FDR)
[55] was used to correct for spurious associations.
The heat map of the linkage disequilibrium (LD) was

generated with a custom script by plotting pairwise R2

values against the physical distance (base pairs) between
markers on the same chromosome.

Potential candidate gene identification
The physical positions of the SNP markers were ob-
tained from the Genomsawit website of the International
Malaysian Oil Palm Genome Programme (http://
gbrowse.mpob.gov.my/fgb2/gbrowse/Eg5_1/). Gene an-
notations under the candidate gene regions were estab-
lished using published genome information for E.
guineensis [49]. The flanking sequences of SNPs to as-
sign the putative biological functions of significant SNP
markers associated with the traits were queried against
databases, such as HMMER (https://www.ebi.ac.uk/Tools/
hmmer/) and NCBI (http://www.ncbi.nlm.nih.gov/), and
those of the European Molecular Biology Laboratory
(http://www.ebi.ac.uk/) and the European Nucleotide
Archive (http://www.ebi.ac.uk/ena).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12870-019-2153-8.

Additional file 1: Table S1. List of the OxG and parentals oil palms
used in this study.
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Additional file 2: Table S2. SNPs identified per chromosome using the
reference genome of E. guineensis.

Additional file 3: Figure S1. Box plots of the two cluster groups for all
morphological and yield-related traits. * = significant at p≤ 0.0001, ns =
non-significant.

Additional file 4: Figure S2. Linkage disequilibrium (LD) heat map for
each chromosome with significant associated SNPs in an OxG
population.
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