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Abstract

Background: Salinity is one of the damaging abiotic stress factor. Proper management techniques have been
proposed to considerably lower the intensity of salinity on crop growth and productivity. Therefore experiments
were conducted to assess the role of improved nitrogen (N) supplementation on the growth and salinity stress
tolerance in wheat by analyzing the antioxidants, osmolytes and secondary metabolites.

Results: Salinity (100 mM NaCl) stress imparted deleterious effects on the chlorophyll and carotenoid synthesis as
well as the photosynthetic efficiency. N supplementation resulted in increased photosynthetic rate, stomatal
conductance and internal CO, concentration with effects being much obvious in seedlings treated with higher N
dose. Under non-saline conditions at both N levels, protease and lipoxygenase activity reduced significantly
reflecting in reduced oxidative damage. Such effects were accompanied by reduced generation of toxic radicals like
hydrogen peroxide and superoxide, and lipid peroxidation in N supplemented seedlings. Antioxidant defence
system was up-regulated under saline and non-saline growth conditions due to N supplementation leading to
protection of major cellular processes like photosynthesis, membrane structure and function, and mineral
assimilation. Increased osmolyte and secondary metabolite accumulation, and redox components in N
supplemented plants regulated the ROS metabolism and NaCl tolerance by further strengthening the antioxidant
mechanisms.

Conclusions: Findings of present study suggest that N availability regulated the salinity tolerance by reducing Na
uptake and strengthening the key tolerance mechanisms.
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Background

Plants are continuously confronted by variety of environ-
mental stresses resulting in significant growth retardation
and vyield reduction. Salinity stress is considered as one of
the damaging abiotic stress factor affecting metabolism and
productivity of crop plants allover the globe [1, 2]. Increas-
ing salinity has been considered as global threat to food se-
curity causing significant conversion of agricultural arable
land into unproductive waste land. Salinity affects mineral
uptake and assimilation, enzyme activity, photosynthesis,
protein expression and hormone metabolism [2, 3]. Excess
salt concentrations in growth medium induces osmotic and
ionic stress resulting in occurrence of obvious growth
changes including reduced leaf area, necrosis and abscission
[4, 5]. Tolerance to salinity is a complex trait involving sev-
eral physiological, biochemical, molecular and gene net-
works [6]. Salinity disturbs the ionic balance resulting in
reduction of water content, and oxidative damage due to
accumulation of excess reactive oxygen species (ROS) lead-
ing to peroxidation of lipids [3, 7]. It is essential to identify
the physio-biochemical and molecular attributes for enhan-
cing the salinity tolerance [6]. Salinity stress has been re-
ported to affect the uptake and metabolism of essential
elements like N, P, K, S and Ca leading to significant alter-
ations in the photosynthetic efficiency and the tolerance
mechanisms involved [1, 7]. Among the most deleterious
products of saline environment are included the ROS like
superoxide, hydrogen peroxide, peroxide and hydroxyl rad-
ical [1, 8]. To avoid the salinity mediated growth restric-
tions plants up-regulate certain indigenously occurring
tolerance mechanisms like antioxidant system, osmolyte
and secondary metabolite accumulation [6, 9]. Salinity in-
duced increase in ROS results in oxidative damage to im-
portant molecules including proteins, lipids, nucleic acids
etc. Increased ROS accumulation hampers redox homeo-
stasis declining the photosynthetic efficiency [7], and nutri-
ent and osmolyte metabolism [1]. For assuaging the salinity
mediated ROS-induced deleterious effects on growth the
antioxidant system and osmoregulatory components are
up-regulated [2]. In addition to this salt exclusion at root
and vacuole level is considered as an important key mech-
anism regulating tolerance in plants [10, 11]. It has been re-
ported that plants displaying greater antioxidant and
osmolyte metabolism in addition of the selective accumula-
tion of mineral ions exhibit increased tolerance to salinity
[2, 7]. Every cellular compartment has its own set of ROS-
producing and -neutralising pathways for maintaining the
steady-state levels of ROS and the redox state, thereby giv-
ing rise to distinct ROS signatures in different cellular com-
partments [1, 8, 12]. It is believed that different ROS
signatures determine the stress acclimation specificity by
mediating systemic signalling. Antioxidant system is consti-
tuted of both enzymatic and non-enzymatic components
[12, 13]. Compatible osmolytes like proline, glycine betaine

Page 2 of 12

and sugars assist the antioxidant system in neutralising the
excess ROS. Osmolytes act as nutrient and metabolite sig-
nalling molecules activating specific or hormone crosstalk
transduction pathways and modify gene expression and
proteomic patterns [13]. Nitrogen (N), a macroelement
which is actively involved in regulation of enzyme activity,
photosynthesis, protein synthesis, antioxidant and osmolyte
metabolism [14—16]. N forms the component of major
molecules including nucleic acids, proteins, chlorophylls
etc. and its deficient availability results in oxidative damage
to membranes, photosynthetic inhibition and impeded nu-
trient uptake [17, 18]. N availability regulates the synthesis
of hormones, osmolytes [16, 19], secondary metabolites
[20] and the activity of antioxidant system [15]. Earlier
Ahanger and Agarwal [1, 21] have reported that up-
regulated antioxidant and osmolyte metabolism prevents
salinity and water stress mediated growth inhibition by pro-
tecting nitrogen and secondary metabolite metabolism.
However, the role of N availability in regulation of antioxi-
dant, osmolyte and secondary metabolism under salinity
stress remains to be least researched area. It is with this
backdrop we hypothesized that (a) whether N supplemen-
tation modulates antioxidant, osmolyte and secondary me-
tabolite metabolism for enhancing the salinity tolerance,
and (b) the effectivity of improved N supplementation in
the alleviation of salinity mediated changes in growth and
physio-biochemical attributes.

Results

N supplementation reduced Na accumulation and
improved K uptake

Results regarding the effect of N availability on the up-
take of Na and K are shown in Table 1. Relative to con-
trol, accumulation of Na increased by 56.94% due to
NaCl treatment which was declined by 40.36 and 56.15%
due to supplementation of N at 50 and 100 mg kg™ " soil
(N1 and N2) respectively over the NaCl stressed coun-
terparts. Under normal conditions, supplementation of
N significantly reduced Na accumulation with maximal
decline of 65.05% observed with 100 mgkg ' (N2). K
uptake was significantly improved by increasing N sup-
plementation attaining maximal increase of 32.74% with
N2. Nitrogen supplementation proved beneficial in redu-
cing the NaCl mediated decline in K with percent ameli-
oration of 18.50 and 34.63% at N1 and N2 respectively
over the NaCl stressed plants (Table 1).

Pigment synthesis and photosynthesis improved due to N
supplementation under NaCl stress

Salinity stress reduced the synthesis of chlorophyll and
carotenoid pigments resulting in declined photosynthetic
rate. Total chlorophyll, carotenoids, photosynthetic rate,
stomatal conductance, intercellular CO, concentration
and transpiration rate was observed to increase with N
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Table 1 Effect of nitrogen supplementation on the uptake of sodium, potassium, nitrogen and nitrate reductase activity in Triticum
aestivum L subjected to salinity stress. Data is mean (+SE) of three replicates. Values followed by different letters are significantly

different at P < 0.05

Control Nacl N1 N2 NaCl + N1 NaCl + N2
Na (mgg~' DW) 5.98 +0.54c 13.89+0.92a 340+0.17d 2.09+0.15de 990+ 0.81b 6.09 +0.59¢
K (mg gf] DW) 2278+ 1.8¢c 1387+ 101e 26.09+2.1b 3387+ 24a 17.02+1.12d 21.22+19c

supplementation reaching to maximal increase of 38.71,
32.08, 51.47, 33.71, 29.37 and 33.47% over the control
plants with N2. Maximal amelioration of salinity medi-
ated decline was observed with N2 with 47.36% for total
chlorophyll, 56.39% for carotenoids, 54.31% for photo-
synthetic rate, 30.91% for stomatal conductance, 33.64%
for intercellular CO, concentration and 42.81% for tran-
spiration rate over the NaCl stressed plants (Table 2).

N availability induces synthesis of osmolytes under
salinity stress

Proline, free amino acids, glycine betaine and sugars in-
creased due to supplementation of N and maximal accu-
mulation was observed with higher N dose. Relative to
control, proline, free amino acids, glycine betaine and
sugars increased by 34.07, 44.72, 46.57 and 34.52% due
to supplementation of 50N and by 44.95, 54.87, 54.52
and 58.61% due to 100 N. Maximal percent increase of
49.61% for proline, 62.50% for free amino acids, 64.03%
for glycine betaine and 63.19% for sugars was observed
in NaCl + 100N over the control (Fig. 1) and these
values were much higher than the NaCl stressed ones.

Increased N application reduced oxidative stress

Seedlings exposed to salinity exhibited increased gen-
eration of free radicals like H,O5 and O, over the
control and N supplemented ones. Percent increase in
H,0, and O,  due to NaCl was 62.11 and 63.78% re-
spectively causing 44.60% increase in lipid peroxida-
tion over the control. Relative to control, N
supplementation significantly declined the generation
of H,O, (2.5 fold) and O, (1.7 fold) causing 62.01%
decline in lipid peroxidation. Supplementation of N2
to NaCl stressed plants maximally ameliorated the

generation of H,O, and O, resulting in 33.42% de-
cline in lipid peroxidation as compared to NaCl
stressed ones (Fig. 2a-c). N fed seedlings showed ap-
parent decline in the activities of protease and lipoxy-
genase over the control as well as NaCl stressed ones
with maximal decline observed with higher N. Rela-
tive to control, protease and lypoxygenase increased
by 1.73 and 2.17 folds in NaCl stressed plants, how-
ever supplementation of N maintained the effect even
under NaCl conditions. At 100N (N2), protease and
lypoxygenase decreased by 52.00 and 51.97% respect-
ively, and NaCl + N2 treated plants exhibited a de-
cline of 36.54 and 40.72% over the NaCl stressed
counterparts (Fig. 3a-b).

N supplementation up-regulates the antioxidant system

Results revealed that availability of N significantly af-
fected the antioxidant system by up-regulating the activ-
ity of SOD, CAT, APX, GR, MDHAR, DHAR and the
synthesis of AsA and GSH. Relative to control, under
normal conditions maximal increase in SOD (1.96 fold),
CAT (1.52 fold), APX (2.28 fold), GR (2.16 fold),
MDHAR (1.71 fold), DHAR (1.73 fold), AsA (1.47 fold),
and GSH (1.46 fold) was observed with 100N (N2).
Though NaCl stress triggered the activity of antioxidant
enzymes however, N supplemented seedlings exhibited
maximal activity with increase of 2.27 fold for SOD, 1.76
fold for CAT, 2.89 fold for APX, 2.39 fold for GR, 2.10
fold for MDHAR, 1.93 fold for DHAR and 1.61 fold for
GSH in NaCl + N2 treated seedlings (Figs. 4 and 5).
Tocopherol content also exhibited apparent increase
with N supplementation. Relative to control, tocopherol
increased by 50.27 and 65.17% due to N1 and N2 sup-
plementation respectively. Applied N (N100) maintained

Table 2 Effect of nitrogen supplementation on the total chlorophyll, carotenoids and gas exchange parameters in Triticum aestivum
L subjected to salinity stress. Data is mean (+SE) of three replicates. Values followed by different letters are significantly different at

P <0.05

Control Nacl N1 N2 NaCl + N1 NaCl+N2
Total Chlorophyll (mgg™' FW) 1621+0045c  09105+0016e 2134+0.131b  2645+0.142a  1326+00532d  1.730+ 0.050c
Carotenoids (mg g~ " FW) 04620+ 0.011c  03011+£0.010e 05123+0013b 06803+0012a 03982+0.011d 04709+0.014c
Photosynthetic rate (umol CO, m™2s™ ") 11.81+0.54d 7.73+051e 1721+101b 2434+121a 1333 +£045¢ 16.92+1.001b
Net intercellular CO, (umol m™?s™") 226.1+7.12d 176.1 +6.15¢ 2983 +9.15b 341.1+9.98a 2229+6.99d 2549+8012c
Stomatal conductance (mmolm™?s™")  3121+852d  2463+70le  3981+1021b  4419+1501a  3146+8.11d 3712+9.77bc
Transpiration rate (mmol H,O m2s ) 3.14+0.10c 1.72+0017e 414+0.14b 472+0.13a 233+0.031d 3.008 +£0.21c
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Free sugars (mg g'l DW)

Fig. 1 Effect of nitrogen (50 and 100 mg kg™~ ' soil) supplementation
on the content of (a) free sugars, (b) free proline, (c) free amino
acids, (d) glycine betaine and (e) relative water content in Triticum
aestivum L subjected to salinity stress. Data is mean (£SE) of three
replicates, bars denoted by different letters are significantly different
at P<0.05
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Fig. 2 Effect of nitrogen (50 and 100 mg kg™ ' soil) supplementation
on the (@) hydrogen peroxide, (b) superoxide and (c) lipid
peroxidation in Triticum aestivum L subjected to salinity stress. Data
is mean (£SE) of three replicates, bars denoted by different letters
are significantly different at P <0.05
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Fig. 3 Effect of nitrogen (50 and 100 mg kg™~ ' soil) supplementation
on the (a) protease and (b) lipoxygenase activity in Triticum aestivum
L subjected to salinity stress. Data is mean (+SE) of three replicates,

bars denoted by different letters are significantly different at P < 0.05

its effect on the tocopherol under NaCl conditions lead-
ing to an enhancement of 60.99% over the NaCl stressed
pants (Fig. 6).

Phenols and flavonoids increased in N supplemented
seedlings

The content of phenols and flavonoids was maximum in
N supplemented seedlings under normal as well as NaCl
stressed conditions. Percent increase in phenol and fla-
vonoids was 19.04 and 16.54% due to NaCl stress and
was further increased due to application of N attaining
maximal values with NaCl + 100 N over control plants.
Moreover N availability significantly affected activity of
PAL imparting 1.53 and 1.86 fold increase with 50 and
100 N respectively, and reaching to maximum of 53.14%
with NaCl + 100 N (Fig. 7).

NR activity and N content increased with
supplementation of N

N supplementation significantly increased the activity of
NR over the control plants and also ameliorated the decline
caused by NaCl. Relative to control, NaCl caused a decline
of 54.82% for NR and 33.62% for N content. Activity of NR
was enhanced by 1.30 and 1.62 fold with 50 and 100 N

CAT activity (EU mg'l protein)

Fig. 4 Effect of nitrogen (50 and 100 mg kg~ ' soil) supplementation
on the (a) superoxide dismutase and (b) catalase activity in Triticum
aestivum L subjected to salinity stress. Data is mean (+SE) of three
replicates, bars denoted by different letters are significantly different
at P <005

resulting in 1.49 and 1.93 fold increase leaf N content. Max-
imal amelioration of 50.15 and 46.02% in NR activity and N
content was observed in NaCl + 100N treated seedlings
over the NaCl stressed counterparts (Fig. 8).

Discussion

Salinity has been one of the major problems of the sustain-
able agricultural productivity due to its toxic effects on the
metabolism of the crop plants [22]. The accumulation of Na
and other toxic ions alter the physiological stability of plant
cells leading to considerable damage to their structural and
functional stability [23]. Therefore to mitigate or lessen the
deleterious effects of excess Na plants tend to reduce the
salt-induced ionic toxicity by improving the strategies aimed
at improving the salt tolerance via minimizing Na" buildup
in photosynthetic organs [24], improving K" levels resulting
in enhanced K*/Na* ratio [1, 25]. This selective ion trans-
port leading to Na* homeostasis has been reported to be
driven by several metabolic constituents like ROS [26], phy-
tohormones [3], compatible osmolyte accumulation [1], and
mineral uptake and assimilation [27]. In present study we
studied the role of one of the key mineral (N) availability on
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Fig. 5 Effect of nitrogen (50 and 100 mg kg’1 soil) supplementation on the (a) ascorbate peroxidase, (b) glutathione reductase, (c)
dehydroascorbate reductase, (d) monodehydroascorbate reductase activity and content of (e) ascorbate and (f) reduced glutathione in Triticum
aestivum L subjected to salinity stress. Data is mean (+SE) of three replicates, bars denoted by different letters are significantly different at P < 0.05
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Fig. 6 Effect of nitrogen (50 and 100 mg kg™ ' soil) supplementation
on the tocopherol content in Triticum aestivum L subjected to
salinity stress. Data is mean (£SE) of three replicates, bars denoted
by different letters are significantly different at P < 0.05

the regulation of salt tolerance through the modifications at
physiological and biochemical levels. It was observed that N
availability significantly affected the growth of wheat seed-
lings by restricting the uptake of Na with concomitant im-
provement in K. N deficiency declines the cellular division
hence reducing the cell number and tissue proliferation [28].
Juppner et al. [29] have demonstrated that accumulation of
N containing compounds regulates the cell cycle progres-
sion, growth and biomass accumulation under the control
of kinase activity. Excess Na is effluxed via the Na/H ex-
changers (NHX) into vacuole or by SOSI1 proteins at the
root levels [30]. Improved activities of transport proteins in-
volved in active compartmentation and sequestration of Na
ions significantly contributes to salinity stress tolerance in
plants [31] and in present study N availability mediated de-
cline in Na accumulation may have resulted due to in-
creased transport protein expression preventing Na uptake
at root level. Increased N supplementation resulted in sig-
nificant increase in the uptake of N and K accompanied by
reduced Na accumulation. Earlier the ameliorative role of
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Fig. 7 Effect of nitrogen (50 and 100 mg kg™~ ' soil) supplementation
on the content of (a) total phenol and (b) flavonoids, and the
activity of (c) phenylalanine ammonia lyase in Triticum aestivum L
subjected to salinity stress. Data is mean (£SE) of three replicates,
bars denoted by different letters are significantly different at P < 0.05

increased N [19] and K [1] supplementation under salinity
stress have been ascribed to their potentiality to prevent Na
accumulation. K is ubiquitous for plant growth and develop-
ment, stress mitigation, enzyme activity and osmolyte pro-
duction [1, 12, 21] and additionally K itself is an important
inorganic osmolyte [1, 32]. N supplementation improved the
activity of NR facilitating its quick conversion into N precur-
sors for synthesis of amino acids and hence proteins.
Greater N availability directly affects the photosynthetic
process by influencing the Rubisco synthesis [33]. Recently
Igbal et al. [19] have also demonstrated increased Rubisco

NR activity (nmol NO;™ released hr' g FW)
w

N content (mg g'l DW)

> N
& & DL
& b N\ N

¢ SR
Fig. 8 Effect of nitrogen (50 and 100 mg kg~ ' soil) supplementation
on the activity of (a) nitrate reductase and (b) nitrogen content in
Triticum aestivum L subjected to salinity stress. Data is mean (£SE) of
three replicates, bars denoted by different letters are significantly

different at P < 0.05

activity in N supplemented seedlings causing significant
amelioration of salinity mediated decline in photosynthesis.
N supplementation improves the expression of small as well
as large sub unit of Rubisco [34]. In present study increasing
N supplementation imparted apparent enhancement in pig-
ment synthesis and the photosynthetic efficiency and it was
evident that N supplemented seedlings exhibited less decline
due to NaCl treatment. Salinity stress reduces photosyn-
thetic efficiency through its deleterious effects on the synthe-
sis of chlorophylls and Rubisco protein [19]. Photosynthetic
efficiency is corelated with N and Rubisco concentration
and internal CO, concentrations [35], and in present study
higher N proved much affective in photosynthetic regula-
tion. Further studies are required to unravel the exact
mechanisms. N supplementation significantly increased the
content of compatible solutes including proline, glycine
betaine, sugars and free amino acids than the control as well
as salt stressed counterparts. Increased N supplementation
proved much affective in improving the osmolyte accumula-
tion reflecting in maintenance of growth and hence the
amelioration of salinity stress mediated growth retardation.
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In addition of their involvement in the maintenance of tissue
water content osmolytes protect major cellular functioning
by mediating stress signalling leading to activation of down-
stream tolerance mechanisms [36—38]. Osmolytes including
sugars and amino acids like proline serve as ROS scavengers
[39, 40]. N mediated increased accumulation of compatible
solutes prevent oxidative damage induced growth restric-
tions by protecting the photosynthetic electron transport
through ROS elimination and redox homeostasis. Increased
accumulation of proline and glycine betaine significantly
prevent the salinity induced photosynthetic inhibition [7].
Tissue concentration of compatible solutes is maintained ei-
ther by irreversible synthesis of the compounds or by a com-
bination of synthesis and degradation, and accumulation of
osmolytes is proportional to the external osmolarity [6].
Osmolytes protect the structure and the osmotic balance of
cells by maintaining the water influx [37]. Proline, sugars
and glycine betaine protect the carboxylase activity of Ru-
bisco [41, 42] and hence N supplementation induced in-
crease in their accumulation may have contributed to better
photosynthetic efficiency. Martino et al. [43] has demon-
strated that accumulated glycine betaine and free amino
acids constitute the maximal N containing osmolytes.
Therefore increased N supplementation prevented the salin-
ity mediated decline in growth of wheat seedlings by im-
proving water content as well as the photosynthetic
efficiency. Accumulated osmolytes assist in quick growth re-
covery after stress release [1, 21, 44]. N availability signifi-
cantly improved the antioxidant metabolism by up-
regulating the activity of key antioxidant enzymes and the
contents of non-enzymatic components. N mediated im-
proved antioxidant potential resulted in alleviation of salinity
induced oxidative damage to a significant level. SOD is inde-
spensible for the dismutation of superoxide radicals for pre-
venting the damage to photosynthetic machinery. Increased
antioxidant functioning reduces the stress mediated damage
to membranes, proteins, nucleic acids and hence maintain-
ing the functional stability [2, 8]. Earlier it has been reported
that increased SOD, CAT and the AsA-GSH functioning
prevent the stress triggered oxidative damage [2, 45, 46].
However the reports describing the N availability induced
regulation of antioxidant system are scanty and further stud-
ies can be handy in understanding the actual underlying
mechanisms. Salinity stress reduces the redox homeostasis
thereby hampering the redox dependent cellular functions
like electron transport and energy generation [7, 47]. Up-
regulated AsA-GSH cycle functioning prevents the excess
generation of toxic radicals by maintaining the NADP levels
in chloroplast. Ascorbic acid, glutathione and tocopherol are
the low molecular weight redox buffers and can also interact
with numerous other cellular components. In addition of
their obvious role in defense, as enzyme cofactors, these
redox components regulate growth and development of
plants by regulating key processes like mitosis, cell
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elongation, senescence etc. [47, 48]. Tocopherol preferably
neutralizes singlet oxygen in addition of other ROS [48, 49].
Enzymes of AsA-GSH pathway contribute to efficient H,O,
removal thereby reducing the chances of radical formation
through maintainence of redox homeostasis and hence pre-
venting the oxidative damage to key cellular processes like
electron transport [50]. N mediated up-regulation of antioxi-
dant system was accompanied by reduced lipoxygenase and
protease activity reflecting in greater protection of the lipids
and proteins. Stress induced degradation of lipids and pro-
teins decline the structural and functional integrity of cells
and N supplementation assuaged the salinity mediated
membrane degradation by preventing the generation of
excess ROS. Earlier Ahanger and Agarwal [1, 21] have dem-
onstrated reduced protease activity due to optimal supple-
mentation of K, however reports discussing influence of N
availability are not available. Stresses inflict plant metabolism
by inducing protease [1, 21, 44] and lypoxygenase activity
[45]. The oxidative signals are crucial for alleviating dor-
mancy and quiescence, triggering cell cycle activation and
the genetic as well as epigenetic control underpinning
growth and differentiation responses under changing envir-
onmental conditions [51]. Redox signalling hub interacts
synergistically with phytohormone network for growth
regulation and modulations under stress [51, 52]. It
was apparent that N availability imparted beneficial
impact on the synthesis of secondary metabolites in-
cluding phenols and flavonoids. Secondary metabolites
including phenols and flavonoids are involved in regu-
lation of auxin transport, photoprotection, mechanical
support, seed dispersal and protection against insect
herbivory [53]. Plants improve synthesis of flavonoids
to protect the stress mediated redox unbalance-
induced changes in metabolism, and in addition are
involved in buffering the changes in ROS homeostasis
for modulating the ROS-mediated signalling cascade
[54]. Secondary metabolites including flavonoids pre-
vent oxidative damage by inhibiting the formation of
ROS and protect cellular functioning by scavenging
radicals like superoxide [53]. Increased accumulation
of phenolic compounds impart greater radical scaven-
ging activity reflecting in apparent growth improve-
ment under stressed conditions [1, 21]. Secondary
metabolite compounds like chlorogenic acid, caffeic
acid, quercitin and catechin accept electrons in apo-
plast thereby protecting the cell wall composition and
also contribute enormously to the generation of ascor-
bate pool leading to improved functioning of AsA-
GSH cycle [49]. PAL is key enzyme regulating the syn-
thesis of secondary metabolites and in present study N
mediated increase in its activity depicts the apparent
influence of N on secondary metabolite accumulation.
Non-enzymatic antioxidants neutralize ROS when
enzymatic system becomes less efficient. It can be
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inferred from the present findings that increased N
supplementation protected wheat seedlings against
salinity mediated oxidative effects by up-regulating
antioxidant and osmolyte metabolism, and secondary
metabolite accumulation.

Conclusion

Conclusively, increased N supplementation protects the
growth and metabolism of wheat seedlings through up-
regulation of the antioxidant system, osmolyte and sec-
ondary metabolite accumulation. N mediated mainten-
ance of the redox homeostasis prevented ill effects of
salinity on photosynthetic functioning. N at both levels
proved beneficial in ameliorating the salinity triggered
oxidative damage to significant extent. Antioxidant com-
ponents, both enzymatic and non-enzymatic, increased
due to N supplementation conferring its active involve-
ment in their expression levels. Therefore making it evi-
dent that increasing N supplementation regulates salt
tolerance in wheat through modulations in the metabol-
ism of antioxidants, osmolytes and metabolites.

Methods

Experimental design, plant material and growth
conditions

Wheat (Triticum aestivum L) seeds were procured from
College of Agronomy Northwest A&F University Yan-
gling Shaanxi, China. Seeds were sterilized using 0.01%
HgCl, followed by thorough washing with distilled water
and were sown in bottom perforated pots filled with
peat, compost and sand (3:1:1). Soil in pots was supplied
with 0, 50 and 100 mg Nkg ' soil in the form of urea.
After 10 days of seedlings growth salinity stress was in-
duced by applying 100 mM NaCl (100 mL per pot) on al-
ternate days for 20 days. The native concentration of N,
P and K in the soil was 65.98, 18.78 and 80.67 mgkg "
soil respectively with pH 7.57 and water field capacity
52.21%. Pots were arranged in complete randomized
block design with five replicates for each treatment and
were maintained under green house conditions at the
College of Life Science, NorthWest A&F University
Yaangling Shaanxi China. After fourty days of growth
seedlings were analyzed for photosynthetic parameters,
antioxidant and osmotic constituents, secondary metab-
olite accumulation and oxidative stress parameters.

Estimation of pigments and photosynthetic parameters
Total chlorophyll and carotenoids were extracted by ma-
cerating fresh leaves in 80% acetone using pestle and
mortar. Absorbance was recorded at 480, 645 and 663
nm against [55]. Photosynthetic efficiency, intercellular
CO, concentration and stomatal conductance were mea-
sured in fully expanded leaf using photosynthesis appar-
atus Li-6400 (LI-COR Inc., USA).
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Determination of leaf water content, soluble sugars,
proline and glycine betaine content

Relative water content (RWC) of leaves was determined
by following Smart and Bingham [56]. Content of free
sugars [57, 58], free amino acids [59], free proline [60]
and glycine betaine [61] were estimated in powdered dry
samples in both treated and untreated samples.

Estimation of hydrogen peroxide and superoxide

For estimation of H,O,, 100 mg fresh leaf tissue was
homogenised in 5 mL of 0.1% trichloro acetic acid (TCA)
and subjected to centrifugation at 10,000 g for 10 min.
500 pL supernatant was mixed with equal volume of po-
tassium phosphate buffer (pH 7.0) followed by addition of
1 mL potassium iodide. After thorough mixing absorbance
was recorded at 390 nm [62].For measurement of O,
concentrations fresh tissue was homogenized in potassium
phosphate buffer (65 mM, pH7.8) and homogenate was
centrifuged at 5000 g for 10 min. Supernatant was mixed
with 10 mM hydroxylamine hydrochloride and left for 20
min followed by addition of sulfanilamide and naphthyl-
amine. After 20 min of incubation at 25°C absorbance
was measured at 530 nm [63] and calculations were done
using standard curve of NaNO,.

Lipid peroxidation, lipoxygenase and protease activity
Lipid peroxidation was determined as content of malo-
naldehyde (MDA) formation. 100 mg fresh leaf tissue
was macerated using 1% TCA followed by centrifugation
at 10,000g for 5min. 1.0 mL supernatant was reacted
with 0.5% thiobarbituric acid (4 mL) at 95 °C for 30 min
and tubes were subsequently cooled on ice bath followed
by centrifugation at 5000g for 5min. Absorbance of
supernatant was measured at 532 and 600 nm [64]. Ac-
tivity of LOX (EC 1.13.11.12) was estimated according to
the method of Doderer et al. [65] and increase in ab-
sorbance was recorded at 234 nm using linoleic acid as
substrate. An extinction coefficient of 25mM ™ 'cm™*
was for calculation and expressed as units (1 pmol of
substrate oxidized min~') mg ' protein. Protease (EC
3.4.21.40) activity was assayed by homogenizing fresh
tissue in chilled 50 mM sodium potassium buffer (pH
7.4) containing 1% PVP and the homogenate centrifuged
at 5000 g for 5 min at 4 °C. Tyrosine released was read at
660 nm after incubating 1 mL supernatant with casein at
40 °C and reacting the mixture with Folin Ciocalteu’s re-
agent in alkaline medium. Activity was expressed as pg
tyrosine released mg™* protein [66].

Determination of nitrate Reductase

For assaying nitrate reductase (NR) activity 300 mg fresh
leaf tissue was incubated in 100 mM potassium phos-
phate buffer (pH7.5) containing 200 mM KNO; and
0.5% n-propanol (v/v) at 30°C for 3h in dark.
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Thereafter, aliquot (1 mL) was mixed with equal volume
of 1% sulphanilamide and 0.2% 1-nephthylethylene di-
amine dihydrochloride, and mixture was allowed to
stand for 20 min. Thereafter the absorbance was re-
corded at 540 nm [67].

Assay of antioxidant enzymes

For extraction of antioxidant enzymes fresh 5.0 g leaf tis-
sue was homogenised in pre-chilled pestle and mortar
using phosphate buffer (100 mM, pH 7.8) containing 1%
polyvinyl pyrolidine and 1 mM EDTA. The homogenate
was centrifuged at 12,000 g for 15 min at 4 °C. For ascor-
bate peroxidase (APX) extraction buffer was supple-
mented with 2 mM ascorbate. Supernatant was used as
enzyme source. Activity of superoxide dismutase (SOD,
EC 1.15.1.1) was assayed by monitoring the ability of en-
zyme to inhibit the photochemical reduction of nitroblue
tetrazolium chloride (NBT) at 560 nm [68] Assay mix-
ture was incubated under florescent light for 15 min and
the absorbance was recorded against the non-
illuminated blank and activity expressed as EU mg '
protein. Catalase (EC 1.11.1.6) activity was assayed fol-
lowing Aebi [69] and change in absorbance was moni-
tored at 240nm for 2min in an assay mixture
containing 50 mM potassium phosphate buffer (pH 7.0),
H,0, and 100 pL enzyme extract. Extinction coefficient
of 0.036 mM ™" cm™ ! was used for calculation. Ascorbate
peroxidase (APX, EC 1.11.1.11) was assayed by following
method of Nakano and Asada [70] and disappearance of
H,0O, was monitored as decrease in absorbance at 290
nm for 3min. An extinction coefficient of 2.8 mM™*
cm™ ! was used for calculation and activity was expressed
as EU mg~ ' protein. For estimation of glutathione re-
ductase (GR; EC 1.6.4.2) activity glutathione dependent
oxidation of NADPH was monitored as change in ab-
sorbance at 340nm for 2min [71]. Activity was
expressed as EU mg~ ' protein and extinction coefficient
of 62mM™ ' cm™! was used for calculation. Activity of
MDHAR (EC: 1.6.5.4) was assayed in a reaction mixture
containing Tris—HCl buffer (50 mM, pH?7.5), 200 uM
NADPH, 250 uM AsA and enzyme. Absorbance was
read at 340 nm for 2 min [72] and extinction coefficient
of 6.2mM ' cm™' was used for calculation. Activity of
DHAR (EC: 1.8.5.1) was measured following Nakano
and Asada [70] in assay mixture containing 50 mM po-
tassium phosphate buffer (pH7.0), GSH (2.5 mM), and
100 uM DHA. Change in optical density was read at 265
nm for 2 min and extinction coefficient of 14 mM™*cm™*
was used for calculation.

Estimation of ascorbate, reduced glutathione, and
tocopherol

Ascorbate (AsA) content was determined by macerating
fresh plant material in 6% TCA and supernatant was
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mixed with 2% dinitrophenylhydrazine and 10% thiourea.
After incubating in water bath for 15 min samples were
cooled and 5 mL of cooled 80% H,SO, was added. Ab-
sorbance was taken at 530 nm [73]. Standard curve of
AsA was used for calculation. Estimation of reduced gluta-
thione (GSH) was carried by following method described
by Ellman [74]. 100 mg fresh tissue was homogenised in
phosphate buffer (pH8.0) and 500 uL. supernatant was
mixed with 5, 5-dithiobis-2-nitrobenzoic acid. Optical
density was read at 412nm and concentration of GSH
was determined from standard graph of GSH. Tocopherol
was extracted in ethanol and petroleum ether (1.6:2). After
centrifugation supernatant was incubated with 2% of 2, 2-
dipyridyl in dark followed by addition o distilled water (4
mL). Absorbance was recorded at 520 nm [75] and stand-
ard curve was used for calculation.

Estimation of total phenols, flavonoids and assay of
phenylalanine ammonia lyase

Total phenols and flavonoids were estimated by follow-
ing the method of Malick and Singh [76] and Zhishen
et al. [77]. Phenylalanine ammonia lyase (PAL) was
assayed following Zucker [78] and formation of trans-
cinnamic acid was measured at 290 nm.

Estimation of Na, Kand N

Na and K were estimated flame photometrically described
by Ahanger et al. [79]. Micro-Kzeldahl’s method suggested
by Jackson [80] and modified by Iswaran and Marwaha [81]
was employed for estimation of N content.

Statistical analysis

Data is mean (+SE) of three replicates and for testing
significance of data Duncan’s Multiple Range Test was
performed using One Way ANOVA and least significant
difference (LSD) was calculated at p < 0.05.
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