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Abstract

Background: The phenylpropanoid pathway is responsible for the synthesis of numerous compounds important
for plant growth and responses to the environment. In the first committed step of phenylpropanoid biosynthesis,
the enzyme phenylalanine ammonia-lyase (PAL) deaminates L-phenylalanine into trans-cinnamic acid that is then
converted into p-coumaric acid by cinnamate-4-hydroxylase (C4H). Recent studies showed that the Kelch repeat F-
box (KFB) protein family of ubiquitin ligases control phenylpropanoid biosynthesis by promoting the proteolysis of
PAL. However, this ubiquitin ligase family, alternatively named Kiss Me Deadly (KMD), was also implicated in
cytokinin signaling as it was shown to promote the degradation of type-B ARRs, including the key response
activator ARR1. Considering that ubiquitin ligases typically have narrow target specificity, this dual targeting of
structurally and functionally unrelated proteins appeared unusual.

Results: Here we show that the KFBs indeed target PAL but not ARR1. Moreover, we show that changes in early
phenylpropanoid biosynthesis alter cytokinin sensitivity – as reported earlier - but that the previously documented
cytokinin growth response changes are primarily the result of altered auxin signaling. We found that reduced PAL
accumulation decreased, whereas the loss of C4H function increased the strength of the auxin response. The
combined loss of function of both enzymes led to a decrease in auxin sensitivity, indicating that metabolic events
upstream of C4H control auxin sensitivity. This auxin/phenylpropanoid interaction impacts both shoot and root
development and revealed an auxin-dependent stimulatory effect of trans-cinnamic acid feeding on leaf expansion
and thus biomass accumulation.

Conclusions: Collectively, our results show that auxin-regulated plant growth is fine-tuned by early steps in
phenylpropanoid biosynthesis and suggest that metabolites accumulating upstream of the C4H step impact the
auxin response mechanism.
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Background
Auxins are plant hormones that control key aspects of
plant development, including the development of shoot
and root meristems and cell expansion [1–3]. The auxin
response pathway includes a repression relief mechanism
wherein auxin promotes the degradation of AUX/IAA
proteins that repress auxin responses by inhibiting the
activity of the auxin response factors (ARFs), which act
as transcriptional regulators of the auxin response [4, 5].
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Auxin acts as a molecular glue and promotes the inter-
action between the AUX/IAAs and the SCFTIR1/AFBs E3
ligases which commences the degradation of AUX/IAAs
by the 26S proteasome [6, 7].
The link between the phenylpropanoid (PP) pathway

and auxin responses has already been investigated. For
example, naringenin, an early intermediate of the flavon-
oid branch of the PP pathway, was classified as an auxin
transport inhibitor whereas the PP 3,4-(methylenediox-
y)cinnamic acid was shown to interfere with auxin efflux
[8, 9]. PP biosynthesis starts with L-phenylalanine that is
converted into trans-cinnamic acid (t-CA) by phenyl-
alanine ammonia lyase (PAL). t-CA can be converted to
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cis-cinnamic acid (c-CA) by light and this photoisomer
has been shown to inhibit auxin transport [10, 11]. In
the next step of the PP pathway, t-CA is converted to
p-coumaric acid by the cytochrome P450-dependent
monooxygenase cinnamate-4-hydroxylase (C4H). The
reaction catalyzed by C4H marks the end of the early
steps of the PP pathway and represents the pathway
branching point as p-coumaric acid can be diverted to-
wards the synthesis of a number of metabolite classes in-
cluding lignins and flavonoids. Arabidopsis mutants that
are defective in specific steps of flavonoid biosynthesis
also show auxin-related developmental phenotypes [12].
PAL is the first committed enzyme of the PP pathway

and its activity is regulated by environmental and en-
dogenous signals at multiple levels [13]. At the
post-translational level, the abundance of PAL isozymes
is attuned to metabolic needs by the ubiquitin/prote-
asome pathway [14]. In Arabidopsis, PAL degradation is
governed by the SCF type E3 ligases in which the
target-specific component, the F-box protein called
Kelch Repeat F-Box (KFB), is encoded by four genes
[14]. The KFB genes are differentially expressed and
control PAL levels in response to developmental and en-
vironmental changes. This family of ubiquitin ligases, al-
ternatively named Kiss Me Deadly (KMD), was also
shown to promote the degradation of key transcriptional
activators of the cytokinin response, the type-B ARR
family members ARR1 and ARR12. The KMD/KFB
genes are down-regulated by the cytokinin signal and
thus are thought to be a feed-forward mechanism that
enhances the cytokinin response [15].
Cytokinins are plant growth regulators that control many

agriculturally important processes, including the initiation
and development of meristems and the timing of leaf senes-
cence [16]. The cytokinin response pathway consists of a
two-component signaling mechanism that involves a se-
quence of phosphotransfer reactions. In Arabidopsis, cyto-
kinins are perceived by a family of three histidine kinase
receptors that autophosphorylate upon binding with the
hormone. The phosphoryl group is then transferred to his-
tidine phosphotransfer proteins that in turn phosphorylate
members of two functionally opposite classes of response
regulators (ARRs), the response-promoting type-B ARRs
and the response-inhibiting type-A ARRs. When phosphor-
ylated, the type-B ARRs became activated and transcrip-
tionally regulate the expression of primary cytokinin
response genes. Both type-A and type-B ARRs are encoded
by large gene families. Among the type-B ARRs, the ARR1,
ARR10 and ARR12 genes are preeminent because their
combined loss of function leads to a strong cytokinin in-
sensitivity and severe growth reduction [17, 18].
The finding that KMD/KFBs target two sets of struc-

turally and functionally unrelated proteins was surpris-
ing because it implies that KMD/KFBs contain two
different target interaction domains and that they simul-
taneously control a hormone signaling pathway in
addition to a secondary metabolite pathway. Here we
show that the KMD/KFBs do not control the stability of
the type-B ARR member ARR1 but are indeed involved
in the proteasome-dependent degradation of PAL en-
zymes. However, we confirm the previous finding that
the KMD/KFBs modulate the root growth response to
cytokinin and demonstrate that this effect on cytokinin
responses is a result of changes in auxin signaling. We
show that loss of function of both PAL and C4H alters
the response to auxin, but in an opposite manner which
indicates that the observed modulation of auxin signal-
ing is the result of metabolic changes downstream of
PAL and upstream of the C4H step in the PP pathway.
We also show that the product of PAL, t-CA, or its de-
rivative(s) enhances auxin signaling and promotes
auxin-dependent leaf expansion.

Results
PAL and the cytokinin response
To independently test the role of KMD/KFBs in cytokinin
signaling, we generated 35S promoter-driven overexpres-
sion (OE) lines using the full-length KMD1/KFB20
(At1g80440) cDNA. Earlier studies revealed that KMD1/
KFB20 OE lines are dwarfed and that the extent of growth
retardation is positively correlated with the expression
level of the transgene [14, 15]. Indeed, 34 lines out of 52
lines we generated were also dwarfed. Both severe cytoki-
nin resistance and disruption of the general PP pathway
leads to dwarfism [18, 19]. Thus, this phenotype of the OE
plants is not a diagnostic for alteration of the function of
either cytokinin signaling or PP biosynthesis. Because the
PP biosynthesis and cytokinin response pathways are not
directly linked, we attempted to distinguish between the
growth inhibition resulting from reduced PP levels and
growth inhibition induced by reduced cytokinin signaling
by feeding severely dwarfed KMD1/KFB20 OE lines with
PP pathway intermediates.
We grew wild-type and OE plants on media containing

different concentrations of either t-CA, p-coumaric acid,
p-coumaraldehyde, caffeic acid or quercetin. Dose-response
curves are shown in Additional file 1: Figure S1. For the
wild type, the feeding experiments with different doses of
t-CA show that t-CA is growth promoting at low concen-
trations and growth inhibitory and anthocyanin inducing at
high concentrations (Additional file 1: Figure S1a-c).
Growth on media supplemented with p-coumaric acid and
p-coumaraldehyde did not significantly change the size of
the wild-type plants (Additional file 1: Figure S1d,e).
Caffeic acid and quercetin treatments also did not
significantly impact wild-type growth at lower doses,
but they caused growth inhibition at higher doses
(Additional file 1: Figure S1f, g).
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The effects of feeding with different PP intermediates
differed between the wild-type and the OE#1 plants (Fig.
1, Additional file 1: Figure S1c-g). In Fig. 1, we have
summarized to what extent the different PP intermedi-
ates complemented the dwarfism of the KMD1/KFB20
OE#1 plants. When grown on control medium, OE#1
plants were only 13 ± 2% the size of wild-type plants
(Fig. 1). However, when grown on 1 μM t-CA media the
size of OE#1 plants increased to 48 ± 5% of the un-
treated wild-type (Fig. 1). This growth-promoting effect
of low doses of t-CA was stronger in the OE#1 line than
in the wild type. For example, whereas the fresh weight
of wild-type plants grown on media with 1 μM t-CA in-
creased 1.41 ± 0.2 fold compared to plants grown on
control media, the fresh weight of the OE#1 plants
grown under the same conditions increased 3.5 ± 0.3 fold
(Additional file 1: Figure S1c). Growth on media supple-
mented with p-coumaric acid and p-coumaraldehyde,
which did not affect the size of the wild-type plants, led
to a size increase in OE#1 which exceeded that mea-
sured for OE#1 plants grown on t-CA (Fig. 1). For ex-
ample, the size of the OE#1 plants reached 91 ± 5% and
64 ± 4% of the untreated wild-type after 64 μM
p-coumaric acid and 32 μM p-coumaraldehyde treat-
ments, respectively (Fig. 1, Additional file 1: Figure S1d,
e). In OE#1 plants, both quercetin and caffeic acid pro-
moted growth at lower doses but to a lesser extent than
Fig. 1 Impact of phenylpropanoid (PP) intermediates on the growth of 35S
pathway showing (in red) the PP intermediates used for feeding experimen
weight (FW) changes in OE#1 plants after 18 days of growth on MS/2 med
of relative size and the FW difference between the wild-type (WT) and OE#
on the left-hand side. The mean fresh weights of treated OE#1 plants ± SD
plants grown on control medium. The concentrations of the PP intermedia
parenthesis. PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydro
t-CA, p-coumaric acid and p-coumaraldehyde (Fig. 1
and Additional file 1: Figure S1f, g). Both quercetin and
caffeic acid were growth inhibitory at higher doses (Fig.
1 and Additional file 1: Figure S1f, g).
These results prompted us to reach two conclusions.

First, because t-CA was the only compound that led to a
size increase in both the wild-type and OE plants, we con-
cluded that this metabolite has a general growth-promoting
effect. Second, since feeding with metabolites of the PP
pathway lead to a partial rescue, it is more likely that the
primary reason for the dwarfed phenotype of the OE plants
is reduced PP biosynthesis than reduced cytokinin action.
To further explore our second conclusion, we compared

PAL and ARR1 abundance in the triple kfb mutant (kfb1–1
kfb201–1 kfb501–1) and two OE lines that differed in the
strength of the dwarf phenotype (Fig. 2a). If KMD/KFBs are
involved in the proteasome-dependent degradation of PAL,
we expect to see an accumulation of PAL proteins in the
triple kfb mutant and a phenotype-strength dependent re-
duction of PAL levels in the OE dwarfed lines. Immuno-
blotting analyses with anti-PAL1 antibodies confirmed this
pattern of PAL accumulation and showed that while the
PAL1 levels were 3 ± 0.4- fold higher in the mutant com-
pared to wild type, PAL1 levels were reduced to ~ 10% and
~ 40% of the wild type in the OE lines (Fig. 2a). These re-
sults are in agreement with the previous study [14]. On the
other hand, the ARR1 levels did not change as expected if
::KMD1/KFB20 (OE#1) plants. Simplified scheme of the PP biosynthetic
ts, relative differences in rosette sizes of the OE#1 plants and fresh
ia supplemented with the specified PP intermediates. The illustration
1 plants grown on control medium is presented in the shaded insert
(n ≥ 12) are presented relative to the weight of the wild-type (WT)
tes in the MS/2 medium for which the data are shown is noted in
xylase



Fig. 2 KMD1/KFB20 targets PAL and not ARR1 for proteasomal degradation. a Rosettes of 14-day-old plants are shown above the representative
immunoblots to underline the correlations of rosette size and protein accumulation level. Rosettes of two independent 35S::KMD1/KFB20 (OE) lines are
shown. The kfb tr. refers to the kfb20–1 kfb1–1 kfb50–1 triple mutant. LSU, large subunit of RuBisCO is a loading control. b GUS activity in 4-day-old
seedlings treated with 25 nM benzyladenine (BA) for 4 h prior to GUS staining. Two seedlings per line are shown. c Anthocyanin accumulation in 12-
day-old plants is presented as the absolute absorbance of the methanolic extract at 520 nm (A520) per ten plants. Data are shown as mean ± SD (n≥
3). The significance of the difference of anthocyanin levels between Col-0 and the kfb triple mutant and between Col-0 and OE#1 for each treatment is
noted (*, P < 0.05; **, P < 0.01; ***. P < 0.001; two-way ANOVA with Bonferroni’s multiple comparisons test). Insert illustrates the accumulation of
anthocyanins in representative rosette leaves of 60-day-old plants. d Effect of t-CA and p-coumaric acid (CuA) on the growth of OE#1 and the arr1–3
arr10–1 arr12–1 triple (arr tr.) mutant. Plants were grown on MS/2 media containing the denoted doses of t-CA and CuA for 18 days. e Statistical
analyses of the effect of t-CA and p-coumaric acid (CuA) on the fresh weight (FW) of plants shown in d. Data are presented as mean ± SD (n≥ 12
pools of 8 plants).). The significance of the difference between the control and the treated samples is noted for each line (****, P < 0.0001; two-way
ANOVA with Bonferroni’s multiple comparisons test)
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KMD/KFBs are involved in ARR1 degradation: ARR1 did
not accumulate in the triple mutant (1.1 ± 0.2 of the wild
type) and its levels were not lower in the OE lines com-
pared to the wild type. In fact, ARR1 levels were 1.8 ± 0.2-
and 1.9 ± 0.3-fold higher in the OE#1 and OE#2 lines, re-
spectively (Fig. 2a). We concluded that KMD/KFBs are in-
deed involved in the proteasome-dependent degradation of
PAL and not in targeted proteolysis of ARR1.
An increase in the abundance of the cytokinin response

activator ARR1 is expected to elicit increased cytokinin re-
sponses [20, 21]. To test if that holds true for KMD1/
KFB20 OE plants, we introduced the 35S::KMD1/KFB20
transgene into the cytokinin-inducible ARR5::GUS re-
porter line and treated a set of independent dwarfed
double homozygous seedlings with the synthetic cytokinin
benzyladenine (BA). The expression of ARR5::GUS in
these double transgenic lines was indeed enhanced com-
pared to the wild type both in untreated and BA-treated
seedlings, as expected from a line with an increased ARR1
activity (Fig. 2b).
It was suggested in an earlier study that analogously to

triple type-B ARR and triple cytokinin receptor knockout
lines, the KMD1/KFB20 OE lines are dwarfed due to their
strong cytokinin resistance [15, 17]. Another phenotype of
the severe cytokinin resistant lines is that they accumulate
anthocyanins, which seems paradoxical because cytokinins
are known inducers of anthocyanin biosynthesis [17, 22].
However, anthocyanin biosynthesis is regulated by a num-
ber of internal and external cues and an increased antho-
cyanin biosynthesis is often a result of the combined action
of different inducing signals [23]. It has been suggested that
the main cause of the anthocyanin hyperaccumulation in
strong cytokinin resistant mutants is their increased sensi-
tivity to light [17, 23]. The effect of cytokinin treatments on
anthocyanin accumulation, therefore, can be viewed as an-
other distinguishing characteristic between cytokinin resist-
ance and alterations in PP pathway, so we measured the
anthocyanin content in the KMD1-related lines treated
with BA (Fig. 2c). In contrast to cytokinin resistant lines,
OE#1 plants have low anthocyanin levels, which is expected
if PP biosynthesis is compromised (Fig. 2c). Despite having
low PAL levels (Fig. 2a), the KMD1/KFB20 OE#1 plants
still responded to cytokinin by increasing anthocyanin bio-
synthesis (Fig. 2c). Moreover, the cytokinin-dependent in-
duction of anthocyanin biosynthesis in OE#1 occurred at a
lower dose of BA compared to the wild type, which
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provided another example of cytokinin hypersensitivity of
plants overexpressing KMD1/KFB20. As expected, the
anthocyanin levels in OE#1 did not reach wild-type levels
independent of the BA dose used in the assay. The antho-
cyanin levels in the kfb triple mutant were higher than
those of the wild type, but the dose-response curve had the
same wild-type shape (Fig. 2c). These differences in antho-
cyanin accumulation patterns were clearly visible in senes-
cing leaves (Fig. 2c).
Final confirmation that KMD/KFBs are involved in

proteolysis of PAL but not ARR1 was obtained by com-
paring the growth responses of a strong cytokinin resist-
ant mutant and the strong KMD1/KFB20 OE line OE#1
to PP pathway intermediates. It was previously suggested
that the severe growth inhibition seen in the strong
KMD1/KFB20 OE lines is mechanistically similar to the
growth inhibition of the strong cytokinin resistant triple
mutant arr1–3 arr10–5 arr12–1: both sets of lines were
thought to be dwarfed as a result of reduced type-B ARR
activity. If this is correct, then the growth of both arr1–
3 arr10–5 arr12–1 and KMD1/KFB20 OE plants should
be similarly affected by PP pathway intermediates. How-
ever, whereas OE#1 plants reached 97 ± 2% of the un-
treated wild-type size on media containing both t-CA
and p-coumaric acid, the arr1–3 arr10–5 arr12–1 plants
remained dwarfed and their increase in size was compar-
able to that of the increase observed for the wild type
grown on t-CA and p-coumaric acid (40 ± 3% and 34 ±
15%, for wild type and triple arr mutant, respectively;
Fig. 2d, e). Therefore, it is highly unlikely that the same
mechanism that affects growth is operational in both the
KMD1/KFB20 OE plants and the triple arr mutant.

C4H and the cytokinin response
In two hallmark cytokinin response assays, type-A ARR
expression (Fig. 2b) and anthocyanin level analyses (Fig.
2c), KMD1/KFB20 OE plants showed cytokinin hyper-
sensitivity. A third archetypical cytokinin response assay
is the root elongation assay. In this assay, as has been
previously reported, KMD1/KFB20 OE plants showed
decreased sensitivity to cytokinin, (Additional file 1: Fig-
ure S2a and [15]). To explain this finding, we hypothe-
sized that a PP intermediate is required for the wild-type
cytokinin root elongation response and tested this hy-
pothesis using a genetic approach. We analyzed the
cytokinin sensitivity of the ref3 mutants, loss-of-function
mutants of C4H that catalyzes the step immediately
downstream of PAL [24]. Cytokinin dose-response treat-
ments showed that ref3 mutants are cytokinin hypersen-
sitive (Fig. 3a and Additional file 1: Figure S2). This
suggested that a PP intermediate or derivative that accu-
mulates in ref3 and is depleted in KMD1/KFB20 OE
plants is essential for the wild-type root growth response
to cytokinin. The obvious candidate was t-CA, so we
tested whether reduced cytokinin sensitivity of OE#1
plants in root assays is restored to wild-type levels in
combined BA/t-CA treatments. Indeed, feeding OE#1
seedlings with t-CA reverted the cytokinin sensitivity to
the wild-type level (Fig. 3b).
Two of the more prominent visible phenotypes of ref3

plants are increased shoot branching and increased lateral
root formation ([24] and Fig. 3 d, e). Cytokinins promote
lateral bud outgrowth and inhibit lateral root formation
[25, 26]. Therefore, whereas increased shoot branching in
ref3 plants could be caused by cytokinin hypersensitivity,
the increased lateral root formation is the opposite of what
one would expect in a hypersensitive mutant. To under-
stand this apparent contradiction, we separately intro-
duced two transgenes into the ref3–1 mutant line:
35S::ARR5, which overexpresses the cytokinin response in-
hibitor ARR5 and thus causes cytokinin resistance, and
35S::KMD1/KFB20, which allows us to test if the develop-
mental changes in ref3 plants are caused by a decreased
accumulation of intermediates downstream of C4H or the
accumulation of intermediates upstream of C4H. Cytoki-
nin root growth response assays revealed that both
35S::ARR5 and 35S::KMD1/KFB20 transgenes suppressed
the enhanced cytokinin growth response of ref3 seedlings
(Fig. 3c). However, only 35S::KMD1/KFB20 suppressed
the increased shoot branching and the increased lateral
root phenotype of the ref3 mutant (Fig. 3d, e). Therefore,
these two ref3 phenotypes are not a result of altered cyto-
kinin signaling but stem from the altered accumulation of
metabolites synthesized upstream of the C4H step.

The phenylpropanoid pathway and the auxin response
Cytokinin regulates root growth together with auxin
[27]. Thus, it was possible that the altered cytokinin root
growth responses of 35S::KMD1/KFB20 transgenic lines
and ref3 mutants are caused by a change in auxin sensi-
tivity. Indeed, the auxin root growth response assay
showed that OE#1 seedlings were less sensitive to auxin
and their sensitivity can be restored to wild-type levels
by feeding with t-CA (Fig. 4a). On the other hand, ref3–
1 was more sensitive to auxin (Fig. 4b). This suggested
that similar to cytokinin responses, the altered auxin re-
sponses in KMD1/KFB20 OE plants and in ref3 mutants
are caused by changes in the accumulation of metabo-
lites synthesized upstream of C4H.
Next, we used the C4H inhibitor piperonylic acid

(PA) to test the expression of the cytokinin primary re-
sponse reporter ARR5::GUS and of the auxin primary
response reporter DR5::GUS. Whereas PA treatments
did not alter the cytokinin-dependent induction of
ARR5::GUS (Additional file 1: Figure S3), the expression
of the auxin-induced DR5::GUS was affected in a
dose-responsive manner, with the maximal induction of
DR5::GUS recorded at 0.3 μM PA (Fig. 4c). These



Fig. 3 The ref3mutants are cytokinin hypersensitive. a Increased sensitivity of the strong ref3–1 mutant (in Ler background) in the cytokinin-induced root
growth inhibition assay. Five-day-old seedlings were transferred to control or BA plates and root lengths were measured after 6 days of growth. Data are
presented as absolute root length ± SD (n≥ 12). The significance of the difference between the lengths of Ler and ref3–1 roots for each treatment is noted
(** P< 0.01, ****, P< 0.0001; two-way ANOVA with Bonferroni’s multiple comparisons test). b t-CA-dependent restoration of wild-type cytokinin sensitivity
of 35S::KMD1/KFB20 (OE#1) in root growth assays. Five-day-old seedlings were transferred from MS/2 plates to plates with the denoted doses of BA or BA
and t-CA. The length of the primary roots was measured after 6 days of growth. Data are presented as absolute root length ± SD (n≥ 12). The significance
of the difference between the root lengths measured for Col-0 and OE#1 plants for each treatment is noted in black (****, P< 0.0001) and the significance
of the difference between BA and combined BA and t-CA treatments of OE#1 plants is highlighted in red (two-way ANOVA with Bonferroni’s multiple
comparisons test). ****, P< 0.0001 (one-way ANOVA with Bonferroni’s multiple comparisons test). c Introduction of 35S::ARR5 and of 35S::KMD1/KFB20
transgenes in ref3–1 suppresses the enhanced cytokinin growth response of ref3–1. Plants were grown on vertical plates with or without BA and
photographed after 6 days of growth. Arrowheads mark the root tips. d Overexpression of KMD1/KFB20 and not of ARR5 restores the increased shoot
branching phenotype of ref3–1. Plants were grown on soil for 38 days in continuous light. Arrows are pointing to the lateral shoots. e Overexpression of
KMD1/KFB20 restores the lateral root phenotype in ref3–1. Plants were grown on vertical plates for 14 days. Two independent 35S::KMD1/KFB20
transformed ref3–1 lines are shown (OE#1 and OE#2). Data are presented as mean ± SD (n≥ 10). The significance of the difference between the wild type
and other lines is presented (**, P< 0.01; one-way ANOVA with Tukey’s post-test).

Kurepa et al. BMC Plant Biology          (2018) 18:278 Page 6 of 15
results supported our conclusion that cytokinin hyper-
sensitivity of ref3 mutants is a response to a change in
auxin sensitivity. To confirm that, we added the auxin
response inhibitor auxinole to the cytokinin root elong-
ation growth response assay and compared the re-
sponses of the wild type and ref3–1 (Fig. 4d). Whereas
the root length of wild-type plants was not affected by
the low concentration of 20 nM BA, root elongation
was inhibited when auxinole was included in the
medium (Fig. 4d). In contrast, ref3–1 responded with
strong root growth inhibition to the same BA dose, but
this hypersensitive growth response was suppressed by
auxinole, indicating that this enhanced cytokinin re-
sponse is indeed caused by enhanced auxin signaling
(Fig. 4d).
Finally, to test if changes in metabolite accumula-

tion upstream of C4H caused the altered auxin re-
sponse, we transformed ref3–1 with the 35S::KMD1/
KFB20 transgene and tested the auxin sensitivity of
the resulting line. Overexpression of KMD1/KFB20
was sufficient to suppress the auxin hypersensitivity
of the ref3 mutant (Fig. 4e).
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Fig. 4 Changes in early PP biosynthesis alter the auxin response. a Decreased auxin sensitivity of OE#1 plants is reversed by t-CA. Five-day-old
plants were transferred to vertical plates with the auxin 1-naphthaleneacetic acid (NAA), t-CA or both and the primary root length was measured
after 6 days of growth. Data are shown as absolute root length ± SD (n ≥ 12). The significance of the difference between the NAA and the
combined NAA and t-CA treatments of OE#1 plants is shown (ns, not significant and ****, P < 0.0001; two-way ANOVA with Bonferroni’s multiple
comparisons test). b The ref3–1 mutant is hypersensitive to auxin. The assay was performed as in a. Data are presented as relative root length
with the mean of the control treatment assigned the value of 1. Error bars are SD (n ≥ 10) and the significance of the difference between Ler and
ref3–1 for each treatment is shown (*, P < 0.05; ****, P < 0.0001; two-way ANOVA with Bonferroni’s multiple comparisons test). c Piperonylic acid
(PA) treatments induce DR5::GUS expression in a dose-dependent manner. Four-day-old seedlings were co-treated with NAA and a range of PA
doses. The GUS reactions were stopped upon the visible accumulation of the GUS product in the 0.3 μM PA-treated seedlings (i.e., before blue
color formation in the NAA-treated control seedlings) to allow visualization of the differences in DR5::GUS expression. d Cytokinin hypersensitivity
of ref3–1 is blocked by the auxin response inhibitor auxinole (Axl). The assay was performed as in a. Significant differences between treated and
control samples for each line is noted (in black for the wild type and in blue for the mutant) as well as the significance of the difference between
the BA and the combined BA and Axl treatments of OE#1 plants (**, P < 0.01; ****, P < 0.0001; two-way ANOVA with Bonferroni’s multiple
comparisons test). e Overexpression of KMD1/KFB20 is sufficient to suppress auxin hypersensitivity of the ref3–1 mutant. The assay was performed
as in a. The significance of the difference between the control and NAA-treated plants is shown (ns, not significant and ***, P < 0.001; two-way
ANOVA with Bonferroni’s multiple comparisons test)
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t-CA, auxin and cell expansion
One of the major effects of auxin is the promotion of
cell expansion at lower doses and inhibition of cell ex-
pansion at higher doses [28, 29]. We showed that when
growing plants on media supplemented with PP inter-
mediates, only t-CA led to an increase in the size of the
wild-type plants (Fig. 1). t-CA feeding led to an increase
in both fresh weight and dry weight and this positive ef-
fect on growth was observed for both the Col-0 and Ler
ecotypes (Additional file 1: Figure S1c and S4).
To understand the link between t-CA-dependent

growth promotion and auxin action, we analyzed the
growth kinetics and cell sizes of plants grown on different
media (Figs. 5 and 6). Kinematic analyses of wild-type
plants grown on t-CA-supplemented media showed that
t-CA promotes leaf expansion and petiole elongation (Fig.
5a-d). t-CA treatment also increased the duration of the
petiole elongation phase compared to the untreated con-
trol (Fig. 5c, d). To exclude the possibility that the in-
creased growth of t-CA fed plants was due to an
accumulation of intermediates synthesized in later steps of
the PP pathway, we analyzed the growth response to the
C4H inhibitor PA. In the wild type, treatment with low
doses of PA promoted rosette growth to a similar level as
t-CA (49 ± 8% at 1 μM PA). In contrast to the wild type,
the size of the OE#1 plants was not influenced by PA, sug-
gesting that the PA effect depends on the PAL-dependent
synthesis of t-CA (Fig. 5e). The OE#1 seedlings were also
less responsive to PA treatment in a root growth response
assay: two wild-type PA responses, inhibition of root
elongation and increased lateral root formation, were sup-
pressed in the OE#1 seedlings (Additional file 1: Figure
S5a, b). Analyses of the size of triple kfb mutant plants
showed that when grown on control media, 18-day-old
mutant plants were 41 ± 8% larger than the wild type (Fig.
5f). The size increase of the triple kfb mutant can be phe-
nocopied by growing wild-type plants on 1 μM t-CA (Fig.
5f). Compared to the wild type, a lower dose of t-CA
already promoted growth of the triple kfb mutant (e.g.,
0.25 μM) and the 1 μM dose was growth inhibitory,
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Fig. 5 t-CA promotes leaf expansion and petiole elongation. a-d Kinematic growth analysis of the third (L3) and the fifth (L5) leaf of Col-0 plants
grown on control media or media with 1 μM t-CA. Error bars represent mean ± SD (n≥ 8). The significant differences between t-CA-treated and
control samples for each day is noted (**, P < 0.01; ****, P < 0.0001; two-way ANOVA with Bonferroni’s multiple comparisons test). e Piperonylic acid
(PA) treatments differentially affect growth of the wild-type and KMD1/KFB20 overexpression (OE#1) plants. Plants were grown on MS/2 media
supplemented with the denoted doses of PA for 18 days. Due to the size difference of the rosettes of the tested lines, the fresh weight (FW) was
presented as normalized mean ± SD (n≥ 6, each sample containing 6 seedlings) with the mean FW for each line grown on control media being
assigned the value of 1. The significance of the difference between the control and treatments is noted for each line (ns, not significant, ****, P <
0.0001; two-way ANOVA with Bonferroni’s multiple comparisons test). f Size increase in kfb20–1 kfb1–1 kfb50–1 (kfb tr.) plants treated with the denoted
doses of t-CA. Experimental setup and data analyses are as described in e. The significance of the difference between treated and untreated plants for
each line is shown (****, P < 0.0001; two-way ANOVA with Bonferroni’s multiple comparisons test)
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suggesting that the triple kfb mutant is hypersensitive to
t-CA. This suggested that the size increase of the triple kfb
mutant was indeed caused by increased t-CA synthesis.
Taken together, these results suggested that the
growth-promotive effect of t-CA is caused by either t-CA
itself or a compound(s) derived from t-CA upstream of
the C4H step.
To investigate the basis of the t-CA-stimulated growth

increase, we measured epidermal cell sizes using the tis-
sue printing technique (Fig. 6a). Cells of 1 μM t-CA
treated wild-type plants were 45 ± 10% larger than the
cells of the untreated plants, which is an enlargement
that corresponds well with the size increase of rosettes.
The cells of the untreated OE#1 plants were smaller
than of the untreated wild type (37 ± 1 1% wild-type size)
and their size increased by t-CA feeding surpassing the
increase seen in the wild type (150 ± 8%; Fig. 6a). To de-
termine if the cell size reduction in OE#1 plants is
caused by changes in PP intermediate accumulation up-
stream or downstream of C4H, we analyzed the cell sizes



Fig. 6 t-CA induces cell expansion. a Area of cotyledonary epidermal cells in the 14-day-old wild-type and KMD1/KFB20 OE#1 plants grown on
control media or media with 1 μM t-CA. Data are mean ± SD (n ≥ 150 cells from at least five cotyledons). ****, P < 0.0001 (two-way ANOVA with
Bonferroni’s multiple comparisons test). b Perimeter of the cotyledonary mesophyll cells of plants grown on control media for 14 days. ****, P <
0.0001 (two-tailed t-test, n > 150). c Area of cotyledonary epidermal cells in 14-day-old wild-type plants and proteasome (rpn10–1) and ethylene
(ctr1–1 and ein2–1) mutants. Data are mean ± SD (n≥ 100 cells from at least six cotyledons per line). ***, P < 0.001 and ****, P < 0.0001 (two-way
ANOVA with Bonferroni’s multiple comparisons test)
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of ref3 mutants. If the cell size reduction in OE#1 plants
is caused by the decreased accumulation of metabolites
downstream of C4H, then it was expected that ref3
plants should also have smaller cells. If, however, the
OE#1 cell size decrease is caused by the decreased accu-
mulation of metabolites upstream of C4H, then ref3 cells
are expected to be larger because the loss of C4H func-
tion is expected to cause increased accumulation of
metabolites upstream of C4H. We were unable to deter-
mine epidermal cell sizes in ref3–1 cotyledons using the
tissue printing technique because of their extreme epi-
nasty, which has been described previously [24]. How-
ever, analyses of cotyledon mesophyll cells did reveal a
65 ± 18% increase compared to the wild type (Fig. 6b).
To integrate the growth-promotive effect of t-CA (or its

derivative(s)) with other processes that are known to lead
to an increase in cell expansion, we tested the effect of
t-CA feeding on the strong 26S proteasome mutant
rpn10–1 and two ethylene mutants, ein2–1 and ctr1–1
(Fig. 6c). Loss of function of 26S proteasome regulatory
particle (RP) subunits, such as RPN10, was previously
shown to cause increased leaf cell expansion accompanied
by decreased cell division [30]. Growth on t-CA-supple-
mented media caused a further increase in cell expansion
in rpn10–1 (Fig. 6c). t-CA also induced cell expansion
both in the ctr1–1 mutant, which has a strong constitutive
ethylene response and a dwarf phenotype caused by a re-
duction in cell size [31], and in the strong ethylene in-
sensitive mutant ein2–1, which was shown to have larger
palisade cells [32] but not larger epidermal cells (Fig. 6c).
These results suggested that the mechanism of t-CA-de-
pendent regulation of cell expansion does not involve
ethylene and that it acts in parallel to effects induced by
reduced 26S proteasome-dependent proteolysis.
Because of the link between t-CA or its derivatives

and auxin signaling (Fig. 4), we next investigated
whether auxin-dependent regulation of cell expansion
underlies t-CA-promoted leaf growth. Prolonged growth
on a medium supplemented with a low dose-range of
indole-3-acetic acid (IAA; 5 to 160 nM) showed that the
highest tested dose induced a 17 ± 5% increase in the
rosette size of the wild-type and a 2.6 ± 0.2 fold increase
in OE#1 (Fig. 7a). This suggested that the dwarfism of
the OE#1 line was in part caused by a decrease in auxin



Kurepa et al. BMC Plant Biology          (2018) 18:278 Page 10 of 15
action and that this was complemented by increasing
the auxin concentration. We concluded that t-CA-de-
pendent growth promotion is linked to auxin regulation
of plant cell expansion implying that t-CA and/or its de-
rivatives also promote this auxin response.
To reaffirm that t-CA or its derivatives promote

auxin responses, we analyzed the effect of t-CA on the
expression of the auxin-inducible DR5::GUS reporter
and on the development of lines with altered auxin sen-
sitivity (Fig. 7b, d). For the first experiment, we have
used the synthetic auxin 1-naphthaleneacetic acid
(NAA) instead of the natural auxin IAA. Because NAA
is known to more readily diffuse into plant cells com-
pared to IAA, NAA has been the auxin of choice for
short-term response assays such as the analyses of
DR5::GUS reporter expression [33, 34]. Whereas t-CA
alone did not induce the expression of DR5::GUS, it en-
hanced the effect of NAA on DR5::GUS expression in a
complex dose-dependent manner (Fig. 7b). The min-
imal auxin dose that induces DR5::GUS expression was
250 nM NAA (Additional file 1: Figure S6a). The
addition of t-CA to 250 nM NAA enhanced the expres-
sion of DR5::GUS, but only at higher doses of t-CA,
such as 10 μM (Fig. 7b). When the t-CA dose-response
experiments were repeated using 1 μM NAA, the ef-
fective dose of t-CA was lower compared to the dose
that enhanced the expression of DR5::GUS at 250 nM
NAA (Fig. 7b). These results prove that t-CA (and/or
t-CA derivative(s)) indeed promote auxin signaling and
suggest that t-CA leads to plant cell expansion by
modulating auxin responses.
Finally, we analyzed the t-CA-induced growth response of

auxin resistant mutants axr2 and axr3 in which the auxin
signaling repressor proteins IAA7 and IAA17 are stabilized,
and an arf mutant which carries loss-of-function mutations
in auxin response-regulating ARF genes. Strikingly, all tested
mutants (axr2–1, axr3–1 and the arf7–1 arf19–1 double
mutant) were t-CA insensitive in the growth promotion
assay (Fig. 7c,d). Treatments with high concentrations of
auxin are growth inhibitory and this can be mimicked by
expression of the 35S::VP16-IAA17mImII transgene that
causes a strong increase in auxin signaling [35]. The plants
of this transgenic line responded to the t-CA treatment with
a further reduction in growth, confirming that t-CA en-
hances auxin action also when auxin responses become
growth inhibitory (Fig. 7c, d). Next, we introduced the
DR5::GUS reporter into 35S::VP16-IAA17mImII back-
ground and tested the effect of t-CA on its expression. As
expected, the DR5::GUS reporter was constitutively
expressed in the 35S::VP16-IAA17mImII background (Add-
itional file 1: Figure 6b). The expression of the DR5::GUS re-
porter was further enhanced both by t-CA and PA
treatments (Fig. 7b, e). We concluded that t-CA or its deriv-
ative(s) are de facto modulators of auxin signaling.
Discussion
Although the overall conclusion of this study is that early
steps in the phenylpropanoid pathway are important modu-
lators of auxin-regulated plant growth, this work has also
prompted a number of other discussion points. The first
discussion point relates to our analyses of the function of
the KMD/KFB ubiquitin ligase family. A major step in
ubiquitin-dependent proteolysis is the interaction of a target
protein with a ubiquitin E3 ligase that promotes the attach-
ment of a polyubiquitin chain to one or more lysine resi-
dues within the target [36]. A key feature of a ubiquitin
ligase is that it binds its target protein in a highly specific
manner and it typically contains a distinct target-interaction
domain. It is not surprising, therefore, that the Arabidopsis
genome encodes for numerous ubiquitin ligases, each hav-
ing binding affinity for one target or a highly related family
of target proteins [37]. This complexity and multiplicity of
different E3 ligases reflect the fact that the abundance of nu-
merous proteins is controlled by the ubiquitin-proteasome
system, often in response to specific environmental or en-
dogenous signals [38]. It was therefore unusual that the
KMD/KFBs were reported to target two structurally and
functionally unrelated classes of proteins, the PAL enzymes
and the type-B ARRs transcription factors [14, 15]. In
addition, the results of interactomics projects, such as
PSICQUIC-View [39], confirmed the binding of KMD/KFBs
to PAL, but reported no interactions between KMD/KFBs
and type-B ARRs. Here, we show that the endogenous
ARR1 protein, one of the essential type-B ARRs previously
shown to be under KMD control, is not targeted for
proteasome-dependent degradation by KMDs and that PAL
is indeed a legitimate target for this F-box protein family.
Because we have previously shown that the stability control
of tagged ARR1 versions differs from the stability control of
the endogenous ARR1 [20], we believe that the use of
tagged versions of type-B ARRs is the underlying reason for
this misidentification of KMD targets.
A second discussion point involves the interactions of

the PP pathway with auxin and cytokinin. Whereas we
could not confirm any role for the KMD/KFBs in the con-
trol of ARR1 stability, our data support the reported find-
ings that KFB20/KMD1 overexpression causes a decrease
in cytokinin sensitivity in a root elongation response assay
[15]. However, we show that the decreased sensitivity is
not caused by a defect in cytokinin signaling and that in
fact, KMD1/KFB20 overexpression causes an increase in
ARR1 abundance and consequently, leads to cytokinin
hypersensitivity. It follows that the decreased cytokinin
root growth response is caused by a change acting in par-
allel or downstream of the cytokinin signaling pathway. It
has been shown that the effect of cytokinins on root
growth involves auxin regulation and that auxin resistance
impairs cytokinin-regulated root development [40, 41]. In
this study, we showed that KMD1/KFB20 overexpression
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Kurepa et al. BMC Plant Biology          (2018) 18:278 Page 11 of 15
indeed causes decreased sensitivity to auxin whereas the
loss of function of C4H in ref3 mutants led to auxin and
cytokinin hypersensitivity in growth response assays and
enhanced auxin signaling. Moreover, we showed that
co-treatment with the auxin response inhibitor auxinole
suppressed the cytokinin hypersensitivity of ref3 seedlings,
which confirmed our hypothesis that the changes in cyto-
kinin growth responses caused by defects in early PP
biosynthesis are caused by changes in auxin signaling. The
simplest explanation for these findings is that the de-
creased auxin sensitivity of KMD/KFB overexpression
lines is caused by decreased t-CA synthesis and that the
increased sensitivity of ref3 is caused by an increased accu-
mulation of t-CA or its derivative(s). Indeed, decreased
PAL levels caused by KMD1/KFB20 overexpression sup-
pressed the ref3 hypersensitivities to auxin and cytokinin,
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which aligns with our hypothesis that these ref3 hypersen-
sitive phenotypes are caused by the increased accumula-
tion of a metabolite upstream of the C4H step.
The third question raised is the identity of the early PP

metabolite that regulates auxin responses. It is currently
unknown whether ref3 mutants have increased t-CA con-
tent [24]. However, it was shown earlier that t-CA does
not necessarily accumulate when the function of C4H is
compromised [42]. PAL, which catalyzes the first commit-
ted step into the PP pathway, is under negative feedback
regulation by t-CA both on the transcriptional and en-
zymatic activity levels and blocking the pathway at C4H
leads to both a product feedback-dependent reduction of
t-CA synthesis rate and a redirection of carbon flow into
branches that are used less under normal conditions [42].
Two examples of metabolic redirection of carbon flow
after C4H inhibition are known: the accumulation of cin-
namoylmalate, which is typically not detectable in un-
treated wild-type plants [24] and an increased synthesis of
salicylic acid [43]. Therefore, it is possible that instead of
t-CA itself, one or more t-CA derivatives are the actual
enhancers of the auxin response.
The next question to be addressed is how and at what

level does auxin signaling and responses interact with
PP biosynthesis. A previous study showed that C4H in-
hibition leads to an increase in auxin biosynthesis that,
together with a change in auxin transport, brought about
the developmental phenotype of C4H loss-of-function
mutants [9]. Whereas increased auxin biosynthesis does
not explain the auxin hypersensitivity of ref3 mutants,
changes in auxin transport can lead to alterations of
auxin sensitivity [44]. A candidate metabolite that can
alter auxin transport is cis-cinnamic acid (c-CA), a
photoisomer of t-CA, that was recently shown to be an
auxin efflux inhibitor [10]. However, as already stated,
C4H inhibition or loss of function does not necessarily
lead to an increase in t-CA level and by extension,
should not necessarily lead to an increase in c-CA con-
centration. Therefore, it remains possible that another
t-CA derivative that accumulates upstream of C4H dir-
ectly impacts the auxin signaling mechanism. The fla-
vonoid biosynthetic pathway - one of the downstream
branches of the PP pathway – was also shown to be in-
volved in the modulation of auxin transport [12]. If the
auxin hypersensitivity of ref3 mutants was caused by the
decreased accumulation of flavonoids then decreasing
the PAL function in the ref3 background would not sup-
press but would enhance the auxin hypersensitivity,
which is not what we observed. Our results, therefore,
reveal that there are multiple interaction points between
auxin and the PP pathway.
The next discussion point and one of the main find-

ings of this study is centered on the strong growth pro-
moting effect of t-CA in Arabidopsis. This promotive
effect was, however, detected only when low concentra-
tions (e.g., 0.5 and 2 μM) of t-CA were used for treat-
ments. The existence of a narrow dose range in which
t-CA acts as a growth promotor after which it becomes
growth inhibitory may be universal for all plants and
may explain the results of previous studies that describe
both positive and negative effects of t-CA on growth
[45–47]. Here we have shown that the positive effect of
t-CA on leaf expansion requires an intact auxin response
pathway, thus further strengthening the relation between
early PP biosynthesis and auxin regulation. We also
concluded that the dwarfism associated with KMD1/
KFB20 overexpression is a result of the loss of two
growth-promoting activities of t-CA: the depletion of
downstream PP pathway compounds needed for growth
and loss of t-CA-dependent promotion of auxin action.
Finally, although the primary focus of this study was

the effects of early PP biosynthesis on auxin regulation,
the increased ARR1 accumulation and increased cytoki-
nin signaling in KMD1/KFB20 overexpression plants are
interesting observations that warrant further discussion.
This increased sensitivity at the signaling level was how-
ever not accompanied by increased sensitivity at the
growth response level. Instead, we observed a decreased
sensitivity to cytokinin in a root elongation response
assay and we showed that this is caused by decreased
t-CA synthesis as this insensitivity was reversed in com-
bined t-CA/BA treatments. It thus would appear that
the reduction in PAL accumulation in KMD1/KFB20
overexpression plants simultaneously causes an increase
in ARR1 abundance and a change that prevents this
ARR1 increase to promote the cytokinin growth re-
sponse. Currently, we see two ways by which decreased
PAL activity can lead to an increase in ARR1 abundance.
The first possibility is that the same early PP metabolites
that regulate auxin responses directly or indirectly regu-
late ARR1 accumulation. The second possibility is that
the severe growth inhibition of KMD1/KFB20 OE plants
causes an increase in ARR1 levels by simply altering the
developmental stage of cells. In this case, the increased
ARR1 accumulation would reflect the developmental
regulation of ARR1 gene expression. Future research will
have to address these two hypotheses and reveal if any
other mechanisms are at play.

Conclusions
Here, we have shown that changes in early PP biosyn-
thesis alter auxin sensitivity and that these changes,
in turn, alter both root and shoot development. Be-
cause the early steps in PP biosynthesis are regulated
by environmental and developmental signals, our re-
sults suggest that the early steps of the PP pathway
play a key role in the environmental and developmen-
tal control of plant growth.
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Methods
Plant material
The wild-type lines used were Columbia (Col-0) and Lans-
berg erecta (Ler) dependent on the background of the mu-
tations analyzed. The following previously described
mutants and transgenic lines were used: the kfb20–1 kfb1–
1 kfb50–1 triple mutant [14], the arr1–3 arr10–5 arr12–1
triple mutant [17], ref3–1, ref3–2 and ref3–3 [24], ARR5::-
GUS [48], DR5::GUS [33], rpn10–1 [49], ctr1–1 [31], ein2–1
[50], axr2–1 [51], axr3–1 [52], arf7–1 arf19–1 [53] and
35S::VP16-IAA17mImII [54]. Except for the kfb20–1 kfb1–1
kfb50–1 triple mutant, rpn10–1 and 35S:ARR5, all other
lines were obtained from the ABRC Seed Stock Center.
The following transgenes were introduced by

Agrobacterium-mediated transformation into the fol-
lowing backgrounds: 35S::KMD1/KFB20 into the Col-0
wild type (phosphinothricin resistant), 35S::KMD1/
KFB20 into ARR5::GUS (phosphinothricin resistant),
35S::KMD1/KFB20 into ref3–1 (phosphinothricin resist-
ant) and 35S::ARR5 into ref3–1 (phosphinothricin re-
sistant). The 35S::ARR5 construct used to generate
ARR5 overexpression lines was previously described
[55]. To generate KMD1/KFB20 overexpression lines,
the full-length cDNA clone was amplified using
attB-capped primers. The amplified and verified frag-
ment was recombined by BP reaction into pDONR221
and transferred to pEarlyGate100 [56] by LR reaction
using the Gateway protocols (Invitrogen). The resulting
binary vector was introduced into Agrobacterium tume-
faciens strain C58C1 (Rif-R) by triparental mating and
the plants were transformed by the floral dip method
[57]. The 35S::VP16-IAA17mImII DR5::GUS line was
generated by introgression of the 35S::VP16-IAA17mI-
mII and DR5::GUS transgenic lines, and subsequent se-
lection for plants homozygous for both the
35S::VP16-IAA17mImII developmental phenotype and
GUS activity.

Materials
The following chemicals were used for treatments: trans--
cinnamic acid (t-CA; Sigma), p-coumaric acid (Sigma),
caffeic acid (Sigma), p-coumaraldehyde (Sigma), quercetin
(Sigma), benzyladenine (BA; Sigma), 1-naphthaleneacetic
acid (NAA; Sigma), piperonylic acid (PA; Sigma) and auxi-
nole [58, 59]. All were prepared as stock solutions in
dimethylsulfoxide (DMSO, Fisher Scientific), which was
used as the mock control in treatments.

Growth conditions
Both sterile- and soil-grown plants were grown in con-
trolled environmental growth chambers at 22 °C under
continuous light at 80 μmolm− 2 s− 1. For axenic cultures,
surface-sterilized and stratified seeds were sown on
half-strength Murashige and Skoog medium (pH 5.7)
containing 1% sucrose and 0.8% PhytoAgar (MS/2
medium). For soil growth, plants were first grown in
sterile cultures and then transferred to a 1:1 mix of Mir-
acle Grow potting soil and vermiculite. For feeding ex-
periments, we chose to test a t-CA concentration range
based on an earlier report that a minimal dose of
100 μM is sufficient for increasing the synthesis of lignin
in soybean [60]. After initial tests, the test concentra-
tions range for Arabidopsis was adjusted to 0 to
125 μM t-CA and the doses used for other PP interme-
diates were then chosen in a similar range.

Antibody production and immunoblotting analyses
The Arabidopsis ARR1 antibody has been described [20].
Monospecific anti-PAL rabbit antibodies were generated
(Pacific Immunology, Ramona, CA) against two internal
peptides of PAL1 (At2g37040): Cys-TSHRRTKNGVALQKE
(amino acids 126–140) and KVLTTGVNGELHPSRFC
(555–571). After affinity purification and specificity testing,
the antibodies raised against PAL1 (126–140) were used.
Protein extraction and immunoblotting analyses were per-
formed as previously described [61]. The secondary anti-
bodies used (horseradish peroxidase-conjugated anti-rabbit
IgG goat antibodies) were obtained from SantaCruz Bio-
technology. Immunoblots were developed using Super-
Signal West Femto substrate (Thermo-Pierce) using a
ChemiDoc™ XRS molecular imager (Bio-Rad). The signal
intensities of two independent immunoblots were measured
using QuantityOne software (Bio-Rad).

GUS staining
For histochemical GUS analyses, seedlings were trans-
ferred to a staining buffer solution (10 mM Na2EDTA,
100 mM NaH2PO4, 0.1% Triton X-100) that contained
1 mg/ml X-Gluc substrate. To stop the reaction and pre-
pare for photography, seedlings were first transferred to
ethanol, then to a 50% glycerol solution and were finally
arranged on MS/2 plates for photography. Different in-
cubation times were used for the GUS activity assays
dependent on the aim of the experiment.

Phenotype analyses and statistical methods
For all morphometric and kinematic analyses, five-day-old
seedlings germinated and grown on MS/2 plates were
transferred to fresh MS/2 plates containing the test com-
pounds. For rosette size analysis, plants were photo-
graphed daily and the measurements were done from
photographs using ImageJ software. Root length analyses
were done as described [55]. For lateral root number, vis-
ible lateral roots of any length and developmental stage
were counted. For anthocyanin measurements, 10 plants
per replicate (3 replicates per sample) were collected after
12 days of growth on test plates, weighed and used for iso-
lation of total flavonoids as described previously [62]. For
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anthocyanin content measurement, a DTX 880 multi-
mode detector (Beckman Coulter) with 520 ± 8 nm filter
was used. Cell size analyses were done either using the
agarose print method or by lactophenol clearing [30]. A
minimum of five cotyledons per line was used to deter-
mine cell numbers and cell sizes.
The descriptive statistics, plotting and hypothesis testing

were done using Prism 6 software (GraphPad Software
Inc). All data are presented as means ± SD of at least three
independent experiments. When means of more than two
samples were compared, we used one-way nonparametric
ANOVA followed by Bonferroni’s posttest to find a signifi-
cant difference between pairs of means. The significance
levels, indicated by asterisks in the figures, illustrate the
results of the Bonferroni’s posttest.

Additional file

Additional file 1: Figure S1. Impact of PP intermediates on growth.
Figure S2. Sensitivity of ref3 alleles in the cytokinin root elongation
growth response assay. Figure S3. The C4H inhibitor piperonylic acid
(PA) does not alter cytokinin-induced ARR5::GUS expression. Figure S4. t-
CA-dependent growth promotion. Figure S5. Piperonylic acid (PA) treat-
ments differentially affect growth of the wild-type and KMD1/KFB20 over-
expression (OE#1) plants. Figure S6. Expression of the auxin-inducible
DR5::GUS reporter. (DOCX 7659 kb)
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