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Abstract

Background: Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass
accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass

recently became feasible using non-destructive imaging.

Results: With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to
flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High
heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL).
Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around
the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at
the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in
phenology. The most important locus for biomass was independent from phenology and is located on
chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period
of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis.

Conclusions: Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth
stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable
alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as

biomass or, in the future, even grain yield.

Keywords: Barley, Development, Genetic architecture, Genome-wide association mapping, Growth, High-
throughput phenotyping, Non-invasive, Photoperiod, Vegetative biomass

Background

Increases in both yield and yield stability are key objec-
tives in plant breeding to support an ever expanding
population [1]. Grain yield and yield stability are com-
plex traits, and their genetic improvement has been im-
paired by notoriously low field plot-based heritability.
Consequently, during the past two decades breeding ef-
forts to increase barley yields have made minimal pro-
gress while grain yields have stagnated in Europe and
other regions [2]. Losses of 15 to 22% in yield have been
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projected for this crop due to the effects of climate
change [3].

Grain yield potential can be improved by enhancing ei-
ther sink or source strength. Enhancing sink strength re-
sults in a further increase in harvest index, partitioning
assimilates towards the grain; enhancing source strength
may require an increase in vegetative biomass [4]. Most
of the historical increases in barley yield reflect changes
in harvest index (weight of grain divided by weight of
above-ground biomass), an effect of enhanced sink
strength, while overall biomass has remained unchanged
[5-7]. As one consequence, the harvest index has come
close to a proposed upper limit of 0.6 [8]. Other reports
suggest a positive relationship between biomass and
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grain yield [9-11] and thus indicate that increasing bio-
mass may be a promising approach for improving grain
yields in barley as it was recently recommended for
wheat [12].

Automated high-throughput phenotyping (HTP) has
evolved quickly and offers a non-destructive, image-
based method for the analysis of complex traits [13].
Previously, cumbersome and destructive measurements
of above-ground biomass, targeting a defined develop-
mental stage, enabled only end-point analyses [14]. By
contrast, phenotyping conducted throughout the plant’s
life cycle allows crop growth to be tracked over time.
The feasibility of image-based biomass assessment has
been reported for a wide variety of crops and plants with
different architectures, including arabidopsis, maize, soy-
bean, wheat, and barley [15-17]. Daily, non-destructive
estimation of biomass over the vegetative growth period
revealed logistic-like biomass accumulation under green-
house conditions [18] with most of the vegetative bio-
mass forming prior to flowering. The logistic model can
be used to identify the time point of maximum growth,
which has been supposed to be linked to developmental
speed and potentially with flowering time [19, 20]. Data
from the logistic growth model for barley have also been
shown to provide high heritabilities for biomass and sec-
ondary traits [20], enabling the analysis of the genetic
architecture of biomass development.

Genome-wide association studies (GWAS) allow the
analysis of a wide range of genetic and phenotypic diver-
sity in a single population and therefore GWAS have been
widely employed for quantitative trait analysis [21-23].
Combining GWAS with non-destructive trait assessment
identified time-specific QTL for biomass in triticale [24]
and maize [25].

The goal of our study was to elucidate the key genetic
factors controlling biomass accumulation and to resolve
their temporal dynamics using GWAS. To this end, we
performed image-based phenotyping of a diverse set of
two-rowed spring barley lines throughout their vegeta-
tive growth.

Methods

Germplasm and experimental set-up

A set of 97 lines from the spring barley collection,
described by [26, 27], was used in the biomass assays.
To minimize population stratification and the effects of
phenology, only two-rowed accessions were chosen,
mainly of European origin, and very early and late geno-
types were excluded. The range of average flowering
time was 9 days in the selected subset. The cultivars in
the collection were released between 1924 and 1990 with
the majority originating from 1960 to 1980. Our panel
also included three additional cultivars that were not
part of the above-mentioned collection (Additional file
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1: Table S1). The 100 genotypes were grown in a green-
house equipped with a LemnaTec-Scanalyzer 3D system
(LemnaTec GmbH, Aachen, Germany), holding a total
of 520 pots on a conveyor belt system. Three consecu-
tive experiments were performed between May and No-
vember 2012, (Additional file 1: Table S2) each with five
replicates per genotype. Each experiment lasted 58 days
- up to the beginning of the reproductive stage accord-
ing to the established experimental design in [20]. No
fertilizer was applied, but whenever necessary, plants
were sprayed against fungal diseases and aphids. Pots
were watered daily to a target weight corresponding to
90% field capacity. Greenhouse temperature was set to
18 °C during the day and 16 °C during the night. Pot
size, soil, and light conditions were as described in [20];
with the exception that illumination was prolonged from
13 to 15 h per day. All seeds used in this study, includ-
ing those used for measurement of thousand-kernel
weight (TKW), originated from a field trial at the Leib-
niz Institute of Plant Genetics and Crop Plant Research
(IPK) in 2011. Two seeds per replicate of each genotype
were sown directly into the pots on the system, and
thinned to one seedling per pot after 7 (experiments 1
and 2) or 9 (experiment 3) days after sowing (DAS).
Plants were fully randomized each night to overcome
any potential inhomogeneity within the greenhouse in
terms of light and temperature distribution.

Daily imaging in the visible light range started at 10
DAS with one top view image and three side view images
at 0°, 45°, and 90° collected for each plant. The resolution
of the digital camera (Basler AG, Germany) was
1628 x 1236 pixels, with a pixel size of 4.4 x 4.4 um.
Technical issues resulted in a loss of images or incomplete
sets of images for a total of 7 days across all three experi-
ments (Additional file 1). Images were exported and ana-
lysed using the Integrated Analysis Platform (IAP) [28].
Using side and top view areas, a volume (unit: voxel)
termed ‘digital biomass’ was calculated and used as a
proxy for biomass [20].

The images taken at 58 DAS were visually inspected
and the growth stage was scored using the BBCH-scale
[29, 30]. For plants that reached BBCH 49 (tip of awn
visible) prior to 58 DAS, the exact date of tipping time
(time of awn emergence at flag leaf) was determined by
visual inspection of the earlier images. In the early
morning of 59 DAS, above-ground biomass was mea-
sured as fresh weight. The number of tillers was manu-
ally counted at 27, 45, and 58 DAS.

Phenotypic analysis

As plants were fully randomized each night, we consid-
ered the experimental design as a completely random-
ized design for statistical analysis. All statistical analyses
were performed in R [31]. Digital biomass was analyzed
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from 10 to 58 DAS and tiller numbers for 27, 45, and 58
DAS counts were analyzed. An outlier test following
[32] was performed each day within all three experi-
ments. Altogether, less than 1% of the data points were
considered outliers.

We performed a two-step analysis of the phenotypic
data. In the first step, best linear unbiased estimates
(BLUEs) were calculated for each day, within each
experiment, with the model ¥ = G + e, where Y is the
phenotypic value of a trait for each plant, G represents
the fixed effect of the genotype and e the residual error
(errors were assumed to be normally, independently, and
identically distributed). In the second step, BLUEs were
estimated across environments by fitting the model Y =
G + E + e, assuming that all effects except genotype
were random. Here, Y refers to the BLUE estimated in
the first step for each trait, G the effect of genotype, E
the effect of experiment, and e the residual error. More-
over, we performed a one-step model to estimate the
phenotypic variance components by fitting the model YV
= G + E + GxE+ e, assuming that all effects were ran-
dom effects.

We used the BLUEs of single experiments for digital
biomass from 10 to 58 DAS and for each plant fitted a
logistic growth model as f(t) = 7=, where f{¢) is the
digital biomass at time point t. The inflection point was
determined as ¢ty = logfu’). The parameters were estimated
using Matlab software (MathWorks, Inc., MA, United
States) [33, 34].

Broad sense heritability was calculated as

2 _ Vg
- Vee | Ve
Ve + o Tor

where Vg, Vg, and V, are the variance components of the
genotype, genotype x experiment and the residual, re-
spectively. O is the number of experiments for the respect-
ive DAS, and R the number of biological replicates.
Further, we assumed fixed genotypic effects and estimated
overall BLUEs.

Genotyping

SNP genotyping using the 9 K iSelect array (Illumina,
CA, United States) was performed as described in [35].
From a total of 7864 SNP assays performed on the bar-
ley collection, a set of 4866 SNPs were polymorphic,
with a minor allele frequency (MAF) >0.05 and less than
5% missing data. A number of 3041 SNPs were mapped
using the POPSEQ approach [36] and additional 1081
SNPs were mapped using information from the Morex x
Barke (MxB) recombinant inbred line (RIL) map [35].
The remaining 744 SNPs lacked genetic positions. Based
on marker analysis, one accession (BCC1367) was re-
moved from genetic analysis, because its authenticity
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could not be clearly determined, leaving 99 genotypes
for association analysis.

Linkage disequilibrium (LD) was estimated as squared
correlation coefficient (r*) for all mapped markers on in-
dividual chromosomes. LD decay by genetic distance
was plotted and a LOESS curve fitted to the data points.
The 95th percentile of r* of all unlinked intrachromoso-
mal marker pairs (>50 cM distance) was estimated ac-
cording to [37] and used to obtain a population-specific
threshold for genome-wide LD due to linkage. The inter-
cept of this r*-threshold and the LOESS curve deter-
mines the extent of LD from linkage.

Genome-wide association study

GWAS was performed using BLUEs from single experi-
ments. The following mixed-linear model was applied to
the daily data of digital biomass, the calculated inflection
point, tiller number, and fresh weight at experiment end:

Y=p+E+S+G+e

where p is the overall mean and E is the effect of
experiments, S is the effect of SNP and G is the random
effect of genotype, while e is residual error. This model
has covariance structure of 2 Kog?, where K refers to the
kinship matrix [38] and o is the genetic variance. A false
discovery rate (FDR) with a significance level of 0.1 was
applied. The proportion of genetic variance of the de-
tected QTL was estimated as the adjusted r* values stan-
dardized with the heritability. Association analyses were
performed using the software ASReml-R 3.0 [39].

Computer simulations

A simulation study was conducted to verify that QTL
with large effects could be detected in our mapping
population and is described in detail in [38]. We ran-
domly selected two markers and set them as artificial
QTL with different effect levels. The markers explained
15% and 10% of the genetic variation, respectively. We
applied the described GWAS in the simulated data and
evaluated the detection rate of the two QTL. The simu-
lation was repeated 100 times.

Results

High heritabilities for all examined traits

The barley diversity panel was evaluated for tiller number,
tipping time, biomass over time, and inflection point, i.e. the
time point of maximum growth (Fig. 1a, Additional file 1:
Figures S1, S2, S3). Except for inflection point, all traits
showed broad phenotypic variation resulting in high coeffi-
cients of variation (Additional file 1: Table S3). Variance
component analyses of biomass over time (Fig. 1b) revealed
that heritability increased from 0.62 during the seedling
stage to a maximum of 091 at the late booting stage (Fig.
1c). The same trend was observed for tiller number. More-
over, heritability was high for inflection point (0.82) and
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Fig. 1 Overview of BLUEs, variance components, and broad sense heritability of estimated traits for 100 barley lines. a Bar diagram of the overall
BLUEs for all analyzed traits: digital biomass (DB) from 10 to 58 days after sowing (DAS) in 10° Voxel, fresh weight (FW) in g estimated at DAS 59,
inflection point (IP) in DAS, tiller number (TN) at DAS 27, 45 and 58 and tipping time (TP). Error bars represent the 95% confidence interval. b
Proportion of variance components in % for each time point of DB (DB10 to DB58), FW, IP, TN (TN 27, 45 and 58) and TP, where VG refers to
genotypic variance, VGE to genotype x environment interaction and VR the variance of the rest (unexplained variance). ¢ Bar diagram presenting
broad sense heritability values for DB (DB10 to DB58), FW, IP, TN (TN 27, 45 and 58) and TP. Hatched bars represent days with missing data

tipping time (0.96). In summary, the intensive phenotyping
of the barley diversity panel resulted in high-quality pheno-
typic data forming a solid basis for genetic analysis.

Dynamic phenotyping revealed substantial genotype-by-
time interactions

We observed that image-based digital biomass measure-
ments are a precise proxy for manually measured fresh

biomass (Additional file 1 Figure S4), and facilitate plant
growth assessments. Evaluation of trends in image-based
digital biomass revealed that genotypes were character-
ized by rapidly changing patterns of biomass accumula-
tion during early growth stages (Fig. 2). This is reflected
by the low Kendall rank correlations of digital biomass
during the seedling stages (Fig. 2, lower left quadrant).
As plants matured, higher correlations among adjacent
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Days after sowing

Kendall correlation of digital biomass

Days after sowing

Fig. 2 Heatmap for Kendall rank correlation coefficients between BLUEs of digital biomass from days after sowing (DAS) 10 to 58. Colors range
from purple (for correlation ~ 0.1) to light-yellow (for correlation ~0.9). Numbers in the contour line indicate the level of correlation

time points were observed (Fig. 2, upper right quadrant).
More distant time measurements, as between the seedling
and booting stages, were not correlated (r = 0.1; P > 0.05)
pointing to strong genotype-by-time interactions.

Associations between biomass and other agronomic traits
Heterotrophic and early autotrophic growth is often
dependent on the initial seed weight. According to this
expectation, we observed a moderate correlation be-
tween digital biomass at seedling stage and TKW
(r = 0.41; P < 0.001; Additional file 1: Figure S5).
Phenology can also substantially affect plant growth.
Tipping time is one important factor of phenology.
Thus, we inspected the association between tipping time
and inflection point to describe the dynamics of biomass
development. We observed a moderate correlation
(r = 0.45; P < 0.001; Additional file 1: Figure S6) between
these traits. The correlation between tipping time and
final biomass was more pronounced at 0.58 (P < 0.001).
Biomass is expected to increase in concert with tiller
number. In accordance with this expectation, we ob-
served that digital biomass significantly correlated with
the number of tillers. For the three time points at which
tiller number was assessed, correlation coefficients
exceeded 0.5 (Additional file 1: Figure S5, Table S4).

Linkage disequilibrium and population structure

After filtering for minor allele frequency and missing
data, a total of 4866 SNPs were used for further analyses.
Out of these, a genetic map position had been assigned
to 4122 SNPs, providing good coverage across the 7
barley chromosomes (Additional file 1: Figure S7). The
average linkage disequilibrium decay in our panel of
spring barley lines amounted to 8 cM, but significant
variation was observed among individual chromosomes
(Additional file 1: Figures S8, S9).

Population stratification can lead to an inflated rate of
false-positives in GWAS. The present panel was deliber-
ately selected to avoid the major causes of population
structure such as growth habit, row type or origin. Ap-
plying a principal coordinate analysis (based on all 4866
SNPs) this is substantiated by the small amount of mo-
lecular variance explained by the first two PCs (16%,
Additional file 1: Figure S10). After examining popula-
tion structure at higher resolution, family structures
could be detected. Here, groups of accessions with
common progenitors, such as eight cultivars of which six
descend at different pedigree levels from the old German
cultivar Isaria (BCC1391), cluster in one clade (Additional
file 1: Figure S11). Another example is a cluster of four
genotypes originating from Syria. Therefore, a kinship
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matrix was used in the GWAS to correct for population
stratification.

Identification of major biomass QTL using GWAS

A simulation study was conducted to validate the statistical
power to detect QTL with large effects in our mapping
population. QTL that explained at least 15% of the geno-
typic variation were detected in 58% of the simulation runs.
Hence, the population size is considered large enough to
detect major QTL. A total of seven SNPs, representing
seven different loci, surpassed the FDR threshold of 0.1 for
biomass in at least one time point (Fig. 3a, Additional file 1:
Figure S12, Additional file 2). We observed three distinct
trends for significant biomass-marker associations over
time: monotonic increases, monotonic decreases, and an
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increase followed by a decrease. More specifically, these in-
clude: 1) three SNPs on 3H 106 cM, 4H 44 cM, and 7H
14 cM decreased monotonically over time; 2) three SNPs
mapping to 3H 99 cM, 6H 25 cM, and 7H 141 c¢cM showed
a monotonic increase in —log(p)-values over time; 3) —
log(p)-values of one SNP located at 4H 91 c¢cM increased
until DAS 37 and decreased thereafter. These seven
biomass QTL collectively explained between 42% of the
genetic variation at 17 DAS and 55% of the genetic vari-
ation at 10 DAS (Fig. 3b). Individual QTL explained be-
tween 13% and 27% of the genetic variation.

Two SNPs located on chromosome 1H at 71 ¢M and
on chromosome 7H at 34 cM showed significant associ-
ations with the inflection points (Additional file 1: Figure
S13, Additional file 2). The two SNPs explained 9% (7H)

(Y
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DAS

Fig. 3 Time course of QTL-dynamics for digital biomass (DB) in days after sowing (DAS). The figure represents seven SNPs that exceeded the FDR
threshold of 0.1 for at least 1 day. Note that missing DAS data points were excluded in this graph. a Significance value -log(p) over time - each colored
line represents one QTL. b Proportion of genetic variance explained by QTL separately (lower, colored lines) or in combination (upper grey line)
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and 8% (1H) of genetic variation respectively, and 16%
of the genetic variation collectively.

Marker-trait associations for tipping time and tiller number
One SNP (SCRI_RS 140819) on chromosome 2H at
27.7 ¢M near PPD-HI (19.9 cM) showed a significant as-
sociation with tipping time (Additional file 1: Figure S14,
Additional file 2), explaining 23% of the genetic vari-
ation. PPD-H1 is an important regulator of photoperiod
response determining flowering in barley and the gen-
omic region of PPD-HI was harboring the main heading
time QTL in the full barley panel [27]. Although the
functional SNP of PPD-HI (BK_15) is part of the used
marker set, it did not pass the FDR (-log(p) value was
2.4). The functional SNP showed significant linkage dis-
equilibrium of r* = 0.34 to the SNP at 27.7 cM. A higher
minor allele frequency of the more distant SNP (MAF =
0.152) compared to BK_15 (MAF = 0.101) may be the
reason for not detecting the functional SNP as an associ-
ation. However, the proportion of genetic variance ex-
plained by BK 15 is high (24%) despite its lacking
significance and therefore the QTL is congruent with
the earlier findings [27].

No SNP was significantly associated with tiller number
at 27 DAS (Additional file 1: Figure S15, Additional file 2).
In contrast, 31 significant marker-trait associations were
detected for tiller number at 45 DAS. The SNPs com-
prised seven different loci and collectively explained 36%
of the total genetic variation. Three SNPs located on
chromosome 6H at 30 ¢cM explained the highest amount
of genetic variation (11%). Tiller number assessed at 58
DAS was significantly associated with 42 SNPs mapping
to ten different loci. The 42 SNPs explained collectively
54% of the genetic variation. The same three SNPs identi-
fied in the 45 DAS tiller data set on chromosome 6H at
30 cM, explained most of the genetic variation (20%).

Discussion

In this study we investigated above-ground biomass for-
mation during vegetative phases of plant development in
a diverse panel of two-rowed spring barley accessions
using GWAS of image- and model-based trait compo-
nents. This barley collection has been investigated in
several other genetic analyses (Table 1) and allows direct
comparison of our results to those obtained by [40-42,
27], who investigated the full panel of 224 spring barley
accessions at flowering, seedling, and at maturity stages,
respectively. From this panel, 96 two-rowed barley geno-
types were analyzed for GWAS in this study, allowing
comparisons between our study and these results. Alqu-
dah et al. [40] investigated differential developmental
phase duration QTL, which we refer to as stage duration
QTL. Alqudah et al. [41] investigated plant height and
tiller number in the two-and six rowed barley panel and
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we compared our results only with their QTL in the
two-rowed panel.

Moreover, the 9K iSelect array has also been used in
applied genomic research [35], allowing additional com-
parisons of QTL in other populations. George et al. [43]
investigated a European spring barley collection in the
juvenile stage. Ingvordsen et al. [44] investigated a Nor-
dic spring barley collection at maturity stage. Maurer et
al. [45, 46] investigated flowering time and plant devel-
opment in a barley NAM-population; Rollins et al. [11]
investigated a Syrian spring barley RIL population at ma-
turity stage; Sannemann et al. [47] investigated a Ger-
man two-rowed barley MAGIC population for flowering
time; Tondelli et al. [22] investigated a set of 116 Euro-
pean two-rowed barley cultivars until maturity stage;
Wehner et al. [48] investigated a German and Spanish
winter barley collection in the juvenile stage.

In total, 17 out of 21 loci for biomass and related traits
in our study were co-locating with QTL from the previ-
ous mentioned studies (Table 1).

Plant growth was assessed with high precision enabling
dynamic association mapping

The observed heritability estimates of image-based biomass
(Fig. 1c) were high, reaching 0.9 in later stages, and similar
to those identified previously in barley [15, 20]. Interest-
ingly, the observed heritability for the inflection point
(H? = 0.82) was substantially higher than that seen in a pre-
vious wheat study that reported a heritability estimate of
0.07 [19]. The strict control of our environmental condi-
tions, across the entire growing period, may have been key
to achieving the high heritability results for biomass traits.
Recently a high heritability of 0.72 was also observed in a
large maize panel in strictly controlled conditions [25]. The
heritabilities facilitated the identification of key genetic fac-
tors underlying biomass development. Moreover, these her-
itabilities will enable a reduction in the number of genotype
replicates required and facilitate phenotyping larger popula-
tions in future studies. This will be advantageous for detect-
ing QTL with smaller effects since both the sensitivity and
the selectivity of GWAS analysis increase with population
size [49]. The obtained heritabilities facilitate future screen-
ing of larger collections of 200 genotypes on this platform
suitable for resolving smaller-effect QTL by further
decreasing the replicate number down to two replicates: ac-
cording to the variance component analysis, based on two
replicates and three experiments, a heritability of ~0.5 can
still be achieved for seedling biomass, while biomass around
reproductive stage is projected to be 0.9.

The genetic architecture of biomass is partially driven by
phenology and morphology

The positive correlation (r = 0.58) between final biomass
and tipping time (Additional file 1: Figure S6) revealed
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Table 1 Overview of genetic loci identified by GWAS
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Chr

Position (cM)

Trait

Published candidate loci in target region

QTL in other studies using iSelect or BOPA arrays

™
2H

2H

2H
2H

2H

3H

3H

4H
4H
5H
5H

6H
6H
6H

7H

7H

7H

7H

7H
7H

705
277

574-58.1

744
124.9

1358

105.9

436

91

306
42.0-45.7

245
30.1-30.2
55

14.0

67.8-68.1

1204

134.2
140.9

P
TP

TN58

TN 58
TN 45 + 58

TN58

DB 42-58, FW

DB 12

DB 10

DB 33-47
TN58

TN 45 + 58

DB 50-58, FW, TN 45
TN 45 + 58
TN45

DB 10-12

TN 45 + 58

TN 45 + 58

TN58
DB 33-58, FW

PPD-H1

Eps2/eam6/HvCEN (58 cM)

HVAP2 (126.7 cM)

HVCMFT (98.2 cM)

HvCO3 (43.7 cM) HVTFL1
(44.1 cM), HVCMF13 (464 cM)

HvCO5/HvCryla/
HvCry2/HvPRR1/HVTOCT (55 cM)

Virn-H3/HvFTT

HvCO1 (67.9 cM), HvCO5 (70.5 cM)

HvCO6 (120.8 cM)

HvDIM

Algudah et al. (2014): stage duration; Pasam et al. (2012
and (Maurer et al. 2015, 2016): heading; height, TKW,
starch, protein; Ingvordsen et al. (2015): grain yield
(23.0 cM), Sannemann et al. (2015) heading

Alqudah et al. (2014): stage duration; Alqudah et al. (2016):
TN; Long et al. (2013) and Tondelli et al. (2013): height;
Maurer et al. (2015): flowering; Maurer et al. (2016): shooting,
shoot elongation phase, heading, ripening, maturity, height;
Pasam et al. (2012): heading, height

Algudah et al. (2014): stage duration

Maurer et al. (2016): shooting, hedensading, ripening
(127-130 cM); Pasam et al. (2012): height

Alqudah et al. (2014): stage duration; Maurer et al. (2016):
maturity, height (139 cM); Pasam et al. (2012): height;
Tondelli et al. (2013): height

Ingvordsen et al. (2015): grain yield (100.3 cM); Maurer et al.
(2016): shooting, shoot elongation phase, heading, ripening,
maturity, height, TKW; Long et al. (2013): root weight; Wehner
et al. (2015): biomass yield

Algudah et al. (2016): TN; Maurer et al. (2015): flowering
(107.8-109.2 cM); Maurer et al. (2016): shooting, shoot
elongation phase, heading, ripening, maturity, height, TKW;
Sannemann et al. (2015): heading; Wehner et al. (2015):
biomass yield

Ingvordsen et al. (2015): straw biomass

Alqudah et al. (2014): stage duration; Alqudah et al. (2016):
height; Maurer et al. (2016): shoot elongation phase; Pasam
et al. 2012): height; Wehner et al. (2015): biomass yield

Algudah et al. (2016): TN

Algudah et al. (2016): TN, height; Maurer et al. (2016):
shooting, heading, ripening, height; Pasam et al. (2012):
height, TKW; Tondelli et al. (2013): lodging

Alqudah et al. (2014): stage duration, Alqudah et al.
(2016): TN; Maurer et al. (2016): shooting; Long et al.
(2013): TN

Algudah et al. (2014): stage duration; Maurer et al. (2015),
Pasam et al. (2012), Rollins et al. (2013) and Sannemann
et al. (2015): heading/flowering; Maurer et al. (2016):
shooting, shoot elongation phase, heading, ripening,
maturity, height, TKW

Algudah et al. (2014): stage duration; Alqudah et al. (2016):
TN, height; Maurer et al. (2016): shooting, shoot elongation
phase, heading, maturity, height, TKW; Pasam et al. (2012):

heading, height; Sannemann et al. (2015): heading; Wehner
et al. (2015): biomass yield (70.2 cM)

Algudah et al. (2014): stage duration; Alqudah et al. (2016):

height; Ingvordsen et al. (2015): yield variance; Maurer et al.
(2016): shooting, heading, ripening, maturity; TKW Tondelli

et al. (2013): height

Wehner et al. (2015): biomass yield (133.9 cM)
George et al. (2014): shoot dry weight

SNPs are described by their genetic position and associated traits. Candidate genes for flowering traits are based on positions from Alqudah et al.

(2014) and comparison to growth and heading/flowering related traits from other mapping studies in barley that used the same barley collection and/
or SNPs from iSelect or barley oligo pool array (BOPA)
IP inflection point, TP tipping time, DB digital biomass, FW fresh weight, TN tiller number (at a specific number of DAS)
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that a prolonged vegetative growing phase promotes
higher biomass accumulation. The relationship between
biomass and phenology also occurs at the molecular
level, despite the lack of a common QTL for biomass
and tipping time in our study (Additional file 2). The
SNP on chromosome 3H 99 cM, which associated with
digital biomass between 42 and 58 DAS, co-localized
with the flowering time gene HvCMFI [50]. Moreover,
the marker on chromosome 3H at 105.9 cM with signifi-
cant biomass association at DAS 12 (Additional file 2)
was reported to be related to heading time [46]. A major
QTL for seedling biomass was detected on the short
arm of 7H, corroborating the finding in the full barley
panel (A.H. Abdel-Ghani, personal communication). In
this same region, a QTL for the time of tipping and awn
primordium stage was identified [40]. Thus, genetic fac-
tors driving phenology in barley contribute to the
phenotypic variation in biomass at different time points.

Phenology affects biomass at individual developmental
stages and contributes to the phenotypic variation of
biomass development dynamics. This is reflected at the
phenotypic level by a positive correlation between tip-
ping time and inflection point amounting to r = 0.45.
Moreover, the effects of phenology on biomass develop-
ment are also visible at the molecular level; one of the
QTL detected for inflection point co-localized with a
well-known flowering gene. The SNP on chromosome
7H at 34 cM is part of a sequence contig from the culti-
var Morex carrying HvFT1/Vrn3 (M. Mascher, personal
communication), an orthologue of FT [51]. HVFT1 pro-
motes flowering under long day conditions [35].

Early biomass was correlated with TKW. Despite that,
none of the early biomass QTL co-located with previ-
ously reported QTL for TKW in the full panel of the in-
vestigated barley collection. However, one early biomass
locus (3H, 105.9 cM) was in the same region as a QTL
for TKW in a barley NAM-population [46].

Biomass generally increases with the number of tillers
(Additional file 1: Figure S5), but not all tillers will de-
velop inflorescences and become productive [52]. There-
fore, selection for biomass traits that include loci
associated with tillering should be handled with care.
The phenotypic association between biomass and tiller
number is reflected at the molecular level: Three
biomass-associated SNPs were reported to be associated
with tiller number in our or previous studies (Table 1).

Plant height was not assessed in the current study.
Nevertheless, two of the seven biomass QTL and one
QTL for inflection point co-localized with a known QTL
for plant height (Table 1) identified in a different
population [46]. Taken together, our results lend further
strength to the hypothesis that genes related to
phenology and morphology show pleiotropic effects on
biomass development.

Page 9 of 12

Candidate genes potentially involved in biomass
development

The SNP on chromosome 7H at 140.9 c¢M, which ex-
plained the largest proportion of genetic variance across
the different time points, was also previously reported to
be associated with shoot dry weight in seedlings [43]. A
likely candidate gene, namely HvDIM/HvDWFI, is lo-
cated in close proximity at 140.6 cM [53, 54]. In arabi-
dopsis, the related DIMINUTO/DWARFI gene encodes
a protein involved in steroid synthesis. The correspond-
ing mutant, dim, is deficient in campesterol and brassi-
nosteroids [55] which is caused by the inhibition of an
early step in brassinosteroid biosynthesis that converts
24-methylenecholesterol to campesterol [56]. Brassinos-
teroids are growth-related hormones that regulate cell
division, cell elongation, and photosynthesis, among
other functions [57]. Brassinosteroids affect plant archi-
tecture traits such as height, leaf angle, tiller number,
and grain size, thereby influencing yield [58]. Houston et
al. [59] also reported additional candidate genes for bio-
mass in this same region: one member of the Glycosyl
Transferase family (HvGsl5), one member of the Glyco-
syl Hydrolase family (GIbIl) and the gene Sucrose Syn-
thase II (HvSuSyIl), involved in the synthesis of cellulose
[60, 61]. Another potential candidate at 140.7 cM is
listed as an ent-copalyl diphosphate synthase [54], a pre-
cursor for gibberellins known to be involved in shoot
growth [62, 63].

Potential of marker-assisted selection for improved vege-
tative biomass

Early vigor is hypothesized to be pivotal for seedling
establishment and the promotion of increased final vege-
tative biomass [64]. To examine this hypothesis in more
detail, we grouped the accessions according to their
allelic state for each of the three early, and four
medium-to-late biomass QTL. Identification of geno-
types with increased seedling biomass was possible by
selecting for favorable early QTL alleles (Fig. 4a), but
identification of genotypes with a high biomass at repro-
ductive stages was not successful using only QTL for
late biomass (Fig. 4b). Interestingly, genotypes with very
high late biomass were identified by selecting for favor-
able early and late biomass QTL (Fig. 4c). Moreover, we
evaluated the potential of marker-assisted selection using
information from all seven biomass QTL, in combin-
ation with the two QTL for inflection point (Fig. 4d).
Only one genotype, which ranked amongst the lines with
highest final biomass, combined the favorable alleles
from all nine QTL (Fig. 4d) but no genotype combined
all the unfavorable alleles. Hence, marker-assisted selec-
tion to identify increased biomass at the reproductive
stage would benefit from the inclusion of QTL for bio-
mass at the booting and seedling stage.
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Fig. 4 Standardized digital biomass of all barley accessions highlighting favorable and non-favorable QTL allele combinations over time. Biomass was
standardized each day according to the population average. Values below zero indicate genotypes with biomass values lower than the average for the
population; values above zero represent genotypes with biomass values higher than the average for the population. Genotypes that carry the positive
marker alleles for each QTL set are highlighted in green, those carrying the non-favorable alleles are shown in red. The remaining allelic combinations
for all other genotypes are shown in grey (a) QTL for early biomass (3 QTL) (b) QTL for late biomass (4 QTL) and (c) QTL for early and late biomass (7

Conclusions

This study demonstrates the potential of daily trait as-
sessment to uncover the dynamics of trait relationships
and to identify QTL for mapping. Our results show that
biomass development during early and late growth
stages is orchestrated by different QTL. Marker-assisted
selection for late vegetative biomass is most effective by
including favorable alleles from biomass QTL in both
early and late vegetative stages. Using dynamic QTL for
selection may enhance genetic gain for complex traits
such as biomass or, in the future, grain yield. Our results
also evaluated the genetic architecture of biomass devel-
opment, and point at the impact of flowering time and
plant morphology. To further refine biomass establish-
ment QTL, future studies will benefit from the develop-
ment and analysis of customized populations with
reduced variation in flowering time, plant height and til-
lering. This study identified seven biomass QTL with
large effects, three for early, one for medium, and three
for late vegetative biomass accumulation. Looking ahead,

fine mapping in bi-parental populations will reveal the
genetic architecture and molecular basis of biomass for-
mation under standardized conditions while field trial
validation will assess the agronomic relevance of the
present findings.

Additional files

Additional file 1: Supplementary Data on barley collection, missing
data points, phenotypic correlations, seasonal effects and phenology,
map density and LD. The file contains supplementary Tables $1-S4 and
supplementary Figures $1-515. (DOCX 9037 kb)

Additional file 2: Excel table with all SNPs that surpassed the FDR for at
least one trait with mapping positions and —log(p)-values over all traits.
(XLSX 46 kb)
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