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Abstract

Background: The ability to modulate levels of individual fatty acids within soybean oil has potential to increase
shelf-life and frying stability and to improve nutritional characteristics. Commaodity soybean oil contains high levels
of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability — a problem that has been
addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have
been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty
acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid
(18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-
1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were
introduced into FAD3A by directly delivering TALENSs into fad2-1a fad2-1b soybean plants.

Results: Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared
to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared
to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b
fad3a soybean lines were identified.

Conclusions: The methods presented here provide an efficient means for using sequence-specific nucleases to

stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and

linolenic acid levels below 3 %.
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Background

Soybean is an important legume crop that is valued for
both its protein and oil content. Worldwide soybean
production in 2014/2015 was 319 million metric tons,
with 108 million metric tons produced in the United
States. Soybean oil is used in applications ranging from
cooking and frying to industrial lubrication and biofuels.
Commodity soybean oil is primarily composed of five
fatty acids: palmitic acid (~13 %, saturated, 16:0), stearic
acid (~4 %, saturated, 18:0), oleic acid (~20 %, monoun-
saturated, 18:1), linoleic acid (~55 %, polyunsaturated,
18:2) and linolenic acid (~8 %, polyunsaturated, 18:3).
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Due to high levels of polyunsaturated fatty acids,
soybean oil has poor oxidative and frying stability, which
limits its use in food products and industrial applica-
tions. In an effort to lower the levels of polyunsaturated
fatty acids, soybean oil is partially hydrogenated; how-
ever, partial hydrogenation significantly increases trans-
fatty acids, which have been linked with coronary heart
disease and buildup of plaque in arteries [1]. The Food
and Drug Administration (FDA) made a preliminary
determination that partially hydrogenated oils are no
longer ‘generally recognized as safe’ (GRAS) and is now
taking steps to remove artificial trans fats from human
food [2]. Altering the composition of soybean oil by
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decreasing the levels of polyunsaturated fatty acids may
help reduce the need for hydrogenation.

Significant progress has been made in uncovering the
genes involved in the soybean lipid biosynthetic pathway,
and those involved in conversion of oleic acid into polyun-
saturated fatty acids. Conversion of oleic to linoleic acid is
catalyzed by fatty acid desaturase 2 (FAD2) proteins [3].
There are three FAD2 desaturase genes within the
soybean genome, FAD2-1A (GlymalOg42470), FAD2-1B
(Glyma20g24530) and FAD2-2 (Glyma03g30070). Both
FAD2-1A and FAD2-1B are highly expressed during peak
oil synthesis and are the primary genetic determinants of
oleic and linoleic acid levels in soybean seeds [4, 5]. Dis-
ruption or decreased expression of FAD2-1 genes results
in oil with elevated oleic acid and decreased linoleic and
linolenic acid [6-12]. Combination of mutations within
FAD2-1A and FAD2-1B genes results in soybean oil with
oleic acid levels ~80 % and linoleic and linolenic acid
levels ~ 5 % each [13, 14].

Decreasing levels of linolenic acid is predicted to im-
prove soybean oil characteristics by decreasing total levels
of polyunsaturated fatty acids, and subsequently increasing
frying and oxidative stability. Conversion of linoleic to lino-
lenic acid is catalyzed by the fatty acid desaturase 3 (FAD3)
enzyme, which is produced by a family of genes consisting
of FAD3A (Glymaldg37350), FAD3B (Glyma02g39230)
and FAD3C (Glymal8g06950). Consistent with its high ex-
pression in developing seeds, FAD3A has the greatest effect
on linolenic acid concentrations in soybean oil [15]. Com-
bining mutations within FAD3A with FAD3B and/or
FAD3C resulted in oil having <3 % linolenic acid [16—20]

With the advent of sequence-specific nucleases, includ-
ing TALENs and CRISPR/Cas, it has become possible to
introduce targeted knockout mutations within genes of
interest [21]. When delivered to plant cells, sequence-
specific nucleases generate targeted DNA double-strand
breaks. These double-strand breaks are then repaired pre-
dominantly by non-homologous end joining (NHE]),
which may result in the introduction of small insertions or
deletions at the repair site. If double-strand breaks are
generated within gene coding sequences, imprecise repair
by NHE] has potential to introduce frameshift mutations
or in-frame deletions that destroy protein function. The
objective of this study was to create high oleic and low
linolenic soybean lines by stacking targeted mutations
within FAD2-1A, FAD2-1B and FAD3 genes. With the
current industrial standard for low linolenic acid soybean
oil being 3 % [20], we sought to inactivate a sufficient
number of FAD3 genes to achieve linolenic levels <3 %.

Results

Designing TALENs targeting the soybean FAD3 genes
Soybean oil is primarily composed of palmitic acid,
stearic acid, oleic acid, linoleic acid and linolenic acid. In

Page 2 of 8

oil from wild type plants, these five fatty acids are
present at approximately 13, 4, 20, 55 and 8 %, respect-
ively (Fig. 1la). Previously, we used TALENSs to generate
knockout mutations within both FAD2-1A and FAD2-1B
genes [14]. Oil from the resulting plants contained
higher levels of oleic acid (~79 %) and lower levels of
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Fig. 1 Design of TALENSs targeting FAD3 genes within Glycine max.
a lllustration of the fatty acid pathway. Relative percent composition
of individual fatty acids in the oil from WT and fad2-1 knockout
plants is shown on the right. b Schematic of the FAD3A genomic
sequence. Triangles, approximate TALEN binding sites; black boxes,
exons; gray boxes, 5" and 3" untranslated regions. ¢ Nucleotide
sequences of the predicted TALEN target sites within the FAD3A,
FAD3B, and FAD3A genes. Bold and underlined nucleotides indicate
TALEN binding sequence. Lower case nucleotides indicate positions of
SNPs. d lllustration of a TALEN monomer expression vector. Pyos,
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nuclear localization signal; Tyos, nopaline synthase terminator; AmpR,
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linoleic and linolenic acids (~5 % each), compared to oil
from WT plants. Here, we sought to further improve oil
characteristics by knocking out genes involved in the
conversion of linoleic to linolenic acid. We predicted
that by knocking out the FAD3 linoleate desaturase
genes, levels of linolenic acid would further decrease.

The soybean genome contains three linoleate desaturase
genes: FAD3A (Glymal4g37350), FAD3B (Glyma02g39230)
and FAD3C (Glymal8g06950). In terms of nucleotide simi-
larity of their coding sequences, FAD3A shares 96.2 % iden-
tity to FAD3B and 14.4 % identity to FAD3C. Compared to
FAD3B and FAD3C, mutations in FAD3A confer the great-
est decrease in linolenic acid levels in soybean oil (from ~8
to ~4 %) [22], which is consistent with higher expression
of FAD3A within developing seeds [15]. Therefore, we
sought to design TALENS that primarily recognize FAD3A
sequence. Three TALEN pairs were synthesized which
recognize sequence within exon two or exon three of
FAD3A (designated as GmFAD3_T01.1, GmFAD3_T02.1,
and GmFAD3_T03.1) (Fig. 1b). TALENs were designed to
recognize FAD3A sequence which is partially conserved
between FAD3B and FAD3C; however, the recognition
sequences for all TALEN pairs at FAD3B and FAD3C
contained at least one single-nucleotide polymorphism
(SNP), but up to 11 SNPs, when compared to the FAD3A
sequence (Fig. 1c).

Assessing TALEN activity in protoplasts by deep-
sequencing
To determine TALEN activity, protoplasts were trans-
formed with plasmid DNA encoding each TALEN pair
and the FAD3 target sites were deep-sequenced. To this
end, approximately 500 000 protoplasts were transformed
with 15 pg each of two plasmids encoding a complete
TALEN pair. Protoplasts were transformed using poly-
ethylene glycol. Genomic DNA was isolated ~48 h post
transformation and used as a template in a PCR with
primers designed to individually amplify TALEN target
sites within the FAD3A, FAD3B or FAD3C gene. Ampli-
con pools for each TALEN target site were sequenced by
454 pyrosequencing. For all three TALEN pairs, we ob-
served evidence of NHE] mutations in two of the three
FAD3 genes (Fig. 2a). TALEN pair GmFAD3_T02.1 intro-
duced mutations within both FAD3A and FAD3B, and,
relative to the other TALEN pairs, had the highest activity
at its intended target sequence, FAD3A (16.0 %). On the
other hand, TALEN pair GmFAD3_T03.1 had the lowest
activity at its intended FAD3A target sequence (4.9 %).
Activity of all three TALEN pairs at the FAD3B and
FAD3C target sites was lower than the respective FAD3A
target site, which is most likely due to SNPs within the
FAD3B and FAD3C TALEN binding sites.

We observed a correlation between the number of SNPs
within TALEN binding sites and the relative mutation
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Fig. 2 FAD3 TALEN activity in soybean protoplasts. a TALEN pairs
were assessed for their activity ~48 h after transformation in
soybean protoplast. The frequency of mutagenesis represents the
total number of sequence reads with insertions or deletions divided
by the total number of sequence reads. The resulting number was
then divided by the transformation frequency (90 %) which was
determined using a YFP control plasmid. b TALEN activity relative to

the number of SNPs present within the predicted TALEN binding sites

frequencies (Fig. 2b). Mutation frequencies at FAD3A
target sites (containing O SNPs) for TALEN pairs
GmFAD3_TO01.1, GmFAD3_T02.1, GmFAD3_T03.1 were
112, 16.0 and 4.9 % respectively. After normalizing
TALEN mutation frequencies at FAD3A, the relative
mutation frequencies at FAD3B and FAD3C were deter-
mined. Target sites with one or two SNPs decreased muta-
tion frequencies to ~53 or 63 %, respectively, relative to
the activity of the corresponding TALEN FAD3A; target
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sites with four SNPs decreased mutation frequencies to
14 %; target sites with five SNPs decreased mutation
frequencies to 0.041 %, and target sites with >5 SNPs
decreased mutation frequencies to undetectable levels.
Whereas these data do not account for relative position of
the SNPs, they provide evidence for TALEN target site
specificity, indicating that target sites with five or more
SNPs are unlikely to be recognized and cleaved.

Generating soybean plants with FAD3 mutations

To generate soybean plants with knockout mutations in
FADS3 genes, DNA encoding TALEN pair GmFAD3_T02.1
was stably integrated into the soybean genome [14, 23].
Both WT and fad2-1a fad2-1b mutant soybean lines were
transformed; from four independent transformations, a
total of 72 events were generated (Table 1). To detect
TALEN-induced mutations, the FAD3A gene was ampli-
fied and digested with T7 endonuclease I. We observed
that 16 of the 72 events had cleavage products consistent
with mutations within the GmFAD3_T02.1 target se-
quence. Cloning and sequencing of FAD3A amplicons
revealed that all 16 plants harbored short deletions within
the TALEN spacer sequence, ranging from 4 to 135 bp.
Together, these results confirm the successful mutagenesis
of FAD3A within TO soybean plants, with a mutagenesis
frequency of ~22 %.

To confirm TALEN-induced mutations can be stably
transmitted to subsequent generations, candidate T1
plants derived from experiment Gm183 were screened
for mutations within FAD3A by PCR amplification and
sequencing of clones. From three different TO events
(Gm183-4, Gm183-5 and Gm183-6), we identified T1
plants harboring heterozygous or homozygous mutations
within FAD3A, indicating that mutations were stably
transmitted to the next generation (Table 2). Further,
we assessed T1 plants by PCR for the presence of
transgene sequence. Of the 25 T1 plants assayed, 20
were positive for transgene sequence and five were
negative (i.e, null segregant for the TALEN trans-
gene). Importantly, two of the five transgene-free T1
plants harbored mutations within FAD3A. These two

Table 1 Summary of FAD3A mutation frequencies within TO
soybean plants

Experiment Background Number ~ Number of  Mutagenesis
of events  T7-positive  frequency
events
Gm183 fad2-1a fad2-16 30 8 27 %
Gm184 Bert 35 5 14 %
Gm205 fad2-1a fad2-16 3 2 67 %
Gm206 Bert 4 1 25 %
Average 72 16 22 %

mutagenesis
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Table 2 Genotype of T1 plants from candidate TO events
harboring mutations within FAD3A

Parent line (TO) T1 plant number FAD3A Presence of
genotype transgene
Gm183-4 1 —7 bp/WT Undetected
2 —7 bp/-7 bp +
3 —7 bp/-7 bp +
4 —7 bp/WT +
Gm183-5 2 —43 bp/WT +
3 WT/WT Undetected
4 -43 bp/-43bp  +
5 —43 bp/-43 bp Undetected
7 —43 bp/-43 bp +
8 —4 bp/-4 bp +
9 —43 bp/-43 bp +
Gm183-6 1 —4 bp/-4 bp +
2 WT/WT +
3 WT/WT +
4 —4 bp/WT +
5 —4 bp/-4 bp +
6 WT/WT Undetected
7 —4 bp/WT +
8 WT/WT Undetected
9 WT/WT +
10 WT/WT +
11 —4 bp/WT +
12 —4 bp/WT +
13 WT/WT +
14 —4 bp/WT +

plants were self-pollinated to produce homozygous-
mutant, transgene-free fud2-1a fad2-1b fad3a soybean
plants. Notably, we also identified a single-gene fad3a
knockout T1 plant from experiment Gm184 (identi-
fied as Gm184-3-20) which contains a homozygous
-4 bp deletion within FAD3A. We failed, however, to
identify plants with combinations of FAD3A and
FAD3B mutations, indicating that the frequency of
mutagenesis at FAD3B was <1.4 % (i.e., less than 1
out of 72 events).

Oil from fad2-1a fad2-1b fad3a homozygous mutant
soybean seeds contains high oleic, low linoleic and low
linolenic acid

Next, we assessed the oil profile within seed from
fad3a and fad2-la fad2-1b fad3a homozygous mu-
tant soybean lines (Fig. 3). Seed from T1 homozy-
gous mutant lines were collected and assessed for oil
composition by gas chromatographic analysis of fatty
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acid methyl esters (GC FAME Analysis; Additional
file 1). In oil from fad3a plants, we observed signifi-
cant changes in linolenic, linoleic, oleic and stearic
acid levels, relative to oil from WT plants. We ob-
served linolenic acid decreased from 8.2 +0.4 to 3.9
+0.3 %, linoleic acid increased from 51.1+0.2 to
61.9+1.2 %, oleic acid decreased from 23.2+0.8 to
179+ 1.6 % and stearic acid decreased from 4 +0.01
to 3.2+0.1 %.

We observed significant changes in fatty acid levels
within seed oil from fad2-la fad2-1b fad3a soybean
plants, when compared to fad2-la fad2-1b soybean
plants. The average linolenic acid level within oil from
fad2-1a fad2-1b fad3a plants was 2.5+ 0.4 %, signifi-
cantly lower than oil from fad2-la fad2-1b soybean
plants (4.7 £ 0.1 %). Linoleic acid levels decreased from
51+0.7 % in fad2-la fad2-1b lines to 2.7+0.9 % in
fad2-1a fad2-1b fad3a lines, and oleic acid levels
increased from 77.5+0.8 % in fad2-la fad2-1b lines to
822+ 1.6 % in fad2-la fad2-1b fad3a lines. Together,
these results indicate that stacking mutations within
FAD2-1 and FAD3A genes decreases linolenic and
linoleic acid levels to below 3 %, and increases oleic acid
levels to over 80 %.

Discussion

In 2015, the FDA ruled that trans fat is no longer ‘gener-
ally recognized as safe’ for use in food, and has set a
3 year deadline to remove partially hydrogenated oils
from food products. In an effort to improve shelf life
and cooking characteristics, soybean oil is partially
hydrogenated. However, partial hydrogenation results in
increased levels of tranms fats. Generating soybean oil
with lower levels of polyunsaturated fatty acids promises
to enhance shelf life and heat stability, thereby reducing
the need for hydrogenation. Previously, we generated
soybean that produce high oleic acid oil by knocking out
both FAD2-1A and FAD2-1B genes. Here, we further im-
proved oil characteristics by decreasing polyunsaturated
fatty acids (linoleic and linolenic) to levels below 3 %.
The methods and products presented here provide
solutions for the demand of soybean oil with increased
oxidative stability.

Soybean plants with high oleic acid have been developed
by research groups using different approaches. These
approaches include RNAi [11], combining naturally occur-
ring or induced mutations [13, 24, 25], and site-directed
mutagenesis using sequence-specific nucleases [14]. Of
the characterized high oleic soybean lines, most have
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distinct differences in the levels of individual fatty acids.
For example, Monsanto’s Vistive® Gold high oleic acid soy-
bean oil (MON 87705), created using RNAi targeting
FATB and FAD2-1 and harboring naturally occurring
mutations in FAD3 genes, has oleic, linoleic, linolenic and
saturated fatty acids levels of 71.7, 16.9, 2.9 and 6.8 %,
respectively [26]. Further, Pioneer/DuPonts Plenish® high
oleic soybean oil (HOSO 305423), created using RNAi
against FAD2-1, has oleic, linoleic, linolenic and saturated
fatty acids levels of 70.6, 5.5, 7.2 and 14.3 % respectively
(26, 27]. The fad2-1a fad2-1b fad3a lines created here
have oleic, linoleic, linolenic and saturated fatty acids
levels of 82.2, 2.7, 2.5, and 11.3 %, respectively. Variations
in fatty acid levels may be due to differences in gene
targets (e.g., FATB vs FAD3), genetic background, growth
conditions, and possibly incomplete silencing of gene
expression when using RNAi technology.

We observed lower levels of linoleic acid and higher
levels of oleic acid within oil from fad2-1a fad2-1b fad3a
plants, when compared to oil from fad2-la fad2-1b
plants. It would be expected that knockout mutations
within desaturase genes would result in accumulation of
the corresponding substrate. Indeed, this is the case for
plants containing mutations in either FAD3A or FAD2-
1A FAD2-1B; mutations in FAD3A resulted in increased
levels of linoleic acid, and mutations in FAD2-1A FAD2-
1B resulted in increased levels of oleic acid. When we
introduced FAD3A mutations within fad2-la fad2-1b
soybeans, the level of linoleic acid decreased and the
levels of oleic acid increased. This trend was also ob-
served in high oleic and low linolenic soybean plants
generated after combining different sources of mutant
FAD2-1A, FAD2-1B and FAD3A genes [20]; however,
fatty acids levels were significantly affected by environ-
mental conditions. Further, and unexpectedly, we ob-
served that oil within fad3a and fad2-1a fad2-1b plants
had deceased levels of the two fatty acids immediately
preceding the substrate of the inactivated desaturase
(i.e., palmitic and stearic acid in fad2-1a fad2-1b plants,
or stearic and oleic acid in fad3a plants). Understanding
properties of additional soybean desaturase proteins and
the effects of genetic background and environmental
conditions may provide a better understanding of the
lipid biosynthetic pathway in soybean.

Here, we used TALENs to generate fad2-la fad2-1b
fad3 knockout soybean lines; however, there are other
sequence-specific nucleases that can be used for plant
genome editing, including meganucleases, zinc-finger
nucleases and CRISPR/Cas systems. Three key parame-
ters for choosing a sequence-specific nuclease include
efficacy (i.e., how likely will the nuclease introduce a
desired modification), target site specificity, and ease of
construction. Although meganucleases and zinc-finger
nucleases have achieved acceptable mutation frequencies
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and target site specificity [28, 29], their widespread use
has been hindered due to difficulties with construction
[30, 31]. TALEN and CRISPR/Cas systems have over-
come these challenges as they have a modular ‘one RVD
to one base pair’ design or a RNA-DNA interaction,
allowing for efficient reconstruction of nucleases with al-
tered target sites. One difference between TALENs and
CRISPR/Cas is target site length. CRISPR/Cas9 from
Streptococcus pyogenes recognizes, in general, 17-20
nucleotides of sequence plus a three nucleotide PAM se-
quence (NGQ), providing ~19-22 nucleotides of target site
specificity. TALEN pairs, on the other hand, are frequently
engineered to recognize 30-40 nucleotides, which may
lead to fewer off-target double-strand breaks. Whereas
both TALENs and CRISPR/Cas9 tolerate certain nucleo-
tide changes within their target sequences, both provide
sufficient specificity to target a single site within a com-
plex plant genome, provided the target site (or a similar
target site) is not repeated elsewhere in the genome.

An advantage of engineering crops with sequence-
specific nucleases is that the resulting product is not re-
quired to harbor transgenic DNA. Within this study, we
identified two modified soybean lines with undetectable
levels of transgenic DNA. The genotype of these plants
were described to the USDA for the purpose of deter-
mining regulatory status. An opinion letter, issued May
20th, 2015, indicated that the resulting FAD3A knockout
plants are not regulated by the USDA under seven CFR
part 340 [32]. This means that trials can be launched
with transgene-free fad3a knockout plants to assess their
phenotype in field grown conditions. Due to the lengthy
and costly deregulation process, the technology and
methods presented within this study provide a clear ad-
vantage over conventional transgenesis, thereby enabling
more groups to contribute to crop improvement and
food security.

Conclusions

Here we describe methods to efficiently stack quality traits
within plants using sequence-specific nucleases. TALENs
targeting FAD3 were directly delivered to soybean fad2-1a
and fad2-1b knockout lines to produce triple knockout
fad2-1a fad2-1b fad3 plants. Seed oil from the triple
knockout lines had significantly altered fatty acid levels,
compared to the parent fad2-1a fad2-1b lines. The poly-
unsaturated fatty acids, linoleic and linolenic acid, de-
creased to levels below 3 %, and the monounsaturated
fatty acid oleic acid increased to levels over 80 %.

Methods

Plant material

Plant material used within this study was from soybean
[Glycine max (L.) Merr.] variety ‘Bert’.
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Plasmid construction

Coding sequences for the TALEN pairs used in this study
(GmFAD3_T01.1, GmFAD3_T02.1, and GmFAD3_T03.1)
were synthesized as previously described [33]. Individual
TALEN monomers were cloned into protoplast expression
vectors harboring a nopaline synthase (NOS) promoter
and terminator. TALEN backbone architecture comprised
N-terminal truncations (N152: TAAAKFERQHMDSID
IADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGF
THAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAI
VGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLL
KIAKRGGVTAVEAVHAWRNALTGAPLN) and C-ter
minal truncations (C40: SIVAQLSRPDPALAALTNDHLV
ALACLGGRPALDAVKKGL). Each TALEN monomer
comprised 15 repeat domains for targeting 15 nucleotides
of FAD3 sequence, as shown in Fig. 1lc. Repeat variable
diresidues within the TALE repeats included NI (for
targeting adenine), HD (for targeting cytosine), NN (for
targeting guanine), and NG (for targeting thymine). To
facilitate trafficking to plant cell nuclei, an SV40 NLS
(PKKKRKYV) was added to the N-terminus of the TALEN
protein. The size of plasmids encoding TALE monomers
was 6151 bp. Plasmids were isolated from bacteria using
the QIAGEN® maxiprep kit.

Soybean transformation

Experiments within this study were performed using the
soybean variety, ‘Bert, and the fad2-la fad2-1b double
homozygous mutant soybean line as previously de-
scribed [14]. Transformation was carried out using
following previously described protocols [14, 23]. Briefly,
half-seeds were transformed with plasmid sequence
encoding TALEN pairs and a selectable marker, and soy-
bean plants were regenerated on medium containing
glufosinate [34]. Explants were incubated in a growth
incubator at 28 °C with ~110 umol/m?/s of light. Rooted
seedlings were transferred to soil containing a peat-
based substrate (BM1, Berger, Les Tourbiér Berger Ltee,
Saint-Modeste, QC, Canada), and acclimated to ambient
humidity.

Protoplast transformation

TALEN pairs were assessed for activity using soybean pro-
toplasts. Protoplasts were isolated from immature cotyle-
dons similar to previously described protocols [35].
Briefly, immature cotyledons were digested in an enzyme
solution containing 0.45 M D-mannitol, 20 mM MES, 2 %
cellulose, 0.5 % macerozyme, pH 5.8. Digestion was
carried out for 16 h at 25 °C in the dark with shaking at
26 rpm. Protoplasts were passed through a 100 um cell
filter and collected in a 50 mL Falcon tube. Protoplasts
were then pelleted by centrifugation at 100 rpm for 5 min.
Supernatant was removed and cells were resuspended in
WB-N solution (0.45 M D-mannitol, 10 mM calcium
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chloride, pH 5.8). Protoplasts were transformed using
polyethylene glycol 4000 (20 % diluted concentration) for
30 min. For each TALEN pair, ~500 000 protoplasts were
transformed with 30 pg of plasmid (15 pg for each TALEN
pair). Protoplasts were washed three times in WB-N and
transferred to low retention 15x 10 mm petri plates.
Protoplasts were incubated at 25 °C for 48 h before gen-
omic DNA was isolated.

Genotyping and 454 pyrosequencing

To assess TALEN activity by 454 pyrosequencing, and to
determine the genotype of candidate FAD3 mutant plants,
the FAD3A, FAD3B and/or FAD3C TALEN target se-
quences were individually amplified by PCR. Primers for
amplifying the FAD3A gene were GmFAD3A_F1 (5-
ACACTGCTTTGTTATGCCTACCTCAT) and GmFAD3
A_R1 (5-CTTCTCGGTTAACTAAGATAATGACAAAA
AAAAATG). Primers for amplifying the FAD3B gene were
GmFAD3B_F1 (5-TCTCACACATTGTTCTGTTATGTC
ATTTCTTC) and GmFAD3B_R1 (5- GTTAACTAAGAT
AATGACACATAAAAAAGAGCCATG). Primers for am
plifying the FAD3C gene were GmFAD3C_F1 (5- GGAC
ATGATTGGTAACTAATTATTATTACAAATTGTTATG
TTATGTTATG) and GmFAD3C R1 (5-CAAAGATGGG
GAAAGGAAGAGTGAATC).

Oil analysis

Individual T2 seeds from homozygous-mutant fad2-I1a
fad2-1b fad3a T1 plants were isolated and assessed for
oil composition, as shown in Fig. 3. Five T2 seeds from
each of four different T1 parent plants with a fad2-Ia
fad2-1b fad3a genotype were sampled; 20 seeds from
fad2-1a fad2-1b lines were sampled, five seeds from one
fad3a parent was sampled, and four WT seeds were
sampled. Seeds were sent to Eurofins BioDiagnostics
(507 Highland Drive, River Falls, WI 54022) for fatty
acid analysis. Oil composition was determined using gas
chromatographic analysis of fatty acid methyl esters (GC
FAME Analysis). The fatty acid levels were reported as
the percentage of palmitic, stearic, oleic, linoleic, and
linolenic acids to the total fatty acids. Raw GC FAME
data is presented in Additional file 1.

Additional file

Additional file 1: GC FAME data contains the raw GC FAME data used
to generate the graph in Fig. 3. (XLSX 18 kb)
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