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A small multigene hydroxyproline-O-
galactosyltransferase family functions in
arabinogalactan-protein glycosylation,
growth and development in Arabidopsis
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Abstract

Background: Arabinogalactan-proteins (AGPs) are ubiquitous components of cell walls throughout the plant kingdom
and are extensively post translationally modified by conversion of proline to hydroxyproline (Hyp) and by addition of
arabinogalactan polysaccharides (AG) to Hyp residues. AGPs are implicated to function in various aspects of plant
growth and development, but the functional contributions of AGP glycans remain to be elucidated. Hyp glycosylation
is initiated by the action of a set of Hyp-O-galactosyltransferase (Hyp-O-GALT) enzymes that remain to be fully
characterized.

Results: Three members of the GT31 family (GALT3-At3g06440, GALT4-At1g27120, and GALT6-At5g62620) were
identified as Hyp-O-GALT genes by heterologous expression in tobacco leaf epidermal cells and examined
along with two previously characterized Hyp-O-GALT genes, GALT2 and GALT5. Transcript profiling by real-time
PCR of these five Hyp-O-GALTs revealed overlapping but distinct expression patterns. Transiently expressed
GALT3, GALT4 and GALT6 fluorescent protein fusions were localized within Golgi vesicles. Biochemical analysis
of knock-out mutants for the five Hyp-O-GALT genes revealed significant reductions in both AGP-specific Hyp-O-GALT
activity and β-Gal-Yariv precipitable AGPs. Further phenotypic analysis of these mutants demonstrated reduced root
hair growth, reduced seed coat mucilage, reduced seed set, and accelerated leaf senescence. The mutants also
displayed several conditional phenotypes, including impaired root growth, and defective anisotropic growth of root
tips under salt stress, as well as less sensitivity to the growth inhibitory effects of β-Gal-Yariv reagent in roots and
pollen tubes.

Conclusions: This study provides evidence that all five Hyp-O-GALT genes encode enzymes that catalyze the initial
steps of AGP galactosylation and that AGP glycans play essential roles in both vegetative and reproductive plant
growth.
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Background
Arabinogalactan-proteins (AGPs) are members of the
hydroxyproline (Hyp)-rich cell wall glycoprotein super-
family and are hyperglycosylated by O-linked AG poly-
saccharides. AGPs are found in cell walls, plasma
membranes, and extracellular secretions of virtually all
plant cells, tissues and organ types [1]. Moderately sized
gene families encode a variety of AGP protein backbones
throughout the plant kingdom. For example, based on
bioinformatics studies, Arabidopsis contains 85 AGP
genes, while rice contains 69 AGP genes [2, 3]. Moreover,
these genes are spatially and temporally expressed in a
variety of patterns, which likely relates to their multiple
functions.
AGPs are implicated to function in various aspects of

plant growth and development, including root elongation,
somatic embryogenesis, hormone responses, xylem differ-
entiation, pollen tube growth and guidance, programmed
cell death, cell expansion, salt tolerance, host-pathogen
interactions, and cellular signaling [4–10]. However, there
remains a lack of understanding of the biophysical and
biochemical modes of action of any individual AGP. This
lack of understanding regarding function also extends to
the carbohydrate moieties or AG polysaccharides, which
extensively decorate AGP core proteins and largely define
their interactive surfaces.
Given the importance of understanding plant cell wall

biosynthesis particularly with respect to biofuel produc-
tion, much of the recent work on AGPs has focused on
their biosynthesis. Such efforts have identified several of
the biosynthetic glycosyltransferase (GT) genes/enzymes
responsible for AG polysaccharide production [6, 11]. In
particular, the following enzymes were identified and
cloned: two α-1,2-fucosyltransferases (FUT4 and FUT6)
which are members of the CAZy GT-37 family [12–14],
two hydroxyproline-O-galactosyltransferases (GALT2 and
GALT5) which are members of GT-31 and contain a
galectin domain [15, 16], three other hydroxyproline-O-
galactosyltransferases (HPGT1-HPGT3) which are mem-
bers of GT-31 but lack a galectin domain [17], one β-1,3-
galactosyltransferase (At1g77810) which is a member of
GT-31 [18], one β-1,6-galactosyltransferase with elong-
ation activity which is a member of GT-31 (GALT31A)
[19], one β-1,6-galactosyltransferase with branch initi-
ation and branch elongating activities which is a member
of GT-29 (GALT29A) [20], three β-1,6-gluronosyltrans-
ferases which are members of GT-14 (GlcAT14A,
GlcAT14B, GlcAT14C) [21, 22], and a putative AGP
β-arabinosyltransferase (RAY1) which is a member of
the GT-77 family [23].
The hydroxyproline-O-galactosyltransferases (Hyp-O-

GALT) that add galactose onto the peptidyl Hyp resi-
dues in AGP core proteins represent the first committed
step in AG polysaccharide addition and represent an

ideal control point to investigate the contribution of
AG polysaccharides to AGP function. Previously, we
demonstrated that GALT2 (At4g21060) and GALT5
(At1g74800) are members of a small multigene family
and encode Hyp-GALTs [15, 16]. In addition, extensive
phenotypic characterization of allelic galt2 and galt5 single
mutants and galt2galt5 double mutants at the biochemical
and physiological levels was performed which corrobo-
rated the roles of these two enzymes in AG biosynthesis
and elucidated the contributions of AG polysaccharides to
AGP function. Here, we extend that work by characteriz-
ing the remaining GALT members (i.e., GALT1, GALT3,
GALT4, and GALT6) of this small six-membered gene
family, which are distinguished by encoding a GALT
domain as well as a GALECTIN domain.

Results
In silico analysis of GALT1, GALT3, GALT4, and GALT6
This study focused on the six-member gene/protein
family in Arabidopsis, which is found within the CAZy
GT31 family and distinguished by the presence of both a
GALT (pfam 01762) and a GALECTIN (pfam 00337)
domain. Recently, two of these six members, GALT2
(At4g21060) and GALT5 (At1g74800) were demon-
strated to catalyze the addition of galactose onto Hyp
residues of AGP backbones [15, 16]. Another member
of this family, GALT1, encoded by At1g26810, was previ-
ously characterized and identified as a β–1,3-galactosyl-
transferase involved in the formation of the Lewis a
epitope on N–linked glycans [24]. The open reading
frames of the remaining members, At3g06440 (GALT3),
At1g27120 (GALT4), and At5g62620 (GALT6) correspond
to 1860, 2022 and 2046 bp and specify proteins with 619
(70 kDa), 673 (77.0 kDa), and 681 (77.7 kDa) amino acids,
respectively (Additional file 1: Table S1). The six proteins
share amino acid identities ranging from 35 to 70 %
(Additional file 1: Table S2). In addition, comparisons of
these six members were performed with the three recently
identified AGP-specific Hyp-O-GALTs (HPGT1, HPGT2,
and HPGT3), which are also within the GT31 family and
contain a GALT domain but lack a GALECTIN domain
[17]. All nine proteins were predicted to be type II
Golgi localized integral membrane proteins by several
subcellular localization prediction programs (TargetP,
http://www.cbs.dtu.dk/services/TargetP/ and Golgi Pre-
dictor, http://ccb.imb.uq.edu.au/golgi/) [25], Additional
file 1: Table S2). These nine GALTs were also submit-
ted the TMHMM server (http://www.cbs.dtu.dk/services/
TMHMM/) for prediction of transmembrane domains
(TMDs), a typical type II membrane topology commonly
found in GTs [26] (Additional file 1: Figure S1). All were
predicted to have a single TMD except for GALT3,
HPGT2, and HPGT3, which instead contained hydropho-
bic regions that may serve as an anchor to the Golgi
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membrane. Hydrophobic cluster analysis (HCA) was per-
formed by submitting the protein sequences to the
drawhca server (http://bioserv.impmc.jussieu.fr/hca-
form.html) and used to identify the hydrophobic pockets
containing the “DXD” motifs of the six GALTs; this ana-
lysis also included two previously characterized AGP-
related GT31 members, GALT31A and At1g77810, which
are involved with the elongation of β-1,6-galactan side
chains and the β-1,3 backbone of AG polysaccharides, re-
spectively (Additional file 1: Figure S2) [18, 19, 27, 28].
HCA analysis revealed conserved DDD motifs in all the
proteins contained within various hydrophobic pockets.
The DXD motif is implicated in the binding the divalent
metal ion that assists in anchoring the pyrophosphoryl
group of the UDP-sugar donor in the enzyme’s active
site [18]. Co-expression analysis was performed using
GENEMANIA (http://www.genemania.org/) and revealed
that GALT3, GALT4, and GALT6 expression is tightly cor-
related with well-characterized AGP-specific GT31 mem-
bers as well as with a number of AGPs (Additional file 1:
Table S3) [15, 18, 19, 24, 29].

Transiently expressed GALT genes in Nicotiana have
AGP-specific Hyp-O-GALT activity
For biochemical characterization, full-length GALT1,
GALT2, GALT3, GALT4, GALT5, and GALT6 gene con-
structions, each harboring an N-terminal 6XHis tag,
were transiently expressed in the leaves of Nicotiana
tabacum. Leaves infiltrated with desired constructs were
initially separated into three fractions: supernatant, total
microsomal membranes and Golgi-enriched microsomal

membranes. The highest GALT activity was observed in
Golgi-enriched detergent permeablized microsomal
membranes (Additional file 1: Table S4), and thus this
fraction was subsequently used as the enzyme source in
transient assays (Fig. 1). Here, five of the six GALTs (i.e.,
GALT2-GALT6) displayed Hyp-O-GALT activity, when
compared to controls [tobacco WT leaves alone or infil-
trated with either an empty vector or an unrelated glyco-
syltransferase gene, sialyl transferase (ST)]. Previously
characterized GALT2 and GALT5 were used as positive
controls for this assay, while GALT1 effectively served as
a negative control, given its involvement with N-glycan
biosynthesis [15, 16, 24].

Substrate specificities of GALT2-GALT6
Various potential substrate acceptors were tested to in-
vestigate enzyme specificity of GALT3, GALT4, and
GALT6. Namely, [AO]7, [AO]14, and d[AO]51, consisting
of non-contiguous peptidyl Hyp residues, were used to
examine the effect of these model AGP peptide se-
quences of various lengths on GALT activity. [AP]7, con-
sisting of alternating Ala and Pro residues, was tested
for the requirement of peptidyl Hyp for galactosylation.
ExtP, a chemically synthesized extensin peptide consist-
ing of contiguous peptidyl Hyp residues, tested whether
contiguous peptidyl Hyp residues act as potential accep-
tors. Two commercially available pectic polysaccharides,
Rhamnogalactan I from potato and Rhamnogalactan (a
mixture of RGI and RGII) from soybean, were also tested
as potential substrates acceptors. All the non–AGP sub-
strate acceptors, including [AP]7, failed to incorporate
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Fig. 1 Hyp-O-GALT activity of GALT1-GALT6 transiently expressed in N. tabacum. GALT1-GALT6 were expressed in epidermal cells of tobacco
leaves by Agrobacterium-mediated transient expression, which were used for the preparation of Golgi-enriched microsomal membrane proteins
for the Hyp-GALT assays. Synthetic peptide [AO]7 was used as substrate acceptor. WT tobacco leaves infiltrated with Agrobacterium GV3101 strain
(Empty vector), WT tobacco leaves, and WT tobacco leaves infiltrated with ST fused with GFP were used as controls. Experiments were performed
using duplicate samples and data represent the mean ± SD from two independent experiments. Asterisks indicate mean values significantly
different from the WT (Dunnett’s test, *P <0.05; **P <0.01)
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[14C]Gal, indicating the GALT activity was specific for
AGP sequences containing non-contiguous peptidyl Hyp
(Fig. 2). It is interesting to note that GALT2 and GALT5
expressed in tobacco displayed higher activity than when
expressed in Pichia, even after taking into account
the relatively high background activity in tobacco.
This indicates that there are plant-specific factors or
accessory proteins critical for Hyp-O-GALT activity
[15, 16].

Additional biochemical characterization of Hyp-O-GALTs
Heterologously expressed Hyp-O-GALTs required the
divalent cation Mn+2 for maximal activity and utilized
UDP- galactose solely as the sugar donor (Additional file
1: Figure S3). This is in contrast to GALT2 and GALT5
expressed in Pichia, which required Mg+2 for its optimal
activity [15, 16].

Expression profiles of the Hyp-O-GALT genes
qRT-PCR and data mining of public databases were used
to analyze expression profiles of the Hyp-O-GALT genes.
qRT-PCR analysis indicated that GALT1-GALT6 are
broadly expressed and have overlapping but distinct
expression patterns (Fig. 3). These Q-PCR data were in
good agreement with public expression data available
from GENEVESTIGATOR and the eFP browser [30, 31]
as well as from the previous study by Strasser et al. [24]
(Additional file 1: Figure S4). Data from large-scale tran-
scriptomic databases were used to provide insight into
GALT expression and provide clues as to where to focus

phenotypic analysis of GALT knockout mutant plants.
Notable patterns of expression were as follows: highest
expression of GALT6 was observed in senescent leaves
followed by seed, seed coat, root hairs, flowers, and si-
liques, whereas GALT4 was predominantly expressed in
young flowers, mature flowers with siliques and mature
siliques. GALT3 was abundant in roots, mature pollen,
and hypocotyl (Additional file 1: Figure S4).
Numerous studies indicate that pollen tubes undergo

dramatic transformations while growing in the pistil,
where they rapidly grow, perceive and respond to navi-
gational cues secreted by the pistil, with AGPs playing a
critical role in such interactions [32–34]. Nonetheless,
genes expressed by pollen tubes in response to growth
in the pistil are poorly characterized. Qin et al. [35]
utilized the novel combination of semi in vitro pollin-
ation followed by microarray analysis to identify genes
specifically involved in pollen-pistil interaction, includ-
ing the Hyp-O-GALTs. GALT5 had the highest expres-
sion followed by GALT2 and GALT4, whereas HPGT3
was only expressed in later stages of pollen elongation.
Furthermore, it is interesting to note that there was a
temporal difference in the expression patterns of these
Hyp-O-GALTs during pollen elongation (Additional file
1: Figure S4).
In addition, transcriptome analyses using RNA extracted

from laser-capture dissected seed coat tissue (http://seed-
genenetwork.net/arabidopsis) indicated that all five Hyp-
O-GALT transcript levels displayed unique expression pat-
terns in the seed coat during embryogenesis (Additional
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Fig. 2 Substrate specificity of transiently expressed GALT2-6. Detergent permeablized tobacco microsomal membranes obtained from
transiently expressed GALT2-6 served as the enzyme source in the GALT reactions. Various peptide and polysaccharide acceptor substrates
were tested including: 1) [AO]7, [AO]14, and d[AO]51 which contain 7, 14, and 51 [AO] units, respectively, 2) a chemically synthesized
extensin peptide (ExtP) containing repetitive SO4 units, 3) [AP]7 which contains 7 [AP] units, 4) Rhamnogalactan I (RGI) from potato pectin,
and 5) RG from soybean pectin. Microsomes obtained from WT tobacco leaves infiltrated with empty pMDC32 vector were used as a
negative control and depicted as WT. Enzyme reactions were done in triplicate and mean values ± SE are presented. Asterisks indicate
values significantly different from the WT (Dunnett’s test, *P <0.05; **P <0.01)
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file 1: Figure S5) [36]. Notably, GALT6 was expressed
throughout seed development, while expression of GALT2
and GALT5 transcripts was higher in the early stages com-
pared to the later stages of seed development. In contrast,
GALT4 was only observed at later stages of seed develop-
ment, while GALT3 showed the least expression in seeds.

GALT3, GALT4, and GALT6 are targeted to Golgi vesicles
Transient expression of C-terminal YFP fusions to
GALT3, GALT4, and GALT6 were infiltrated in N.
tobaccum epidermal leaf cells to examine the subcellular
localization of these enzymes (Fig. 4). Overlays of
GALT3-YFP, GALT4-YFP, and GALT6-YFP individually
co-expressed with the Golgi marker protein, sialyl trans-
ferase, fused to GFP (ST-GFP) indicated that all three
GALTs were localized to the Golgi apparatus. Further-
more, the possibility that they were localized in the ER
was excluded, as the GALT-YFP fusion constructions
were not co-localized with the ER marker, HDEL fused
with GFP (HDEL-GFP). Singly infiltrated controls for
ST-GFP, HDEL-GFP, and GALT-YFP were analyzed to
optimize gain and pinhole settings for each channel and
to exclude any bleed through fluorescence between
channels (Additional file 1: Figure S6).

GALT3, GALT4, and GALT6 mutants show AGP biochemical
defects
Two independent allelic mutant lines with T-DNA inser-
tions were identified for each of the six GALT genes in
order to examine the biochemical roles of the Hyp-O-

GALTs in vivo. Homozygous mutants were generated,
identified by PCR, and confirmed by sequencing (Fig. 5a).
RT-PCR and qRT-PCR analysis showed that virtually no
transcripts could be detected in the mutants (Fig. 5b
and c). Significant reductions in GALT activity as well
as β-Gal-Yariv precipitable AGPs obtained from 14-d
old seedlings were observed in knock-out mutants of
GALT3 (galt3-1 and galt3-2), GALT4 (galt4-1 and galt4-2),
and GALT6 (galt6-1 and galt6-2) compared to WT
(Table 1). Such reductions were previously reported for
knock-out mutants of GALT2 (galt2-1 and galt2-2),
GALT5 (galt5-1 and galt5-2), and a galt2galt5 double mu-
tant and were used here as positive controls [16]. Consist-
ent with the findings that GALT1 synthesizes Lewis a
structures and lacks Hyp-O-GALT activity (Fig. 1), knock-
out mutants of GALT1 (galt1-1 and galt1-2) demonstrated
no such reductions and were indistinguishable from WT
(Table 1) [24].
Given the differential expression of these Hyp-O-

GALTs and the broad expression of AGPs, AGPs were
also quantified from other organs in the mutants. Similar
patterns of reductions in β-Gal-Yariv precipitable AGPs
were observed in these other organs for these mutants.
In general, disruption of any of the five GALTs (GALT2-
GALT6) caused a significant reduction in AGP content,
with most significant effects being exhibited by galt5 in
stems, galt4 in siliques, and galt6 in senescent leaves
(Table 2). These data on AGP quantification in the mu-
tants were consistent with the expression profile data for
GALT2-GALT6. Profiles of these β-Gal-Yariv precipitable
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Fig. 3 Expression patterns of the six membered GALT gene family. qPCR analysis of GALT1-GALT6 expression Arabidopsis organs and cell cultures.
Roots were obtained from 14 day old seedlings grown on MS plates with 1 % sucrose and a week old cell suspension culture was used for RNA
extraction. The level of expression was calculated relative to the UBQ10 gene (mean ± SE of three biological replicates)

Basu et al. BMC Plant Biology  (2015) 15:295 Page 5 of 23



AGPs produced by RP-HPLC were also examined for
various galt mutants and revealed that virtually all these
AGPs, as opposed to a single or subset of these AGPs,
were affected when compared to WT or galt1 control
profiles (Additional file 1: Figure S7). Furthermore, the
AGP peaks in the galt3, galt4, and galt6 mutants eluted
later and thus had less glycosylated protein compared to
the WT or galt1 control AGP peaks, consistent with
reduced Hyp-galactosylation.

GALT3, GALT4, and GALT6 mutants exhibit root hair
defects
To investigate the physiological function of these six
GALTs in vivo, mutants were grown on MS plates and
compared to WT. No significant phenotypic differences
in primary root growth were observed with the excep-
tion of the root hairs. Single mutant knock-out lines for
GALT3, as well as for GALT2 and GALT5 and the galt2-
galt5 double mutant, consistently displayed shorter and
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Fig. 4 Subcellular localization of transiently expressed GALT3-YFP, GALT4-YFP, and GALT6-YFP in N. tabacum. GALT3-YFP, GALT4-YFP, and GALT6-YFP
fusion constructions were expressed under the control of the CaMV 35S promoter in N. tabacum. Transiently expressed GALT3-YFP, GALT4-YFP, and
GALT6-YFP co-localized with sialyl transferase (ST)-GFP fusion protein (a Golgi marker), but not with HDEL-GFP fusion protein (an ER marker). These
constructs were examined by laser-scanning confocal microscopy under fluorescent and white light, and the fluorescent images were
merged to observe co-localization. Size bar = 10 μm
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significantly different from the WT expression of the indicated genes (Dunnett’s test, *P <0.01; **P <0.001)
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less dense root hairs compared to WT; knock-out lines
for GALT6, GALT4, and GALT1 displayed either less
severe or no such root hair phenotypes (Fig. 6).

GALT4 and GALT6 mutants display reduced seed set
The galt4 and galt6 mutants displayed a 16 and 13 %
reduction in seed set, respectively (Fig. 7 and Table 3).
Reciprocal crosses of the galt4 and galt6 mutants to wild
type plants were performed to determine whether this
defect was conferred by the male or female gametophyte.
Such crosses indicated that the male gametophyte of
these mutants was mainly responsible for conferring
reduced seed set (Fig. 7 and Table 3). Pollen were conse-
quently examined with Alexander’s stain which indicated
that pollen were viable (Additional file 1: Figure S8A).
Furthermore, in vitro pollen germination did not exhibit
altered germination frequency in galt4 and galt6 mu-
tants compared to WT (Additional file 1: Figure S8B
and S8C).

GALT3 and GALT6 mutants demonstrate reduced staining
of adherent seed coat mucilage
Prior evidence for the involvement of AGPs (SOS5)
and GALT2/GALT5 in seed coat mucilage prompted
an examination of the potential functions of GALT3,
GALT4, and GALT6 in modifying seed coat mucilage
[16, 37, 38]. The effect of disruption of the six GALT
gene family members on adherent seed mucilage was

investigated by staining hydrated seeds with ruthenium
red, which stains negatively charged biopolymers such as
pectin [39]. The galt3-1, galt3-2, galt6-1, galt6-2, and
galt2galt5 mutant seeds showed a thin staining pattern of
the adherent mucilage, whereas WT, galt2, galt4, galt5,
and galt1 seeds showed an intense, regular, spherical stain-
ing pattern (Fig. 8). In addition, adherent mucilage mass
and volume were measured to confirm the reduction of
adherent mucilage thickness. No difference was observed
in adherent mucilage mass between WT and galt single
and double mutant seeds, whereas the adherent mucilage
size of galt3, galt6, and galt2galt5 was substantially re-
duced (20 ~ 30 %) compared with WT (Table 4). In con-
trast, galt1, galt4, galt2, and galt5 mutants were less
dramatically altered (5 ~ 13 %) compared to WT.
In order to confirm and quantify the changes in non-

adherent (soluble) and adherent mucilage, WT and galt
mutant seeds were analyzed. Sequential extraction of
seeds with ammonium oxalate, 0.2 N NaOH, and 2 N
NaOH was performed to assess changes in the soluble
and adherent mucilage (Table 5). Both galt6 and galt3
seeds had a significant increase in the total sugar present
in the ammonium oxalate and 0.2 N NaOH extracts
(soluble and weakly attached pectins) compared to wild
type seeds (or galt1 mutants). Less significant differences
were observed in galt2, galt4, and galt5 single mutants,
whereas more significant differences were observed in
galt2galt5 mutants. All the galt mutants except for galt1
displayed a decrease in total sugars in the 2 N NaOH
extracts, which represent the majority of the adherent

Table 1 GALT activity and amount of β-Gal-Yariv precipitated
AGPs in WT and galt mutants

Genotype GALT activity
(pmol/h/mg)

β-Gal-Yariv precipitated
AGPs (μg/g)

WT 7.10 ± 0.90 13.60 ± 0.75

galt1-1 6.80 ± 0.37 13.30 ± 0.95

galt1-2 7.20 ± 0.65 13.30 ± 0.95

galt2-1 5.53 ± 1.20b 9.91 ± 2.80b

galt2-2 5.90 ± 1.01b 9.28 ± 1.50b

galt3-1 6.08 ± 1.20a 12.10 ± 0.95

galt3-2 5.51 ± 1.01b 12.30 ± 0.80a

galt4-1 6.04 ± 2.20a 12.00 ± 1.10a

galt4-2 5.83 ± 1.50b 11.90 ± 1.20a

galt5-1 5.45 ± 1.10b 7.90 ± 2.10b

galt5-2 4.90 ± 1.50b 8.10 ± 1.20b

galt6-1 5.30 ± 0.44b 10.90 ± 0.59a

galt6-2 5.00 ± 1.71b 10.30 ± 1.54a

galt2galt5 4.64 ± 0.54b 5.63 ± 0.39b

Detergent-solubilized microsomal fractions were used for performing a
standard Hyp-GALT assay, and AGPs were extracted, precipitated by β-Gal-
Yariv reagent, and quantified from 14-day-old plants. The values are averages
of at least two independent experiments from two biological replicates. Letters
‘a’ and ‘b’ denote a significant difference from the wild type (Dunnett’s test,
P <0.05; P <0.01) respectively

Table 2 Amount of β-Gal-Yariv precipitated AGPs in WT and
galt mutants

Genotype Stem Silique Flower Senescent leaves

WT 35.7 ± 3.4 15.5 ± 2.5 17.0 ± 0.4 28.4 ± 3.6

galt1-1 34.9 ± 2.1 15.2 ± 1.8 16.5 ± 0.5 28.5 ± 2.4

galt1-2 35.1 ± 2.0 15.8 ± 2.3 17.2 ± 0.9 28.1 ± 3.5

galt2-1 25.3 ± 3.3a 11.8 ± 1.3a 13.9 ± 0.5b 24.4 ± 3.1a

galt2-2 26.1 ± 2.7a 11.5 ± 1.7a 13.4 ± 0.4b 24.0 ± 2.6a

galt3-1 29.2 ± 4.1 12.5 ± 0.6a 15.7 ± 0.7a 26.9 ± 3.8a

galt3-2 28.6 ± 2.9 11.9 ± 1.2a 15.0 ± 0.2a 27.0 ± 2.2

galt4-1 29.7 ± 3.7 9.9 ± 0.8b 11.9 ± 0.1b 27.1 ± 2.4

galt4-2 29.5 ± 1.5 8.3 ± 0.5b 12.1 ± 0.4b 27.5 ± 3.1

galt5-1 23.6 ± 3.3b 10.7 ± 0.9b 12.7 ± 0.9b 25.1 ± 3.5a

galt5-2 23.7 ± 2.8b 11.1 ± 0.4a 12.9 ± 0.8b 24.9 ± 4.6a

galt6-1 27.3 ± 2.3a 10.4 ± 0.7b 12.2 ± 0.4b 23.0 ± 3.7b

galt6-2 26.9 ± 3.6a 11.2 ± 0.8a 12.4 ± 0.7b 22.0 ± 2.9b

galt2galt5 25.3 ± 2.4a 11.0 ± 0.9a 12.3 ± 0.5b 24.5 ± 3.1a

Letters ‘a’ and ‘b’ denote a significant difference from the wild type (Dunnett’s
test, P <0.05; P <0.01; respectively). Stem, silique, and flowers were obtained
from 30-day-old plants, whereas senescent leaves were obtained from
45-day-old plants
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mucilage and contain strongly linked pectins and cross-
linking glycans/hemicelluloses [40, 41].

GALT6 mutants demonstrate premature senescence
Only the GALT6 mutants (galt6-1 and galt6-2) displayed
early onset of senescence compared to WT and the other
galt mutants. This was visualized by premature yellow-
ing of leaves and was correlated with a slightly greater
reduction in chlorophyll content and protein content in
GALT6 mutants compared to WT (Additional file 1:
Figure S9). These observations were consistent with the
abundance of GALT6 transcripts in senescent leaves as

well as with the markedly greater reduction of β-Gal-
Yariv precipitable AGPs in galt6 senescent leaves
(Additional file 1: Figure S4; Table 2).

GALT3, GALT4, and GALT6 mutants exhibit pollen tube
and root growth which is less sensitive to β-Gal-Yariv
reagent
The galt3, galt4, and galt6 mutants displayed reduced
inhibition of pollen tube and root growth elongation in re-
sponse to β-Gal-Yariv reagent compared to WT or α-Gal-
Yariv reagent control treatments (Figs. 9, 10, Additional
file 1: Figure S10). As expected, GALT1 mutants did not
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MS agar plates for 10 days. Bar = 1 mm. b Quantification of root hair length and c root hair density of the galt mutants. Asterisks indicate
significantly reduced root hair length and density compared with WT controls according to Dunnett’s test (*P <0.05; **P <0.01; n >300)

Basu et al. BMC Plant Biology  (2015) 15:295 Page 9 of 23



exhibit any difference in either pollen tube or root growth
elongation compared to WT. Moreover, no significant dif-
ference in pollen tube or primary root growth elongation

was observed in unsupplemented germination media,
indicating the conditional nature of this phenotype (Figs. 9
and 10).

Conditional salt hypersensitive phenotypes of the galt
mutants
GALT3 (galt3-1 and galt3-2) and GALT6 (galt6-1 and
galt6-2) mutants, and to a lesser extent the GALT4
(galt4-1 and galt4-2) mutants, exhibited significant re-
ductions in root elongation compared to WT when
grown in the presence of 100 and 150 mM NaCl (Fig. 11
and Additional file 1: Figure S11). Such reductions in
root elongation were previously reported for knock-out
mutants of GALT2 (galt2-1 and galt2-2), GALT5 (galt5-1
and galt5-2), and the galt2galt5 double mutant [16]. As
expected, GALT1 mutants did not show salt hypersensi-
tive growth and were indistinguishable from WT in this
assay. The galt single and double mutants were not sen-
sitive to osmotic stress as illustrated by mannitol (Add-
itional file 1: Figure S12).
Microscopic examination of the GALT3, GALT6, and

to a lesser extent the GALT4 mutants also revealed de-
fective anisotropic root tip growth (i.e., root tip swelling)

WT
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galt4-1   X WT galt4-2  X WT
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** *

* *

*
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galt6-1   X WT galt6-2   X WT

Fig. 7 Silique morphology of galt4 and galt6 mutant plants along
with reciprocal crosses of these mutants to WT plants. Siliques were
treated with ethanol to allow for easy observation of the seeds.
Absence of ovules is indicated with an asterisk. Bar = 100 μm

Table 3 Weight, length, and seed number from WT and galt
siliques

Genotype Silique length (mm) Seeds/Silique Seed weight
(mg)

WT ♀ ×WT♂ 12.90 ± 0.87 56.10 ± 3.80 4.50 ± 0.34

galt1-2♀ × galt1-2♂ 13.04 ± 0.84 54.87 ± 2.70 4.65 ± 0.28

galt2-1♀ × galt2-1♂ 12.51 ± 0.22 52.45 ± 3.52 4.20 ± 0.91

galt2-2♀ × galt2-2♂ 13.21 ± 0.34 53.65 ± 2.93 4.65 ± 0.44

galt3-1♀ × galt3-1♂ 13.06 ± 0.68 52.12 ± 3.29 4.63 ± 0.34

galt3-2♀ × galt3-2♂ 12.80 ± 0.77 53.37 ± 2.66 4.50 ± 0.37

galt4-1♀ × galt4-1♂ 13.06 ± 0.56 47.37 ± 2.28b 3.26 ± 0.40a

galt4-2♀ × galt4-2♂ 12.85 ± 0.59 47.50 ± 2.44b 3.41 ± 0.32a

galt5-1♀ × galt5-1♂ 13.32 ± 0.34 53.67 ± 3.4 4.23 ± 0.54

galt5-2♀ × galt5-2♂ 13.65 ± 0.89 55.28 ± 2.7 4.67 ± 0.89

galt6-1♀ × galt6-1♂ 13.10 ± 0.57 49.11 ± 4.24b 3.41 ± 0.18a

galt6-2♀ × galt6-2♂ 13.60 ± 0.56 50.56 ± 2.79b 3.72 ± 0.27a

WT♀ × galt4-1 ♂ 13.10 ± 0.73 45.10 ± 6.40b 3.70 ± 0.56a

WT♀ × galt4-2♂ 12.91 ± 0.45 43.45 ± 4.90b 3.54 ± 0.38a

galt4-1♀ ×WT♂ 13.06 ± 0.56 53.37 ± 4.28 4.56 ± 0.40

galt4-2♀ ×WT♂ 12.85 ± 0.59 52.10 ± 1.40 4.34 ± 0.62

WT♀ × galt6-1 ♂ 13.00 ± 0.54 49.70 ± 7.40b 3.50 ± 0.56a

WT♀ × galt6-2 ♂ 12.88 ± 0.47 50.60 ± 4.40b 3.50 ± 0.56a

galt6-1♀ ×WT♂ 13.06 ± 0.71 53.37 ± 4.28 4.56 ± 0.40

galt6-2♀ ×WT♂ 13.13 ± 0.96 53.37 ± 4.28 4.56 ± 0.40

Siliques were obtained from 6-week-old plants (n = 20). Letters ‘a’ and ‘b’
denote a significant difference from the wild type (Dunnett’s test, P <0.05;
P <0.01 respectively)
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in the presence of 100 mM NaCl, which was not ob-
served in WT and GALT1 mutants (Additional file 1:
Figure S13). Such salt hypersensitive root tip swelling re-
sponses were previously reported in galt2, galt5, and
galt2galt5 mutants and were included here as positive
controls [16].
A root bending assay was used as another means to

evaluate salt hypersensitivity of the GALT mutants
(Additional file 1: Figure S14). This assay is commonly
used by plant researchers to evaluate salt sensitivity/toler-
ance and involves monitoring root growth reorientation
after a 180 degree reorientation of the seedling to gravity.
Results of this experiment indicated that GALT3 (galt3-1
and galt3-2) and GALT6 (galt6-1 and galt6-2) mutants,
and to a lesser extent the GALT4 (galt4-1 and galt4-2)
mutants were slow to reorient their root growth compared
to WT when grown in the presence of 100 mM NaCl.
Such delayed reorientation was previously reported for
knock-out mutants of GALT2 (galt2-1 and galt2-2),
GALT5 (galt5-1 and galt5-2), and the galt2galt5 double
mutant; these mutants were used here as positive controls
[16]. As expected, GALT1 mutants (galt1-1 and galt1-2)
reoriented quickly and were indistinguishable from WT in
this assay.

WT
A

galt1-2 galt3-1 galt3-2

galt4-1 galt4-2 galt6-1

galt2-1 galt5-1 galt2galt5

galt6-2

Fig. 8 Pectin staining of seed coat mucilage in wild type, galt1-galt6 single mutants, and galt2galt5 double mutants. Seeds of the indicated genotypes
were prehydrated with water for 90 min and stained with ruthenium red to visualize pectin using a Nikon Phot-lab2 microscope coupled with a SPOT
RT color CCD camera and SPOT 4.2 analysis software. Bar = 100 μm

Table 4 Determination of adherent mucilage mass and size in
WT and galt mutants

Genotype Mass (μg) Size (mm3)

WT 1.82 ± 0.05 0.47 ± 0.13

galt1-2 1.76 ± 0.06 0.45 ± 0.03

galt2-1 1.80 ± 0.09 0.44 ± 0.04a

galt2-2 1.77 ± 0.06 0.45 ± 0.07a

galt3-1 1.80 ± 0.09 0.37 ± 0.08b

galt3-2 1.75 ± 0.08 0.35 ± 0.05b

galt4-1 1.79 ± 0.05 0.42 ± 0.10a

galt4-2 1.81 ± 0.05 0.39 ± 0.20a

galt5-1 1.80 ± 0.05 0.41 ± 0.30a

galt5-2 1.81 ± 0.05 0.39 ± 0.25b

galt6-1 1.83 ± 0.04 0.35 ± 0.04b

galt6-2 1.77 ± 0.07 0.37 ± 0.05b

galt2galt5 1.75 ± 0.09 0.30 ± 0.05b

The mass and size values are the average mass and size of adherent mucilage
of 100 seeds of triplicate assays ± SE. Letters ‘a’ and ‘b’ denote a significantly
difference from the wild type (Dunnett’s test, P <0.05; P <0.01 respectively)
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Discussion
GALT2-GALT6 encode Hyp-GALTs for AGPs and are widely
expressed in Arabidopsis
Bioinformatic approaches were previously used to iden-
tify a small, six-membered gene family within the GT 31
family of the CAZY database as potential candidates for
encoding Hyp-O-GALTs for AGPs [15, 18, 42]. Protein
members of this family were designated GALT1-GALT6
and distinguished by the presence of a GALT domain as
well as a GALECTIN domain. Previously, GALT1 was
shown to catalyze galactose addition for formation of
the Lewis a epitope on N–linked glycans [24], while
GALT2 and GALT5 were shown to act as Hyp-GALTs
specific for AGPs [15, 16]. In this study, biochemical and
genetic evidence indicates that GALT3, GALT4, and
GALT6 also act as Hyp-GALTs for AGPs.
Heterologous transient expression of GALT1-GALT6

in tobacco epidermal cells demonstrated a significant
increase in Hyp-GALT activity compared with various
tobacco control plants, with the notable exception of
GALT1 (Fig. 1 and Additional file 1: Table S4). The
absence of Hyp-O-GALT activity over background levels
in case of GALT1 is consistent with its reported, non-
AGP related function and provided a useful control for
the studies reported here [24]. Moreover, this transient
expression study in tobacco corroborates previous find-
ings that GALT2 and GALT5, which were expressed in

Pichia pastoris, act as AGP-specific Hyp-GALTs [15, 16].
It should be noted that the amount of activity detected
in these two heterologous expression systems varied; the
tobacco system showed much higher levels of activity
than the Pichia system, even when taking into account
the higher level of endogenous activity associated with
the tobacco system. This observation could be explained
by the need for other plant-based proteins or factors to
enhance or optimize Hyp-O-GALT activity.
Substrate specificity of GALT2-GALT6 was investi-

gated using various potential acceptor substrates and
demonstrated that GALT2-GALT6 is specific for model
AGP sequences (Fig. 2). These findings are consistent
with the Hyp contiguity hypothesis, which states that
clustered, non-contiguous Hyp residues are sites of AG
addition, whereas contiguous Hyp residues are sites for
the addition of Ara oligosaccharides [43, 44]. Despite the
higher enzyme activity observed in the transient tobacco
expression system compared to Pichia, the same size-
dependent preference for AGP substrates was observed
for GALT2 and GALT5 in both systems, where [AO]7
was the preferred substrate [16]. GALT3, GALT4, and
GALT6 also acted in a similar manner within the to-
bacco system.
Heterologous transiently expressed GALT2-GALT6 in

tobacco microsomes have similar biochemical properties
to the GALT(s) present in Arabidopsis microsomal
membranes and to GALT2 and GALT5 expressed in
Pichia, specifically all require UDP-Gal as the sugar
donor [15, 16, 45, 46]. They have a requirement for Mn2+

followed by Mg2+ for their optimal activity, in contrast to
Mg2+ followed by Mn2+ in Pichia microsomes.
Genetic mutant analysis provides additional in vivo

evidence that GALT3, GALT4, and GALT6 function as
Hyp-GALTs, similar to GALT2 and GALT5 (Tables 1
and 2). Allelic galt knock-out mutants for all these genes
exhibit reduced (i.e., 15–35 % less) Hyp-GALT activity
and contain considerably less (i.e., 10–60 % less) glyco-
sylated (i.e., β-Gal-Yariv precipitiable) AGPs. In addition,
AGP profiling of the galt3, galt4, and galt6 mutants
extends these findings and indicates that their activity is
not limited to a particular AGP or a small subset of
AGPs, but instead broadly acts on coexpressed AGPs,
similar to that previously reported for galt2 and galt5
mutants (Additional file 1: Figure S7).
qRT-PCR analysis of GALT1-GALT6 was performed to

examine their expression patterns and provide informa-
tion relevant to phenotypic analysis of their correspond-
ing allelic mutants (Fig. 3). All six genes were widely
expressed, and in the cases of GALT2-GALT6 are con-
sistent with the widespread distribution of AGPs and the
multiple functions associated with them. These patterns
were corroborated by searching public expression data-
bases, which revealed even broader organ and tissue

Table 5 Quantification of total sugars from WT and galt
mucilage sequentially extracted using ammonium oxalate,
0.2 N NaOH, and 2 N NaOH

Extracta

Genotype Ammonium oxalate 0.2 N NaOH 2 N NaOH

WT 0.85 ± 0.05 1.04 ± 0.03 0.81 ± 0.04

galt1-2 0.83 ± 0.07 1.05 ± 0.05 0.84 ± 0.03

galt2-1 0.95 ± 0.03b 1.12 ± 0.04b 0.61 ± 0.05b

galt2-2 0.97 ± 0.70b 1.19 ± 0.03b 0.54 ± 0.06b

galt3-1 1.30 ± 0.09c 1.29 ± 0.05c 0.53 ± 0.05b

galt3-2 1.28 ± 0.05c 1.27 ± 0.07c 0.52 ± 0.07b

galt4-1 0.88 ± 0.20 1.09 ± 0.02 0.79 ± 0.01

galt4-2 0.90 ± 0.60b 1.01 ± 0.06 0.73 ± 0.03

galt5-1 0.95 ± 0.10b 1.17 ± 0.05b 0.63 ± 0.05b

galt5-2 0.90 ± 0.08b 1.20 ± 0.07c 0.60 ± 0.04b

galt6-1 1.25 ± 0.09c 1.30 ± 0.07c 0.55 ± 0.05b

galt6-2 1.31 ± 0.05c 1.29 ± 0.04c 0.61 ± 0.08b

galt2galt5 1.40 ± 0.09d 1.36 ± 0.08d 0.47 ± 0.05d

aIntact seeds were extracted sequentially with 0.2 % ammonium oxalate, 0.2 N
NaOH and 2 N NaOH, neutralized, and assayed by the phenol-sulfuric acid
method against glucose standards. The results are shown as μg/mg of seeds.
Analyses were performed in triplicate and results are given as μg/mg seed ±
SE. All genotypes were grown, harvested, and stored together. Letters ‘b’ ‘c’
and ‘d’ denote a significantly difference from the wild type (Dunnett’s test,
P <0.05; P <0.01; P <0.001 respectively)
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Fig. 9 The galt single mutants demonstrate reduced inhibition of pollen tube growth in the presence of β-Gal-Yariv reagent. a Representative
images of pollen tubes from WT, galt1, galt3, galt4, and galt6 mutants after 16 h in pollen germination medium, and b in pollen germination
medium supplemented with 30 μM α-Gal-Yariv, and c in pollen germination medium supplemented with 30 μM β-Gal-Yariv reagent. Bar = 50 μm.
d Pollen tube lengths from WT, galt1-galt6 mutants, and galt2galt5 double mutants were measured over 16 h in the pollen germination medium
supplemented with 30 μM β-Gal-Yariv reagent. Twenty flowers from each genotype and 25 pollen tubes from each flower were measured using Image
J software. The experiment was done in triplicate, and the asterisks indicate mean values significantly different from the WT (Dunnett’s test, *P <0.05;
**P <0.01; ***P <0.001)
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expression patterns (Additional file 1: Figure S4). HPGT1-
HPGT3, three recently identified Hyp-O-GALTs for AGPs
that lack GALECTIN domains, were also included in
this analysis and showed equally broad patterns of

gene expression [17]. Nonetheless, within a given organ or
tissue, the Hyp-O-GALT genes exhibit both temporal and
spatial differences in their expression patterns. Transcrip-
tome analyses using RNA extracted from laser-capture
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Fig. 10 Reduced inhibition of primary root growth of galt3, galt4, and galt6 mutants in the presence of β-Gal-Yariv reagent. Root lengths of WT,
galt1, galt3, galt4, and galt6 plants were measured 7, 14, and 21 days after germination and seedling establishment for 5 days on MS plates, on
MS plates supplemented with 50 μM α-Gal-Yariv reagent, and on MS plates supplemented with 50 μM β-Gal-Yariv reagent. Statistical differences
were determined by ANOVA, followed by the Tukey’s honestly significant difference test. Asterisks indicate mean values significantly
different from the WT expression of the indicated genes within a treatment group (Dunnett’s test, *P <0.05; **P <0.01). Vertical bars
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dissected seed coat tissue [36] provides a particularly
striking illustration of the diverse tissue-specific expres-
sion patterns of GALT2-GALT6 and HPGT1-HPGT3
(Additional file 1: Figure S5).

GALT3, GALT4, and GALT6 are localized to Golgi vesicles
Various approaches have indicated that AGP glycosyla-
tion occurs in Golgi vesicles. These approaches include
bioinformatics predictions using Signal P and Golgi Pre-
dictor, biochemical experiments on hydroxyproline-rich
glycoprotein (HRGP) biosynthesis [25, 45–49], a proteo-
mics technique for localization of organelle proteins by
isotope tagging [49], and localization studies performed
with other AGP GTs, including GALT2, GALT5, HPGT1-
HPGT3, AT1G77810, GALT31A, GALT29A, GlcAT14A,
and FUT6 [12, 15, 16, 18, 19, 21]. Given their similarity to
GALT2 and GALT5 and their demonstrated Hyp-GALT
activity, GALT3, GALT4, and GALT6 were expected to
reside in the Golgi vesicles, and this was confirmed by
heterologous expression of fluorescently tagged protein
fusions in tobacco leaves (Fig. 4). Interestingly, only
GALT2 is found in both the ER and Golgi, indicating that
Hyp-galactosylation may be initiated in the ER, but com-
pleted in the Golgi where the bulk of the Hyp-O-GALTs
are located [15].

GALT mutant phenotypes reveal functional roles of AGP
glycosylation in normal growth and development
Genetic mutant analysis was used to investigate and com-
pare the in vivo functional contributions of AGP glycosyl-
ation by GALT3, GALT4, and GALT6 with that of GALT2
and GALT5 (Fig. 5; Additional file 1: Table S1). To date, a
variety of functions are attributed to certain AGPs or GTs
acting on AGPs based on mutant analysis; these mutants
show embryo lethality, conditional defects of primary
root growth, cell elongation, and pollen tube growth
(Additional file 1: Table S5) [13, 14, 16, 17, 19, 21, 23].
Like galt2 and galt5, galt3, galt4, and galt6 single mutant
lines showed subtle or no detectable growth phenotypes
under normal soil-based growth conditions, which is likely
attributed to the functional redundancy within the
GALT2-GALT6 gene family [15, 16]. The phenotypes that
were displayed by the single mutants here included re-
duced root hair length and/or density for galt3, galt4, and
galt6 (Fig. 6), reduced seed set for galt4 and galt6 (Fig. 7;
Table 3), reduced adherent seed mucilage for galt3, and
galt6 (Fig. 8 and Table 4), and accelerated leaf senescence
for galt6 (Additional file 1: Figure S9). Although these
phenotypes are consistent with the expression profiles of
these genes, it would be difficult to predict such pheno-
types from expression data alone. It is anticipated that
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Fig. 11 Salt-induced inhibition of primary root elongation in galt3, galt4, and galt6 mutants. Five-day-old WT, galt1, galt3, galt4, and galt6
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double and multiple galt mutants will show more
pronounced mutant phenotypes, as was the case when
galt2galt5 double mutants were produced and charac-
terized [16].
With respect to root hair length and density, knock-

out mutants of GALT3 and to a lesser extent GALT6
and GALT4, displayed shorter and/or less dense root
hairs, indicating glycosylated AGPs play a role in tip
growth of root hairs in Arabidopsis (Fig. 6). The galt2,
galt5, and galt2galt5 double mutants also demonstrate
this response and were used here as positive controls
[16]. Reduced density of root hairs can be attributed to
an increase in longitudinal length of epidermal cells
and/or to a decrease in the number of root hair-forming
cells leading to the formation of less root hairs [50, 51].
Other studies, using β-Gal-Yariv reagent and prolyl hy-
droxylase genetic mutants, have also indicated that
HRGPs (i.e., AGPs and extensins) are involved with root
hair growth [52–55].
With respect to seed mucilage, galt3 and galt6 mu-

tants display the most significant decrease in the width
of the adherent seed mucilage layer, along with galt2 and
galt5 upon staining with ruthenium red when compared
to WT seeds, which indicates that glycosylated AGPs are
involved in maintaining the adherent mucilage layer in
seeds (Fig. 8, Tables 4 and 5). The galt2galt5 double mu-
tants also demonstrate this response and were used here
as positive controls [16]. Harpaz-Saad et al. [37] reported
that both FEI2, a cell wall leucine–rich receptor-like kin-
ase and SOS5, a fasciclin like AGP are critical for the
synthesis and proper deposition of cellulosic rays in seed
coat mucilage, which coincides with an increase in
solubility of the pectinaceous component of seed coat
mucilage. The GALT6 expression profile during seed
coat differentiation is identical to that of FEI2. Moreover,
GALT6 is expressed at a higher level during late embryo-
genesis compared to the early embryogenesis stages,
consistent with its involvement with seed coat develop-
ment and in seed coat mucilage adherence. Taken
together, GALT6, GALT3, GALT2 and GALT5 likely gly-
cosylate AGPs, like SOS5, that are essential for main-
taining mucilage adherence in seeds during hydration.
With respect to seed set, galt4 and galt6 mutants phe-

nocopied knock-out mutants of two pollen-specific
AGPs genes, AGP6 and AGP11, in terms of reduction in
number of seeds per silique, but not in abnormal pollen
structures, although occasionally some collapsed pollen
were observed in galt4 and galt6 mutants (Fig. 7, Table 3,
Additional file 1: Figure S8) This suggests GALT4 and
GALT6 may be involved in glycosylation of pollen -spe-
cific AGPs. Several studies have indicated that AGPs
play key roles in pollen biogenesis, pollen tube growth
and development, pollen tube guidance, and pollen–pis-
til interactions during post pollination events [56–61].

Indeed, a number of AGP genes are reported to show
pollen-specific expression in Arabidopsis, including
AGP6, AGP11, AGP23, and AGP40. Reciprocal crosses
of the mutants with WT confirmed that genetic transmis-
sion of this phenotype is contributed by the male gameto-
phyte (Fig. 7 and Table 3). In contrast, it is interesting to
note that AGP18 is reported to be essential for female
gametogenesis, given that functional megaspores in RNAi
plants fail to enlarge and divide, resulting in ovule abor-
tion and reduced seed set [62].
With respect to leaf senescence, galt6 mutants dis-

played age-dependent early onset of leaf senescence, in-
dicating AGP glycosylation is related to plant aging
(Additional file 1: Figure S8 and Table 2). Several lines
of evidence implicate the involvement of AGPs in regu-
lating programmed cell death and senescence [63–67].
For example, β-Gal-Yariv treatment is known to promote
programmed plant cell death, while overexpressing AGPs
results in tomato plants with enhanced lifespans [67]. In
this context, it is noteworthy that GALT6 is highly
expressed in senescing leaf tissue and that only galt6 mu-
tants demonstrate a significant reduction in the β-Gal-
Yariv precipitable AGPs in senescent leaves (Additional
file 1: Figure S4 and Table 2).
Any one defect leading to reduced AG glycosylation is

likely to impair the function of multiple AGPs, leading
to pleiotropic effects as observed here. At least some of
the genes involved in AGP glycosylation, however, exist
in small redundant or partially redundant genes families
and may compensate for one another when a given gene
in the family is knocked out [12, 15–17, 21, 22]. In some
cases, aberrant phenotypes may not be discernable under
normal conditions, but may be revealed under subopti-
mal growth conditions.

Conditional phenotypes indicate GALT3, GALT4, and
GALT6 function in tip growth
The galt3, galt4, and galt6 mutants display several condi-
tional pollen and root phenotypes in response to β-Gal-
Yariv treatment or salt treatment similar to those observed
in galt2 and galt5 single mutants as well as galt2galt5
double mutants [16]. In both pollen tubes and roots, β-
Gal-Yariv treatment is known to bind AGPs, specifically to
their β-1,3-galactan chains, and inhibit pollen tube and
root elongation [68–71] indicating AGPs are important
for such growth. This inhibition is alleviated in single mu-
tants, which have reduced AGP glycosylation due to the
lack of respective GALTs (Figs. 9, 10, Additional file 1:
Figure S10 and Figure S11). Under normal conditions (i.e.,
without β-Yariv treatment), no inhibition is observed in
the single mutants, most likely due to gene redundancy, a
conclusion supported by the observation that galt2galt5
double mutants show inhibition under normal conditions
[16]. Thus, GALT3, GALT4, and GALT6, like GALT2 and
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GALT5, are important for pollen tube and root growth
and indicate that the AG polysaccharides are required for
these growth functions.
In roots, salt treatment results in reduced root growth,

which can be measured directly or by the root bending
assay, which is commonly used to screen plants or mu-
tants for salt sensitivity. Here, galt3, galt4, and galt6
mutants display salt hypersensitive root growth in both
of these assays (Fig. 11). Thus, GALT3, GALT4, and
GALT6, like GALT2 and GALT5, function in root
growth and indicate the importance of AG polysaccha-
rides in this process. GALT3, GALT4, and GALT6, like
GALT2 and GALT5, also function to prevent root tip
swelling in response to salt stress (Additional file 1:
Figure S13 and Figure S14). Since SOS5, a fasciclin-like
AGP, and FEI1 and FEI2, two cell wall receptor-like
kinases, also prevent such root tip swelling, and are in
the same genetic pathway as GALT2 and GALT5, it ap-
pears that AGP glycosylation via any of the five GALTs
(GALT2-GALT5) likely generates a carbohydrate signal
on SOS5, which is detected and transduced by the FEI1/
FEI2 kinases to promote cell wall integrity [16, 72, 73].

Conclusions
In conclusion, biochemical and genetic evidence pre-
sented here indicates that GALT3, GALT4, and GALT6,
like GALT2 and GALT5, function as AGP-specific Hyp-
GALTs. The largely, but not completely, overlapping
pleiotropic effects observed in genetic null mutants for
each of the genes with respect to multiple aspects of
plant growth, development, and reproduction indicate
the importance of AG polysaccharides to the functions
of AGPs. Thus, these Hyp-GALT genes function in a
largely redundant manner, and it is anticipated that
more severe biochemical and physiological phenotypes
will occur when multiple genetic mutants are studied,
revealing additional AGP functions. Indeed, future work
aimed at examining such multiple mutants, the role of
the GALECTIN domain, the potential for enzyme com-
plex formation between and among Hyp-GALTs and
other GTs involved with AGP biosynthesis, Hyp-GALT/
AGP trafficking, and the potential signaling roles of AG
polysaccharides will provide deeper insight to the evolu-
tion and biology of this small enzyme family and the
AGP family members that serve as their substrates.

Methods
In silico analysis of the six-membered GALT family
Protein sequences from GALT1, GALT3, GALT4 and
GALT6 were run through several prediction programs
(TMHMM 2.0, TargetP 1.1, SignalP v2.0.b2 server) to ob-
tain information on their putative subcellular localization
and topology [25, 26, 74]. Hydrophobic cluster analysis

(HCA) plots were obtained from the drawhca server on
the Internet (http://bioserv.impmc.jussieu.fr/hca-seq.html)
and were analyzed as described by Breton et al. [75].
The coexpression network for the GT31 member
genes was illustrated using the program GENEMANIA
(www.genemania.org) using GALT2 and GALT5 as query
genes.

Plant lines and plant growth conditions
Arabidopsis thaliana accession Columbia-0 (Col-0) and
two T-DNA insertion lines for At1g26180-(galt1-1,
Sail_170_A08 and galt1-2, Salk_006871), At3g06440 (galt3-
1, Salk_085633 and galt3-2, Salk_005178), At1g127120
(galt4-1, Salk_136251 and galt4-2, Salk_131723), and
At5g62620 galt6-1, Sail_59_D08 and galt6-2, Sail_70_B02)
were obtained from the Arabidopsis Biological Resource
Center (ABRC, Ohio State University). All plants used in
this study were germinated after 4 days of stratification in
the dark at 4 °C and were grown under long-day condi-
tions (16 h of light/8 h of dark, 22 °C, 60 % humidity) in
growth chambers or growth rooms. Sequencing of the
amplified PCR products from the mutant plants led to the
accurate determination of the T-DNA insertion site.

Mutant confirmation by PCR and RT-PCR
Genomic DNA was isolated from leaves of the mutants
and WT plants and was extracted using the 2× CTAB
method described by Murray and Thompson [76]. Sub-
sequent PCR analysis was carried out using gene specific
primers in conjunction with the T-DNA primers. The
primer locations are indicated in Fig. 4, and the corre-
sponding primer sequences are listed in Additional file
1: Table S6. For sequencing, PCR products were purified
by gel extraction (Wizard® SV Gel and PCR Clean-Up
System, Promega, Madison, WI, USA) and sequenced
by the Ohio University Genomics Facility (http://
www.dna.ohio.edu/). To analyze transcript levels of
GALT1, GALT3, GALT4, and GALT6, total RNA was
isolated from 2 week old seedlings of WT and mutant
plants. For tissue specific expression profiling, tissue
was harvested at different growth stages as defined by
Boyes et al. [77]. In both cases, RNA was extracted using
Trizol (Life Technologies, Grand Island, NY, USA) and
Direct-zol™ RNA MiniPrep kit (Zymo Research, Irvine,
CA, USA). First-strand cDNA synthesis was performed
from 2 μg of total RNA using oligo-dT (Coralville, Iowa)
and GoScript reverse transcriptase (Promega, Madison,
WI, USA). RT-PCR was performed using OneTaq DNA
polymerase (New England Biolabs, Ipswich, MA, USA)
and gene-specific RT primers (Additional file 1: Table S6).
The number of amplification cycles was 28 to evaluate
and quantify differences among transcript levels before
the reaction reached saturation.
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For quantitative real-time PCR (qRT-PCR), cDNAs
were amplified using Brilliant II SYBR Green qRT-PCR
Master Mix with ROX (Agilent Technologies, La Jolla,
CA, USA) in an MX3000P real-time PCR instrument
(Agilent Technologies). PCR was optimized and reac-
tions were performed in triplicate. The transcript level
was standardized based on cDNA amplification of ubi-
quitin 10 (UBQ10, At4g05320) as a reference. Primer se-
quences are listed in Additional file 1: Table S6.

Heterologous expression of GALT1, GALT3, GALT4, and
GALT6 and Hyp-GALT activity assay
Coding regions of GALT1, GALT3, and GALT4 were
obtained from the RIKEN Bioresource Center, while the
coding region of GALT6 was obtained from The French
Plant Genomic Resource Center (http://cnrgv.toulouse.
inra.fr/). N-terminal 6x-His tag fusion gene constructs
were amplified using Q5 high fidelity DNA Taq polymer-
ase (New England Biolabs, Ipswich, MA, USA), initially
cloned into the pENTR/D-TOPO vector (Life technolo-
gies, Grand Island, NY, USA), and eventually cloned into
the destination vector pMDC32 gateway vector using LR
clonase enzyme mix (Life Technologies Grand Island,
NY, USA). Primers used for amplification are listed in
Additional file 1: Table S6. Gene constructions were
transformed into Agrobacterium strain GV3101 by the
freeze thaw method, and the transformants were grown
overnight in Luria-Bertani (LB) medium. Bacterial cells
were harvested by centrifugation and suspended in a
buffer containing 10 mM MES, 10 mM MgCl2, and
50 μM acetosyringone (OD600 = 0.2). Leaves from 6-
week-old WT N. tabacum cv. Petit Havana were used
for Agrobacterium-mediated transient expression. Four
days after infiltration, leaves were harvested, and micro-
somes were prepared according to the method described
by Liang et al. [45] with minor modifications.

Fluorescent protein fusion and subcellular localization
Full length GALT3, GALT4, and GALT6 devoid of stop
codons was cloned into the pENTR/D-TOPO vector
(Life technologies, Grand Island, NY, USA) and se-
quenced. The resulting plasmids were cloned in the
destination vector pEarlyGate 101 by a gateway cloning
strategy, using LR clonase enzyme mix (Life Technolo-
gies Grand Island, NY, USA) to generate the YFP N-
terminal fusion constructs. These gene constructions
were transformed into Agrobacterium strain GV3101
and infiltrated into tobacco leaves as described in the
above section except that the bacterial concentration
was lower (OD600 = 0.05). The GALT3-YFP, GALT4-YFP,
and GALT6-YFP constructions were co-expressed with
either the ER marker HDEL-GFP or the Golgi marker
sialic acid transferase (ST)-GFP to ascribe subcellular
localization. Transformed plants were incubated under

normal growth conditions and imaged 2 days post-
infiltration using an upright Zeiss LSM 510 META laser
scanning microscope (Jena, Germany), with a 40 × oil
immersion lens and an argon laser. For imaging the
expression of YFP constructs, the excitation line was
514 nm, and emission data were collected at 535–590 nm;
whereas for GFP constructs, the excitation line was
458 nm, and the emission data were collected at 505–
530 nm.

GALT assay with microsomal preparations from
transiently expressed GALT1, GALT3, GALT4, and GALT6 in
tobacco epidermal cells
The standard GALT reaction was performed as de-
scribed in Basu et al. [15] using detergent permealized
microsomes from transiently expressed GALT1, GALT3,
GALT4, and GALT6. Three permeabilized microsomal
membranes were included as controls, one from the WT
tobacco leaves, one from WT tobacco leaves infiltrated
with Agrobacterium GV3101 transformed with the empty
expression vector (pMDC32), and one with tobacco leaves
infiltrated with ST-GFP constructs as negative controls.

Purification of Hyp-GALT reaction products by
reverse-phase HPLC
The GALT reaction products were purified by RP-HPLC
as described by Liang et al. [45].

Determination of substrate specificity for GALT2-GALT6
Microsomal fractions from tobacco leaves expressing
GALT2-GALT6 constructs were used for determination
of substrate specificity as described by [15, 16].

Isolation of Golgi-enriched plant microsomal membranes
Plant microsomal membranes were extracted from WT,
galt1-1, galt1-2, galt3-1, galt3-2, galt4-1, galt4-2, galt6-1
and galt6-2 according to Liang et al. [45] with minor
modifications.

Extraction of AGPs
AGPs were extracted from the WT, galt1-1, galt1-2,
galt3-1, galt3-2, galt4-1, galt4-2, galt6-1, and galt6-2
mutant plants as described by Schultz et al. [78] precipi-
tated and quantified as described by Gao et al. [79] and
Yariv et al. [80]. AGP profiling was conducted as de-
scribed by Youl et al. [81] with modifications. AGPs
were obtained from 8 g of plant material, precipitated by
β-Gal - Yariv reagent and dissolved in 1 ml of deionized
water before applying 100 μl onto a polymeric reverse-
phase column (PRP-1, 5 μm, 4.1 × 150 mm; Hamilton)
equilibrated with buffer A (0.1 % trifluoroacetic acid).
Fifty μg of [AO]7 was used as a control to monitor the
retention time of a pure AGP peptide. Samples were
eluted from the column following a linear gradient with
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solvent B (0.1 % trifluoroacetic acid in 80 % acetonitrile):
0–30 % solvent B in 30 min, then 30–100 % in 30 min at
a flow rate of 0.5 ml/min. Chromatography was moni-
tored by absorption at 215 and 280 nm.
AGPs from siliques, flowers, inflorescence stem, and

senescent leaves were extracted as described by Lamport
[82], with minor modifications. To extract AGPs from
siliques (2.5 g), flowers (1.5 g), inflorescence stems (5 g),
and senescent leaves (5 g), they were ground to a fine
powder in liquid nitrogen. Ground tissue was added to
an extraction buffer of CaCl2 (2 % w/v) at a volume of
2 ml for each gram of tissue, and stirred for 3 h at room
temperature. Samples were centrifuged for 30 min at
10,000 g at room temperature. The supernatant was
freeze-dried overnight and resuspended in 1 ml of 2 %
CaCl2 and transferred to 2 ml microcentrifuge tubes.
AGPs were precipitated overnight at 4 °C with an equal
volume of the β-Gal - Yariv reagent (2 mg/m in 2 % w/v
CaCl2). The insoluble β-Gal-Yariv–AGP complex was
collected by centrifugation at 10,000 g in a microcentri-
fuge for 1 h. The β-Gal-Yariv was removed by washing
the pellet three times in 2 % (w/v) CaCl2 and then twice
in methanol. The pellet was dried, dissolved in 100 μl of
water mixed with 25 mg of solid sodium dithionite and
incubated for 30 min at 50 °C until the mixture decolor-
ized. The resulting solution was then desalted on a PD-
10 column (Pharmacia) that had been equilibrated with
water, and the eluate was freeze-dried.

Evaluation of seed set
Mature siliques from 6-week old WT, galt1, galt3, galt4,
and galt6 plants were collected, and silique length and
weight were measured. For seed number, siliques were
decolorized by incubation in 100 % ethanol at 37 °C
overnight before dissection of the siliques. For reciprocal
cross-pollinations, 10 flowers from WT, galt4-1, galt4-2,
galt6-1, and galt6-2 were selected at stage 12. These
flowers were emasculated before pollinating them with
fresh pollen obtained from flowers at stage 13. After
10 days, siliques were collected from these flowers to
examine seed set.

Root growth measurements
For monitoring root growth in response to β-Gal-Yariv
reagent, WT, galt1-1, galt1-2, galt3-1, galt3-2, galt4-1,
galt4-2, galt6-1 and galt6-2 seedlings were grown on MS
plates for 7 days before they were transferred to MS
plates supplemented with 50 μM α-Gal-Yariv reagent or
50 μM β-Gal-Yariv reagent. For seedling growth in salt,
7-day-old seedlings of WT, galt1-1, galt1-2, galt3-1,
galt3-2, galt4-1, galt4-2, galt6-1, and galt6-2 were trans-
ferred to MS medium containing 1 % agar and 100 mM
or 150 mM NaCl. Root length was determined on low-
magnification (×10) digital images captured using a CCD

camera and image analysis freeware (ImageJ; http://
rsb.info.nih.gov/ij/). For analysis of salt hypersensitivity
of the mutant plants, root growth was monitored using
a root bending assay [83], and images were taken using a
Nikon SMZ1500 stereomicroscope coupled with a CCD
Infinity 2 camera and analysis software.

In vitro pollen germination assay
Flowers collected from WT, galt1-1, galt1-2, galt3-1,
galt3-2, galt4-1, galt4-2, galt6-1, and galt6-2 plants 1 to
2 weeks after bolting were used for the examination of
pollen tube phenotypes. Individual open flowers were ger-
minated in vitro as described by Boavida and McCormick
[84], on solid germination medium (0.01 % H3BO3, 1 mM
MgSO4, 5 mM KCl, 5 mM CaCl2, 10 % sucrose, and 1.5 %
low-melting agarose, pH 7.5 and 30 μM β-Gal-Yariv re-
agent or 30 μM α-Gal-Yariv reagent) at 22 °C and 100 %
humidity in the dark. Pollen tube germination rates were
calculated by dividing the total number of germinated
tubes by the number of grains. Images and measurements
of pollen tubes were done at 20× magnification in a Nikon
Phot-lab2 microscope coupled with a SPOT RT color
CCD camera and SPOT 4.2 analysis software.

Aberrant root hair morphology
Root hair length from 8-day-old plants grown on agar
plates was determined on low-magnification (×10) digital
images captured using a CCD camera and image analysis
freeware (ImageJ; http://rsb.info.nih.gov/ij/). To ensure
comparable results, the area 3–5 mm behind the root tip
was analyzed. Plants grown on agar plates were carefully
removed in 100 μl of half-strength MS medium on
microscope slides for analysis. Quantification of root
hairs length and density was performed using 10 seed-
lings for each genotype, and 25 root hairs from each root
were measured.

Cytochemical staining of seeds and determination of
adherent mucilage size and mass
Seeds of all the indicated genotypes were prehydrated in
water and stained with 0.01 % ruthenium red. The stain-
ing was performed as described by Willats and Knox,
[85] and Harpaz-Saad et al. [37]. Imaging was done
using a Zeiss LSM 510 confocal microscope. The volume
of adherent mucilage was measured using the method
described by Yu et al. [86].

Alexander’s staining of pollen
To examine pollen viability, anthers were removed from
flowers, and mounted on microscope slides, and stained
with Alexander’s stain as described by Alexander [87].
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Leaf senescence assay
Leaf 7 was marked as 18 DAG (days after germin-
ation) and sampling started at 19 DAG and continued
every other day until full senescence was reached (39
DAG) as described by Breeze et al. [88]. Because the
age of a leaf can affect its response to factors that in-
fluence senescence, plants of indicated genotypes were
taken from synchronously growing populations, and only
identically aged leaves were pooled for chlorophyll and
protein content measurements.

Measurement of chlorophyll content
Chlorophyll was extracted from WT, galt6-1, and galt6-2
leaves by immersion in 1 ml of N, N-dimethylformamide
for 48 h in the dark at 4 °C. Absorbance was recorded at
664 and 647 nm, and total chlorophyll concentration
was calculated as described by Xiao et al. [89]. The total
chlorophyll content was measured and normalized per
gram fresh weight of sample.

Cell wall preparation
One-hundred milligram of WT and galt mutant seeds
were extracted sequentially with 0.2 % ammonium oxal-
ate, 0.2 and 2 N sodium hydroxide for 1 h each with
vigorous shaking at 37 °C. Both sodium hydroxide ex-
tractions were neutralized with acetic acid. Total sugar
(μg/mg seed) was determined with a phenol-sulfuric
assay based on Dubois et al. [90]. In short, 200 μl of
resuspended extract was incubated with 100 μl freshly
made 5 % (v/v) aqueous phenol and 1 ml concentrated
sulfuric acid for 2 h at 30 °C. Absorbance was detected
at 500 nm against glucose standards of 0.5, 2.5, 5, 7.5,
10, 15, 25 μg for which a linear response curve was
obtained.

Statistical analysis
For each analysis, both enzyme activity and phenotypic
differences in mutants were compared with the WT using
one-way ANOVA. The P values were derived from post
hoc tests using Dunnett’s adjustment for multiple compar-
isons. Statistical analyses were performed with Prism 6
software (GraphPad Software, Inc.).

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its additional files.
The accession numbers of the genes analyzed in this
study are as follows: GALT1: At1g26810; GALT2:
At4g21060; GALT3: At3g06440; GALT4: At1g27120;
GALT5: At1g74800; GALT6: At5g62620.
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