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Abstract

Background: Exploring genetic differentiation and genomic variation is important for both the utilization of
heterosis and the dissection of the genetic bases of complex traits.

Methods: We integrated 1857 diverse maize accessions from America, Africa, Europe and Asia to investigatetheir
genetic differentiation, genomic variation using 43,252 high-quality single-nucleotide polymorphisms(SNPs),combing
GWAS and linkage analysis strategy to exploring the function of relevant genetic segments.

Results: We uncovered many more subpopulations that recently or historically formed during the breeding
process. These patterns are represented by the following lines: Mo17, GB, E28, Ye8112, HZS, Shen137, PHG39, B73, 207,
A634, Oh43, Reid Yellow Dent, and the Tropical/subtropical (TS) germplasm. A total of 85 highly differentiated regions
with a DEST of more than 0.2 were identified between the TS and temperate subpopulations. These regions comprised
79 % of the genetic variation, and most were significantly associated with adaptive traits. For example, the region
containing the SNP tag PZE.108075114 was highly differentiated, and this region was significantly associated with
flowering time (FT)-related traits, as supported by a genome-wide association study (GWAS) within the interval of FT-
related quantitative trait loci (QTL). This region was also closely linked to zcn8 and vgt1, which were shown to be involved
in maize adaptation. Most importantly, 197 highly differentiated regions between different subpopulation pairs were
located within an FT- or plant architecture-related QTL.

Conclusions: Here we reported that 700–1000 SNPs were necessary needed to robustly estimate the genetic
differentiation of a naturally diverse panel. In addition, 13 subpopulations were observed in maize germplasm,
85 genetic regions with higher differentiation between TS and temperate maize germplasm, 197 highly differentiated
regions between different subpopulation pairs, which contained some FT- related QTNs/QTLs/genes supported by GWAS
and linkage analysis, and these regions were expected to play important roles in maize adaptation.
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Background
Maize (Zea mays L.) is widely planted throughout the
world, including in more than 70 countries across six con-
tinents [1]. Maize originated in south-central Mexico [2]
and spread throughout the Americas for thousands of
years before it was introduced to Europe, Africa, and Asia
after Columbus discovered the New World [3]. During

this spread, maize continually improved via natural and
artificial selection in order to adapt to different environ-
ments [4]; a number of landraces and inbreds were devel-
oped [5], and many hybrids with high yields have been
released to satisfy the increasing need of humans [6].
In the past several decades, maize’s diffusion [3],

improvement [7–11], pedigrees [12, 13], and genetic
basis for phenotypic variations [14–16] have been well
documented, providing scientific proof for the genetic
contributions to historical yield increases and the forma-
tion of heterotic groups. For instance, American maize
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germplasms were divided into three main heterotic
groups: Iowa Stiff Stalk Synthetic (SS), Non-Stiff Stalk
(NSS), and Iodent (IDT) [10]. African maize germplasms
were divided into three clusters: Meso-American land-
races, Coastal Brazilian landraces, and Tropical varieties
[17]. Chinese maize germplasms are divided into five
subpopulations: including Ludahonggu, TSPT, P group,
Reid and Lancaster [18–20]. The aforementioned studies
provided useful information for both heterosis utilization
and the dissection of the genetic basis for complex traits,
but the accessions used in previous studies were ob-
tained from a single geographical origin and have relied
on the smallest number of markers, which limits our un-
derstanding of genetic differentiation. The development
of high-throughput genotyping strategies has facilitated
the study of historical genetic changes in maize [21–23].
Recently, another large natural panel of 2,815 maize ac-
cessions was investigated using the genotyping by se-
quencing (GBS) method [12], and this study provided
abundant information about pair relationships of acces-
sions and identified many new genetic loci associated
with flowering time (FT)-related traits. Five subpopula-
tions were observed in this paper; the distance between
SS and NSS subpopulations was small, which indicated a
slight bias when comparing with previous studies and
the knowledge of maize pedigrees based on breeding
practice [10, 22, 24–26].
In addition, many studies of genomic variation re-

ported using GST and its relatives (DEST, FST) [27]. Haag
et al. [28] demonstrated that DEST constituted an alter-
native measure of genetic differentiation between popu-
lations. However, the traditional FST value has been
widely used to estimate plant genetic differentiation. A
higher FST of selected features was observed between
subpopulations using 284 maize inbreds from Minnesota
[22], and this value was larger than that between tem-
perate maize germplasms [9]. Romay et al. [12] showed
that most of germplasms from classic breeding programs
of the Corn Belt were closely related, with an average
pair-wise FST of 0.04, which was larger than the 0.027
value reported between tropical and temperate lines [29]
and the 0.02 value reported between landraces and im-
proved lines. Nevertheless, this value did not exceed the
0.11 value reported between teosinte and landraces [30]
However, most studies have previously only reported the
differentiation phenomenon and extent of genetic vari-
ation between subpopulations. The potential genomic
regions of importance that are highly differentiated and
associated with putative function are poorly understood,
especially for maize.
In this paper, we integrate maize germplasms from

America, Africa, Europe and Asia, including 1857 acces-
sions from more than sixteen countries worldwide, and
present an in-depth analysis of genetic differentiation

and genomic variation using a dataset of 43,252 single-
nucleotide polymorphisms (SNPs). We dissected the
genome-wide variation patterns of selection fixation, un-
covered the subdivision of population structure, identi-
fied highly differentiated genomic regions between
subpopulations, combined genome-wide association
studies (GWAS) of FT-related traits, and compared the
results with public data on the quantitative trait loci
(QTL) and bioinformatics analysis to identify adaptive
genomic regions and relevant candidate genes that may
have been important during maize development and the
formation of modern heterotic groups.

Results
Ascertainment bias
The average correlation coefficients of the first five princi-
pal components (PCs) between one given subset and the
entire set with all markers are shown in Additional file 1:
Figure S1. The correlation coefficients between the subset
and the entire set sharply increased from 0.65 for a marker
number of 500 to 0.97 for a marker number of 700. A sec-
ond sharp increase emerged when the marker number in-
creased from 800 to 1000, with a corresponding increase
in the correlation coefficient from 0.97 to 0.99. Further-
more, the correlation coefficient did not significantly
change when the marker number increased from 2000 to
43,252. The results indicated that 1,000 SNPs might be
sufficient for population structure analyses.

Model-based population structure
The subpopulations of 1857 accessions based on the ad-
mixture model-based algorithm were analyzed in depth
using the even distribution of 5000 SNPs. The results
are depicted in Fig. 1. The delta K (ΔK) peak was maxi-
mized when k = 2 (Fig. 1a), indicating that the accessions
could be categorized into two groups: tropical/subtrop-
ical (TS) germplasm and temperate germplasm (Fig. 1b
k = 2). A second peak of ΔK emerged at k = 4 (Fig. 1a),
indicating that this panel could be further divided into
four subgroups: SS, NSS, Modified Introduction in
China (MICN), and TS I (Fig. 1b k = 4). Notably, MICN
formed during the long history of maize breeding in
China because Chinese maize breeders have devel-
oped a number of inbred lines derived from Chinese
landraces and U.S. hybrids. These varieties signifi-
cantly differ from U.S. inbreds [19]. A third peak of
ΔK was observed at k = 7 (Fig. 1a), indicating that this
panel could be comprehensively categorized into
seven subpopulations, each including one of the fol-
lowing representative lines: B73, Huangzaosi (HZS),
207, Oh43, Mo17, Shen137, and some from TS re-
gions (Fig. 1b, k = 7). Detailed information for each
accession is listed in Additional file 2: Table S1.
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Clustering analysis
A neighbor-joining tree was constructed based on the
modified Euclidean distance and is shown in Fig. 2. The
1857 accessions were clustered into two major groups ac-
cording to their origins: the TS and Tem-tropic subpopu-
lation. The TS subpopulation contained 525 accessions,
including 195 accessions from Mexico, 187 from the U.S.,
77 from China, 17 from Sudan, 10 from Thailand, 9 from
Canada, 9 from Tanzania, 6 from Nigeria, 3 from Somalia,
3 from Benin, 3 from Zambia, 3 from Chad, 2 from Spain,
1 from Ghana, 1 from Germany, 1 from Yugoslavia, and 1
from Egypt (Additional file 2: Table S1). The Tem-tropic
subpopulation contained 1,332 accessions, which could be
further clustered into four subpopulations, SS, NSS,
Iodent (IDT) and TS, according to their origins and pedi-
grees. A further analysis showed that the accessions from
these four subpopulations could be clustered into 13 sub-
groups, with the following representative lines: Reid Yel-
low Dent, Oh43, A634, 207, B37, B73, PHG39, Shen137,
Huangzaosi (HZS), Ye8112, E28, GB and Mo17 (Fig. 2).

Principal component analysis (PCA)
The PCA results showed comprehensive patterns of
subpopulation and a good agreement with both
model-based population structure and clustering ana-
lyses (Fig. 3). The entire panel of 1857 accessions ex-
hibited moderate differentiation and some overlap
between the temperate and TS germplasm; represen-
tative lines from the TS and temperate region signifi-
cantly differed, e.g., B73 from the temperate and Ki3
from the TS region of Thailand, but the accessions
from the adjacent regions did not markedly differ.
Which may be resulted by the lager introgression
existing between temperate and tropical/subtropical
accessions and lower power of PCA in population
structure analysis by using only two PCs. The acces-
sions from the temperate subpopulation were further
categorized into the B73 subpopulation according to
the results of model-based structure analysis (Fig. 3b)
or the Ye8112, B37 and A634 subpopulations based
on the results of modified Euclidean distance (Fig. 3c).

Fig. 1 Model-based subdivision of population structure. ‘a’ presents the estimation of the Ln (probability of data). Delta K was calculated from K = 2 to
K = 9. ‘b’ presents the population structure of the 1,857 maize accessions deduced by membership coefficients (Q values). Each horizontal bar presents
one accession, which is consisted of K colored segments. ‘SS’ is the abbreviation of Stiff Stalk Synthetic group, “MICN” Modified Introduction of China,
‘TS’ Tropical/Subtropical group, and NSS Non-Stiff Stalk
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Based on the pedigrees, most lines were from the
U.S. and China (Fig. 3d and Additional file 2: Table
S1). In addition, the TS population was further di-
vided into the HZS, 207, Oh43, Mo17 and Shen137
subpopulations based on the model-based population
structure, which corresponded to HZS, GB, Shen137,
Mo17, and Reid Yellow Dent based on a clustering
analysis (Fig. 3c). These subpopulations contained in-
bred lines of a TS lineage in their pedigrees or lines
from CIMMYT, Mexico and other tropical regions
(Fig. 3a and d). Moreover, many accessions were cate-
gorized into new groups, such as the PHG39, 207,
A634, Oh43, B37 and E28 subpopulations; most ac-
cessions in these groups originated from regions be-
tween temperate and TS zones (Fig. 3) due to the
introgression of TS genotypes into regions of temper-
ate germplasms.

Summary statistics of genetic diversity
The accessions of the entire panel of 1857 accessions
were moderately similar, with more than 96.22 % of the
pair-kinship coefficients varying from 0.30 to 0.53
(Fig. 4a). The average linkage disequilibrium (LD) dis-
tance was 30 kilo-bases (kb), varying from 20 to 50 kb,
with an r2 exceeding 0.1 (Fig. 4b). Combining the results
of both the model-based population structure and gen-
omic variation analyses indicated pronounced patterns
of genetic variation among different subpopulations.
These patterns were fixed by artificial or natural selec-
tion and resulted in the division of subpopulations dur-
ing breeding. The TS subpopulation was more
genetically diverse than the temperate subpopulation,
with gene diversities (GDs) of 0.364 and 0.284, respect-
ively, and polymorphism information contents (PICs) of
0.281 and 0.231, respectively (Table 1). Similar trends

Fig. 2 Neighbor-joining trees of the 1,857 maize accessions. Mo17 is a representative line of Non-Stiff Stalk (NSS). GB is a representative line derived
Chinese landrace. E28 is a representative line of the Ludahonggu group. Ye8112 a representative line of the Modified Reid group. ‘HZS’ is an abbreviation
of Huangzaosi, which is a representative line of the Tangsipingtou group (TSPT). Shen137 is a representative line of the PA group. PHG39 is a parent
derived from Argentine Maize Amargo background. B73 is a representative line of Stiff Stalk Synthetic (SS). B37, 207, A634, Oh43, and Reid Yellow Dent
are the representative lines of different subpopulations, respectively
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were validated with a smaller proportion of SNPs in LD
for TS when comparing with a larger proportion of
SNPs in LD for the temperate subpopulation (Fig. 4c).

Genomic differentiation between subpopulations
The proportion of genetic variance due to subpopula-
tions (DEST) was measured to interpret the genomic
variation between subpopulations (Table 2, Fig. 4(d),
Fig. 5 and Additional file 1: Figure S2). The DEST indi-
cated different patterns of genomic differentiation be-
tween the subpopulations, ranging from 0 to 0.39
between TS and Temperate (average 0.08), from 0 to

0.45 between TS I and SS (average 0.09), from 0 to 0.45
between SS and NSS (average 0.07), from 0 to 0.41
between NSS and MICN (average 0.05), from 0 to 0.38
between MICN and TS I (average 0.06), from 0 to 0.30
between NSS and TS I (average 0.03), and from 0 to
0.57 between SS and MICN (average 0.08). The SS and
TS I varieties were more differentiated, with 332 gen-
omic regions having a large DEST (twice the average
level) (Fig. 5a). Furthermore, 250 genomic regions were
highly differentiated between SS and MICN, 235 were
highly differentiated between TS and Temperate, 92
were highly differentiated between MICN and TS I, 51

Fig. 3 Results of principal components (PCs). Plots ‘a’ and ‘b’ show the comparison between the model-based population structure and the PC
analysis results. Plot ‘c’ shows the comparison between the PC analysis results and the N-J tree constructed based on modified Euclidean distance.
Plot ‘d’ shows the comparison between the original information and the PC analysis results
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were highly differentiated between NSS and MICN, and
8 were highly differentiated between NSS and TS I, with
a DEST of more than twice the average level. Most im-
portantly, 85 highly differentiated regions with a DEST

exceeding 0.2 were identified between the TS and the
temperate subpopulations. Of these 85 regions, 68 were
located within the interval of plant architecture or FT-
related QTL, and two regions were closely linked to vgt1
and zcn8 (Additional file 2: Table S2 and S3). Further-
more, a number of special genomic regions were also
found to be highly differentiated. In particular, subpopu-
lation pairs and common regions were identified among
different population pairs (Fig. 5b). In total, 303 genomic
regions with a high DEST of more than 0.2 were de-
tected, and these regions were located within 197 FT- or
plant architecture-related QTL. For example, the region
containing the tag SNP PZE.108075114 differed more

between the TS and temperate subpopulations and was
associated with a DEST of 0.32; this region was located
within an FT-related QTL cluster and contained the
flanking markers PHTi060 and bnlg1599 (Additional file 2:
Table S3).

Genome-wide study of FT-related traits
The phenotypes of FT-related traits were significantly posi-
tively correlated between the environments (Additional file
1: Figure S3). Thus, the BLUPs for each accession across
the three environments were calculated, and the
phenotype-genotype associations were analyzed. To validate
the putatively adaptive function of highly differentiated tar-
get regions, we used the FT-related traits DTT, DTS, and
DTP to perform a GWAS with 43,252 SNPs as a case
study. The results indicated that some highly differentiated
genomic regions were associated with FT-related traits. For

Fig. 4 Summary statistics of genetic variation existing in the whole set of accessions. ‘a’ is a picture of pair-wise kinship of the 1857 accessions.
‘b’ displays the decay level of linkage disequilibrium (LD) on different chromosomes and across the whole genome. ‘c’ shows the comparison of
LD level between different subpopulations. ‘d’ pictures the genomic differentiation on Chromosome 8

Table 1 Summary statistics of genetic diversity

Index Total K = 2 K = 4 K = 7

TS Temperate SS NSS MICN TS I B73 Mo17 PH207 Oh43 Shen137 HZS TS II

Gene Diversity 0.365 0.364 0.284 0.301 0.361 0.306 0.348 0.268 0.299 0.360 0.294 0.311 0.272 0.345

PIC 0.291 0.291 0.231 0.244 0.289 0.247 0.279 0.219 0.242 0.287 0.239 0.250 0.223 0.277

Heterozygosity 0.046 0.048 0.025 0.027 0.058 0.047 0.037 0.023 0.033 0.065 0.028 0.049 0.034 0.033

Note: K is the number of subpopulations. ‘TS’ is an abbreviation of Tropical/Subtropical subpopulation. ‘SS’ is an abbreviation of Stiff Stalk Synthetic subpopulation. ‘NSS’
is an abbreviation of Non-Stiff Stalk. ‘MICN’ is an abbreviation of Modified Introduction of China
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example, the SNP of PZE-108070380 was significantly asso-
ciated with DTT (P = 7.05 × 10−14), DTP (P = 2.57 × 10−9)
and DTS (P = 2.12 × 10−8) (Fig. 6). This SNP was located
within the zcn8 gene, which is involved in maize migration
from tropical to temperate regions [31]. The SNP
PZE-108076585 was significantly associated with DTS
(P = 1.43 × 10−11) (Fig. 6). This SNP was located
within the vgt1 gene, which is involved in maize
adaptation [32]. Furthermore, twelve other SNPs were
also strongly associated with FT-related traits (Fig. 6),

and the regions surrounding these SNPs were more differ-
entiated than the rest of the genome (Fig. 4d, Additional
file 1: Figure S2, Additional file 2: Table S2).

Discussion
Moderate SNPs are reliable in interpreting population
structure division
Previous reports compared the effect of different marker
systems and concluded that the subdivision of popula-
tions depended on the marker size and population [18,
33–35]. For instance, when 884 SNPs were used in one
association panel of 154 inbred lines, more than 26.4 %
of lines were allocated to the mixed group. This rate was
higher than the 20.6 % rate identified by using 84 simple
sequence repeat (SSR) markers [35]. Comparing the ef-
fect between 847 SNPs and 89 SSRs in one panel of 254
inbred lines yielded similar results [36], they proposed
that many more SNPs would be required to study popu-
lation structure. Here, we compared the average correl-
ation coefficients of division for subpopulations between
one given subset with different marker sizes and the en-
tire set with all markers; we used SNPs varying from 500
to 43,252 in a panel of identical samples. The results
showed that 700 SNPs are sufficient to reliably divide
subpopulations in this panel, with an average correlation
coefficient of the first five PCs of 0.97 between the sub-
sets and the entire set of SNPs. The average correlation
coefficient could be increased to 0.99 by increasing the
number of SNPs to 1000 (Additional file 1: Figure S1).
Yu et al. [37] reported moderate genetic diversity with a
PIC of 0.24 for a sample size of 274. We herein report a

Table 2 Variation of DEST between subpopulations

K = 2 Temperate TS

Temperate 0.000 0.170

TS 0.000

K = 4 SS NSS MICN TS I

SS 0.000 0.164 0.146 0.172

NSS 0.000 0.134 0.053

MICN 0.000 0.121

TS 0.000

K = 7 207 B73 HZS Mo17 Oh43 Shen137 TS II

207 0.000 0.251 0.283 0.260 0.242 0.113 0.059

B73 0.000 0.295 0.309 0.246 0.202 0.247

HZS 0.000 0.242 0.194 0.199 0.208

Mo17 0.000 0.180 0.182 0.226

Oh43 0.000 0.156 0.194

Shen137 0.000 0.110

TS II 0.000

Fig. 5 Counts of genetic regions with high differentiation. ‘a’ shows the counts of genomic regions for each subpopulation pair. ‘b’ shows the
comparison of genomic regions with high differentiation among different subpopulation pairs
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similar PIC of 0.29 for a sample size of 1,857. Yu et al.
[37] demonstrated that more than 1000 SNPs are neces-
sary needed to robustly estimate the genetic differenti-
ation of a naturally diverse panel, and this requirement
exceeded the 700–1000 SNPs found to be necessary
herein. Thus, a larger sample size is expected to signifi-
cantly improve the detection power of subdivisions in
the populations. These results were consistent with
those reported by Morin et al. [33], who compared the
subpopulation differentiation for sample sizes ranging
from 10 to 100. The results reported herein suggested
that a moderate SNP marker number (700–1000) is suf-
ficient to divide population structures in this panel.

Comprehensive patterns of population structure in maize
inbreds worldwide
The analysis of population structure is an important step
in dissecting the genetic basis of complex traits via asso-
ciation analyses [38]. Such an analysis can result in false
positive errors [34]. In the last several decades, a number
of studies have evaluated the population structure of
specific germplasms using limited sample sizes and
sources. These studies independently provided specific
information about the subpopulation differentiation of
approximately 600 Minnesota maize germplasms [22],
172 Dent germplasms from Hohenheim [39], 400 maize
lines from North America [23], 367 elite lines from
China [19] and 527 lines representing TS and temperate
backgrounds [40]. Here, we integrated maize germ-
plasms from America, Africa, Europe and Asia, includ-
ing 1857 accessions from more than 16 countries
worldwide, to investigate subpopulation differentiation.
The outputs of STRUCTURE V2.3.3 identified seven
subpopulations: including B73, HZS, 207, Oh43, Mo17,
Shen137, and TS II (Fig. 1). These results provided
much more information about maize subpopulation dif-
ferentiation than previous studies. In fact, the B73 (SS),
Mo17 (NSS), Oh43, and 207 (IDT) subpopulations were
identified using SSR markers and an Illumina Mai-
zeSNP50 Beadchip [22]. HZS (TSPT), Shen137 (PA

derived from Pioneer hybrid 78599), and TS I subpopu-
lations were also identified in previous reports [18, 19, 41].
In addition, the findings this study was also consistent
with known pedigrees. For example, LH61 shared 87.5 %
of its nuclear genetic material with Mo17 [42] and clus-
tered into the Mo17 subpopulation with an ancestry
membership of 0.91 (Additional file 2: Table S1). These re-
sults were consistent with those reported by Lorenz et al.
[42]. Furthermore, the clustering analysis identified many
more clusters, including Mo17, GB, E28, Ye8112, HZS,
Shen137, PHG39, B73, B37, 207, A634, Oh43, and Reid
Yellow Dent (Fig. 2). The identification of these clusters
indicated that our clustering analysis increased the reso-
lution of the categorization of accessions into subpopula-
tions compared with the model-based method, which
commonly identifies six subpopulations, Mo17, B73, HZS,
Oh43, 207, and Shen137. For instance, PB80 and A632
shared 75 % and 93.75 % of the nuclear genetic material of
B73 and B14, respectively [42], these two lines clustered
into the same subpopulation as B73 and B14, respectively.
This clustering was consistent with a report by Lorenz et
al. [42]. Most importantly, the clustering analysis in this
study identified new subpopulations that are represented
by the following lines: GB, E28, Ye8112, PHG39, B37,
A634, and Reid Yellow Dent. These lines correspond to
the following heterotic groups: Chinese Landrace (GB)
[19], Ludahonggu (E28) [41], PB (Ye8112, B37) [19] de-
rived from modern U.S. hybrids, Commercial hybrid-
derived lines (PHG39, A634) [10], and U.S. landrace (Reid
Yellow Dent) [10], respectively. Of these groups, Chinese
Landrace is mainly distributed in the northeast and south-
west of China, and this variety originated from the North-
American Mid-West and Mexican highlands, respectively
[3]. These landraces yielded new subpopulations and have
been widely used in maize-breeding programs [19]. For
example, E28 is a representative line derived from crossing
the landrace Ludahonggu with modified introduction lines
according its pedigree [19]. Ye8112 was selected from the
hybrid “8112”, which originates in the U.S. [41]. Some of
the lines were derived from this line, such as Ye478 and

Fig. 6 Manhattan plot of GWAS results for flower time related traits. Red cycle refers to days to pollen-shedding (DTP), blue cycle shows days to silking
(DTS), and green cycle shows days to tasseling (DTT). Red line shows the cutoff value of 5.94 (defined as: −log10 (0.05/43,252))
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488, which were clustered in the heterotic group of PB
[19, 41]. A634 was derived from the MN13 lineage [22], is
highly utilized in U.S. hybrid maize breeding. This line
constituted 4.2, 7.8, and 3.0 % of the total U.S. seed re-
quirement in 1970, 1975, and 1979, respectively, and lots
of lines were derived from A634 [13]. B37 is an important
public line that was widely used to develop Pioneer hy-
brids during the 1980s [6]. The selection of a second cycle
line from Pioneer hybrids resulted in new lines, which
formed a subpopulation represented by B37. PHG39 is a
representative inbred Maize Amargo germplasm line from
which many protected corn lines have been developed.
Furthermore, several important first cycle recombinant
lines derived from PHG39 have been considered for com-
mercial maize breeding [10]. These results provide maize
breeders with more definitive information to effectively
use historical genetic resources while maintaining the het-
erotic patterns necessary for hybrid breeding.

Genomic differentiation and putative functions
Genomic differentiation between subpopulations is a
fundamental challenge in population genetics. Maize
originated in tropical central-Mexico and rapidly spread
to colder, temperate regions worldwide [32]. This diffu-
sion caused maize to adapt to local environments by de-
veloping traits that allowed it to thrive in these
environments, i.e., changes in FT and plant architecture.
These changes allowed maize to reach maturity within
different growing seasons. Some studies have docu-
mented the pair-wise FST between subpopulations while
considering genomic differentiation [9, 43, 44]. Schaefer
and Bernardo [22] reported an average pair-wise FST of
0.165 for one diverse panel of 284 maize inbreds; this
value ranged from 0.054 between the A321 and Oh43
subpopulations to 0.325 between the Mo17 and B73
subpopulations. Romay et al. [12] found that most germ-
plasms from classic breeding programs of the Corn Belt
were closely related, with an average pair-wise FST of
0.04. However, the differentiation regions and putative
function remain poorly understood. Moreover, the DEST

was also demonstrated as a measure genomic differenti-
ation. This parameter relies on the genotypic rather than
allelic number and is corrected for heterozygosity [27];
values close to zero indicate little differentiation, and
values close to unity indicate nearly complete differenti-
ation. Therefore, the DEST was used in the present study
to evaluate the genomic variation between the subpopu-
lations, and the results of this analysis revealed strong
differentiation among the subpopulations. This differen-
tiation was attributed to the continuous fixation of target
genomic regions within subpopulations and strong isola-
tion between subpopulations during maize breeding
practices. The pair-wise DEST between the TS and the
temperate subpopulations was 0.17 (Table 2), and 235

highly differentiated genomic regions were identified
(Fig. 5). Most adaptive traits were selected and fixed dur-
ing maize’s long evolution and adaptation from tropical
to temperate climates [31]. This fixation caused the high
genomic differentiation between TS and temperate
germplasms (Table 1, Figs. 2 and 3). Interestingly, 85
strongly differentiated genomic regions with a DEST ex-
ceeding 0.2 were identified between the TS and the tem-
perate subpopulations. A genetic analysis showed that
these 85 regions comprise 79 % of the genetic variation
of this panel (Additional file 1: Figure S4). Of these re-
gions, 15 were significantly associated with FT-related
traits based on GWAS (Fig. 4d and Additional file 1: Fig-
ure S2). In addition, two significant QTNs were closely
linked to zcn8 and vgt1 (Fig. 4d), which are involved in
maize migration and adaptation from tropical to temper-
ate climates [31]. Beyond that, 66 highly differentiated
regions were located within the interval of plant archi-
tecture or FT-related QTL (Additional file 2: Table S3).
In addition, 159 highly differentiated genomic regions
were also identified between SS and NSS subpopula-
tions, with a DEST exceeding 0.16 (Fig. 5). Furthermore,
15 regions located within FT- or plant architecture-
related QTL were also identified (Additional file 2: Table
S3). This finding was consistent with the marked dis-
tance between SS and NSS (Figs. 1, 2 and 3). SS and
NSS are two major heterotic groups used in U.S. breed-
ing programs that are represented by the lines B73 and
Mo17, respectively. Previous studies also reported a sig-
nificant distance between these two groups [23]. Fur-
thermore, other highly differentiated genomic regions
between specific subpopulation pairs were also identi-
fied, and these regions were located within a number of
QTLs associated with FT- or plant architecture-related
traits mapped using different bi-parental populations
(Additional file 2: Table S3). In total, 303 genomic re-
gions with a high DEST of more than 0.2 were detected,
and these regions were located within 197 FT- or plant
architecture-related QTLs. For example, the region con-
taining the tag SNP PZE.108075114 was more differenti-
ated between TS and the Temperate subpopulations
(DEST = 0.32), and this region was located within one
FT-related QTL cluster that contained the flanking
markers PHTi060 and bnlg1599. These results indicate
genomic regions of interest for the formation of given
subpopulations and provide new insight into the dissec-
tion of the genetic basis of complex traits.

Conclusions
Here we reported that 700–1000 SNPs were necessary
needed to robustly estimate the genetic differentiation of
a naturally diverse panel. In addition, 13 subpopulations
were identified based on genotyping and pedigree informa-
tion. On this base, 85 genetic regions with higher
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differentiation between TS and temperate maize germ-
plasm, and 197 highly differentiated regions between differ-
ent subpopulation pairs were identified, which contained
some FT- related QTNs/QTLs/genes supported by GWAS
and linkage analysis, and some known genes of vgt1 and
zcn8 associated with maize adaptation from tropical to
temperate belts, were also included in these regions.
Therefore, we concluded that these differential regions
were expected to play important roles in maize adaptation.
These results would provide abundant information on the
differentiation of subpopulations and new insight to help
dissect the genetic basis of complex traits.

Methods
Plant materials
The present study involved an integrated diverse natural
panel of 1857 accessions collected from around the world,
including 400 accessions from the U.S. Department of
Agriculture (USDA)’s National Plant Germplasm System
[23], 280 from the North Central Regional Plant Introduc-
tion Station of the USA [45], 368 from CIMMYT [21], 48
from Africa [17], and 890 from the institute of crop sci-
ences of the Chinese academy of agricultural sciences
(ICS/CAAS). Chinese germplasm contained two sets of
inbred lines: one from a previously established core [46],
of 242 diverse inbred lines historically used in Chinese
maize breeding and another of recently collected lines
from research institutions or companies. This latter cat-
egory included 648 elite inbred lines that are primarily
used in current maize breeding [19]. Detailed information
is listed in Additional file 2: Table S1.

Phenotypic evaluation
The FT-related traits of 1176 out of 1857 accessions
were evaluated in three environments, including Beijing
in 2014 (spring-sowing), Xinxiang in Henan Province in
2014 (summer-sowing), and Gongzhuling in Jilin Prov-
ince in 2014 (spring-sowing). At each location, acces-
sions were planted based on a randomized experimental
design. Plants (15 plants/row) were sown in single rows
that were 4 m long and separated by a distance of 0.6 m.
The plant density was 52,400 plants per hectare, and ex-
periments were conducted in duplicate. FT-related traits
included days to tasselling (DTT), days to silking (DTS),
and days to pollen-shedding and were recorded when
50 % of plants exhibited the corresponding traits. An
ANOVA was performed using the PROC GLM model. A
Pearson correlation analysis of FT-related traits across
different environments was calculated using the PROC
CORR model. The best linear unbiased predictor (BLUP)
calculation was implemented using a PROC MIXED
model, with genotype, location, genotype by location,
and replications as random effects [47]. All above

analyses were completed using the SAS software (Re-
lease 9.3; SAS Institute, Cary, NC).

Genotyping datasets
The 523 newly collected inbred lines were genotyped
using a MaizeSNP50 BeadChip and 56,110 SNPs (http://
support.illumina.com/array/array_kits/maizesnp50_dna_
analysis_kit.html). When maize seedlings were one
month old, the leaves of five plants were sampled in bulk
to extract genomic DNA according to the modified CTAB
procedure [48]. The quality of the DNA was assessed and
the DNA was genotyped at the Beijing Compass Biotech-
nology Company according to the Infinium® HD assay
ultra-protocol guide. In addition, the SNP genotyping
datasets of the other accessions were extracted from pub-
lic datasets, including those of 400 accessions submitted
by van Heerwaarden et al. [23], 48 African accessions sub-
mitted by Westengen et al. [17], 368 CIMMYT accessions
submitted by Li et al. [21], 280 accessions submitted by
Flint-Garcia et al. [45], and 367 elite lines submitted by
Wu et al. [19]. Finally, all genotypes from different panels
were integrated according to the identical physical pos-
ition and markers names. Alleles forms were transformed
based on the pair wise base complementary. Then 43,252
SNPs were successfully obtained for the 1,857 accessions
according to the following SNP screening criteria: (1) the
minor allele frequency (MAF) exceeded 0.05, (2) the miss-
ing rate is less than 0.2, and (3) the position of the marker
is unambiguous on a physical map.

Ascertainment bias of SNPs and PCA
To evaluate the ascertainment bias of SNPs for evaluat-
ing the subdivision of population structure, different
sample sets of SNPs were sampled across 43,252 SNPs,
with window size varying from 50 kb to 0.2 Mb, wherein
500, 700, 800, 1000, 2000, 5000, 10,000 and 15,000 SNPs
with highly genetically diverse, low missing rates, and
evenly distributed across the genome were selected to
do population structure analysis The subdivision of
population structure for this panel was deduced with a
PCA according to the method described by Patterson et
al. [49] using the TASSEL software 5.0 [50]. The correl-
ation PCs was analyzed using the SAS software (Release
9.3; SAS Institute, Cary, NC). Additionally, the average
correlation coefficient of the first five PCs was used to
deduce the bias extent of one given subset based on the
subdivision of population structure.

Model-based population structure analysis
According the comparison of population subdividing
based on different sample sets of SNP markers. A total
of highly genetically diverse 5000 SNPs with low missing
rates and evenly distributed across the genome were se-
lected to estimate the population structure of the 1857
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accessions using a model-based approach [41] in
STRUCTURE V2.3.3 [34]. The K value (the number of
subpopulations) ranged from 1 to 10, and five runs were
completed for each K; the burn-in period was 5000, and
5000 replications were completed. The adhoc statistic
delta K (ΔK) was used to determine the optimum num-
ber of subpopulations [51]. The outputs of STRUCTURE
were integrated using CLUMPP software [52]. Subpopu-
lation assignments were based on maximum member-
ship probabilities for each accession [22].

Neighbor-joining tree construction
To obtain an in-depth picture of the genetic relationships
between the 1857 accessions with contrasting origins, the
genetic distance between accessions was calculated using
43,252 SNPs based on the modified Euclidean distance
[53], which was defined as follows: D = 1 - identity by state
(IBS) similarity, and the IBS was the probability that alleles
derived at random from two individuals at identical loci
are the same. For any two accessions, the probability of
IBS was averaged over all non-missing loci. A cladogram
was then constructed using the distance matrix described
above based on the neighbor-joining (NJ) algorithm [54].
Clusters were identified from the resultant phylogenetic
tree. All of the above calculations were conducted using
the TASSEL software 5.0 [50].

Basic genetic statistics
Pair relatedness among the 1,857 accessions was esti-
mated by definition as follows: Fij = (Qij – Qm/(1 – Qm),
where Qij is the probability of IBS for random loci from
i and j, and Qm is the average probability of IBS for loci
from random individuals. Pair-kinship coefficients of 0,
0 to 0.1 and 0.1 to 0.5 indicated weak, intermediate, and
strong similarity between accessions, respectively [35].
The GD, heterozygosity, and PIC were calculated in
PowerMarker V3.25 [55], with heterozygosity being de-
fined as the proportion of heterozygous loci detected in
a single accession, and GD being defined as the prob-
ability that two alleles randomly chosen from the test
sample were different [18]. The PIC was estimated as

follows: PICl ¼ 1−
Xk

u¼1
~p2
lu−

Xk−1

u¼1

Xk

v¼uþ1
2~p2

lu~p
2
lv;

where plu and plv are the frequencies of the uth and vth
alleles for marker l, respectively. The LD level between
SNPs was evaluated using the squared Pearson correl-
ation coefficient (r2) between vectors of SNP alleles ac-
cording to a previous study [56]. This evaluation was
completed in the TASSEL software 5.0 [50]. The DEST

values were calculated following the algorithm described
by Yang [57] using the R ‘hierfstat’ package (http://
cran.r-project.org/web/packages/hierfstat). The DEST was
defined as DEST = [(HTest-HSest)/(1-HSest)]/[n/(n-1)], where
HSest is the observed gene diversity within subpopulation,

HTest is the overall gene diversity, and n is the number of
subpopulations [27]. The size of genomic regions was de-
fined as window size with double the value of the LD level
of this panel, and the average DEST of all SNPs in LD was
defined as the cutoff value to interpret the relevant differ-
entiation level between subpopulations. Genomic regions
with an average DEST exceeding the cutoff value were
treated as cases of strong differentiation between
subpopulations.

Genome wide association study
The BLUP of FT-related traits, including the DTT, DTP
and DTS for each accession across three environments,
and 43,252 SNPs were selected to perform a phenotype-
genotype GWAS, which was implemented in the GAPIT
R package [58], using mix linear model (MLM) in which
the population structure and pair-kinship were treated
as covariates [38]. The significant cutoff value was de-
fined as 0.05 divided by the number of markers. QTNs
were selected for further analysis when the P-values of
SNPs were less than the cutoff value.

Availability of supporting data
All data sets supporting the results of this article are
included within the article.

Additional files

Additional file 1: Figure S1. Correlation analysis of the first five
principal components (PCs) between specific subset with different marker
size and the entire set with all markers. Figure S2. Pair-comparison of
DEST on different chromosomes between the subpopulations. Figure S3.
Summary statistic of flowering time related traits. Histograms show the
distribution of flowering time related traits. Numbers in the up-right triangle
are the Pearson coefficient between flowering time related traits and between
environments for the same trait. The low-left triangle is the scatter plots
between flowering time related traits and between environments for
the same trait. Figure S4. Comparison of the genetic variation evaluated by
using two datasets including 43,252 and 85 SNPs, respectively. Each scatter
presents one accession. Black line is the fitted of all scatters. (ZIP 850 kb)

Additional file 2: Table S1. Summary information of sources and
co-ancestral membership of 1857 accessions Table S2. GWAS results
of flowering time related traits and relevant linked QTL or genes. Table S3.
Genomic regions with DEST of more than 0.2 and relevant linked QTL.
(XLSX 299 kb)
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NSS: Non-Stiff Stalk; IDT: Iodent; GBS: Genotyping by sequencing;
PC: Principal components; ΔK: delta K; MICN: Modified Introduction in China;
LD: Linkage disequilibrium; GDs: Gene diversities; PICs: Polymorphism
information contents; DTT: Days to tasseling; DTS: Days to silking; and
DTP: Pollen-shedding; MLM: Mix linear model; IBS: Identity by state;
BLUP: Best linear unbiased predictor; GLM: General line model.
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