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Abstract

performed using RNA-sequencing (RNA-seq) data.

enriched in SI.

tubes growth in SI species.

Background: Tomato (Solanum lycopersicum) self-compatibility (SC) is defined as self-pollen tubes that can penetrate
their own stigma, elongate in the style and fertilize their own ovules. Self-incompatibility (SI) is defined as self-pollen
tubes that are prevented from developing in the style. To determine the influence of gene expression on style
self-pollination, a transcriptome-wide comparative analysis of SC and SI tomato unpollinated/pollinated styles was

Results: Transcriptome profiles of 24-h unpollination (UP) and self-pollination (P) styles from SC and SI tomato species
were generated using high-throughput next generation sequencing. From the comparison of SC self-pollinated and
unpollinated styles, 1341 differentially expressed genes (DEGs) were identified, of which 753 were downregulated and
588 were upregulated. From the comparison of Sl self-pollinated and unpollinated styles, 804 DEGs were identified, of
which 215 were downregulated and 589 were upregulated. Nine gene ontology (GO) terms were enriched significantly
in SC and 78 GO terms were enriched significantly in SI. A total of 105 enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were identified in SC and 80 enriched KEGG pathways were identified in SI, among which
"Cysteine and methionine metabolism pathway” and “Plant hormone signal transduction pathway” were significantly

Conclusions: This study is the first global transcriptome-wide comparative analysis of SC and SI tomato unpollinated/
pollinated styles. Advanced bioinformatic analysis of DEGs uncovered the pathways of “Cysteine and methionine
metabolism” and “Plant hormone signal transduction”, which are likely to play important roles in the control of pollen
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Background

In flowering plants, the male organ of the flower is the
stamen and the female organ of the flower is pistil. The
stamen comprises an anther generating pollen grains
and a filament supporting the anther. The pistil com-
prises the stigma, the style and the ovary. Pollination is a
process of pollen-pistil interaction during which pollen
adheres, hydrates, and germinates on the stigma, the
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pollen tube elongates on an active extracellular matrix in
the style and finally transports male gametes (sperm cells)
to the ovary, releasing it into ovules to complete
fertilization [1]. Mate selection is crucial to successful
reproduction and species survival [2]. Self-compatibility
(SC) and self-incompatibility (SI) are the two predominant
forms of mate selection. SC is defined as self-pollen that
can penetrate its own pistil and fertilize its own ovules [1];
SI is where self-pollen is prevented from developing on
the pistil [3].

Tomatoes (Solanum lycopersicum) are one of the most
important vegetable crops in the world, and possess
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genetic diversities in fruit color, size, and mating system.
In particular, the mating systems play key roles to con-
trol the reproductive habits between intra-/interspecies
in tomatoes. Generally, color-fruited species such as So-
lanum lycopersicum, S. pimpinellifolium and S. neorickii
are SC species, while some green-fruit species, such as S.
habrochaites and S. chilense, are SI species [4]. However,
the growth of pollen tubes within styles differs between
SI and SC species. Pollen growth is arrested at the mid-
dle style in SI species, but not in SC. Some models were
proposed for growth behavior of pollen tubes within
styles that are related to pollen factors such as F-box
protein and pistil factor of RNase [5,6]; however, the
mechanism controlling the growth of pollen tubes re-
mains unclear in tomatoes.

The transcriptome is the sum of all the RNA transcrip-
tion for specific cells in a certain functional condition, in-
cluding mRNAs, non-coding RNAs (ncRNA) and small
RNAs [7,8]. RNA-Seq is a deep-sequencing technology
[7,9] that has many advantages compared with Serial
Analysis of Gene Expression (SAGE) [10], Expressed
Sequence Tag (EST) [11], cDNA-amplified fragment
length polymorphism (AFLP) [12], DNA microarrays
[13] and massively parallel signature sequencing
(MPSS) [14]. RNA-seq has already been widely used for
transcriptome research in Miscanthus sinensis [15], to-
mato [16], Wolfiporia cocos [17], Hevea brasiliensis
(18], Populus tomentosa [19], Lolium rigidum [20] and
wheat [21]. It has also been applied to study pollination
in maize [22,23], and to study SC/SI in Citrus clemen-
tina [24], lemon [25] and Leymus chinensis [26]. To
understand what occurs after pollination in the styles
of tomatoes of different mating types at the transcrip-
tome level, we compared the transcription profiles dif-
ferences between tomato SI and SC species. The results
provide valuable information for understanding the
growth behavior of pollen tubes within styles.

At present, research into tomato SC and SI has mainly
concentrated on the S-RNase aspect, with no compre-
hensive transcriptome-level studies. Thus, to the best of
our knowledge, this is the first study to perform com-
parative transcriptome analyses of SC and SI tomato
unpollinated/pollinated styles using RNA-seq. The re-
sults of RNA-seq were analyzed by mapping, differential
gene expression analysis, GO and pathway analysis. The
results revealed comprehensive information concerning
SI and SC, and provided clues to the molecular mecha-
nisms of SI and SC.

Results

Summary of RNA-seq datasets

SC unpollination/self-pollination (SCUP/SCP) and SI
unpollination/self-pollination (SIUP/SIP) styles (total of 12
samples) were performed RNA-seq. The raw sequence
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data yielded approximately 3.0 gigabases (GB) per sample
and more than 96% of the raw read pairs obtained had a
quality score of > Q20. Total raw read pairs among the 12
samples ranged from 15 to 18 million. By later removing
reads containing adapters, reads containing poly-N and
low-quality reads from the raw data, high-quality read
pairs were obtained. The number of high-quality read
pairs among the 12 samples ranged from 14 to 17 million
(about 98% of the raw read pairs). Approximately 90% of
the high-quality read pairs from the SC samples and 70%
of the SI samples could be mapped to the tomato refer-
ence genome sequence. In addition, unmapped read pairs
ranged from 1 to 5 million and multiple mapped read
pairs ranged from about 0.30% to 0.50% of mapped read
pairs among the 12 samples (Table 1).

Differential gene expression profiles of unpollinated (UP)
and self-pollinated (P) styles in SC and SI, and hierarchical
cluster analysis

To quantify the expression levels of the transcripts, HT-
seq was used to count the read numbers mapped to each
gene, based on the 34,726 genes of the tomato reference
genome. These data were then normalized to reads per
kilobase of exon region in a given gene per million
mapped reads (RPKM) values, which were calculated
based on the length of the gene and read count mapped
to this gene. The RPKM values for each gene are listed
in Additional file 1. To determine differential expression
genes (DEGs) of UP and P styles in SC and SI, we
screened for DEGs between UP and P styles in SC, and
between UP and P styles in SI using the following cri-
teria: Log, fold-change (FC)>1 or Log,FC < -1 and P-
value < 0.05. We identified 1341 DEGs between UP and
P styles in SC, and 804 DEGs between UP and P styles
in SI (Additional file 2). Of these DEGs, 753 genes were
downregulated and 588 genes were upregulated after
self-pollination in SC; 215 genes were downregulated
and 589 genes were upregulated after self-pollination in
SI (Figure 1). We used hierarchical cluster analysis to
compare the DEGs between UP and P styles in SC, be-
tween UP and P styles in SI, and the similarity of the
expression patterns of the three biological replicates
(Figure 1).

GO annotation of all DEGs in SCP vs. SCUP and SIP vs.
SIUP

To identify the functions of thee DEGs, we performed
gene ontology (GO) analysis. A total of 798 DEGs of SC
comparing UP and P styles were assigned GO annota-
tions and 525 DEGs of SI comparing UP and P styles
were assigned GO annotations. GO has three ontologies:
molecular function, cellular component and biological
process. In many cases, one gene was annotated with
multiple GO terms. The GO terms of 798 DEGs of SCP
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Table 1 Statistics of raw and mapped read pairs from RNA-seq analysis of SC unpollination/self-pollination (SCUP/SCP)
and Sl unpollination/self-pollination (SIUP/SIP) styles

Sample Raw read High-quality High-quality Mapped read Mapped Unmapped Multi-mapped Multi-mapped
ID pairs read pairs Percent pairs Percent read pairs read pairs Percent
SCP1 17000933 15215933 89.50% 13817410 90.80% 1398523 65920 0.50%
SCpP2 16374027 14680679 89.66% 13485391 91.90% 1195288 59339 0.50%
SCP3 17667649 15893802 89.96% 14489321 91.20% 1404481 67431 0.50%
SCUP1 18248702 16320337 89.43% 14747316 90.40% 1573021 48233 0.30%
SCUP2 17346914 15557760 89.69% 14145517 90.90% 1412243 59543 040%
SCUP3 18986356 17021427 89.65% 15362024 90.30% 1659403 56730 0.40%
SIP1 15510971 13879490 89.48% 9431478 68.00% 4448012 32428 0.30%
SIP2 16845976 15163409 90.01% 10608995 70.00% 4554414 37544 0.40%
SIP3 16920459 15154474 89.56% 10396040 68.60% 4758434 43009 040%
SIUP1 17664280 15847493 89.71% 10885898 68.70% 4961595 29071 0.30%
SIUP2 17752773 15880716 89.45% 11004025 69.30% 4876691 31678 0.30%
SIUP3 18253204 16435260 90.04% 11232677 68.30% 5202583 31212 0.30%
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Figure 1 Clustering of differentially expressed genes in unpollination (UP) and pollination (P) styles in SC and SI.
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vs. SCUP styles were categorized into 42 main functional
groups belonging to the three categories and the GO
terms of 525 DEGs of SIP vs. SIUP styles were catego-
rized into 41 main functional groups belonging to the
three categories (Figure 2).

Comparative analysis of GO terms assigned to SCP vs.
SCUP DEGs and those assigned to SIP vs. SIUP DEGs

To better understand the distribution of gene functions at
the macro level, the GO function classification of the
DEGs in SCP vs. SCUP styles and SIP vs. SIUP styles were
analyzed using the WEGO online tool. The comparative
analysis showed that DEGs in SCP vs. SCUP styles and
SIP vs. SIUP styles shared broad similarities in the propor-
tion of genes in the three main categories, but differences
were detected in many subcategories (Figure 2). Most GO
terms of DEGs in SCP vs. SCUP styles and SIP vs. SIUP
styles were categorized into the same biological processes,
cellular components and molecular functions. Most GO
subcategories terms were detected in both of SCP vs.
SCUP styles and SIP vs. SIUP styles; however, GO
subcategory terms, including membrane-enclosed lumen,
organelle part, molecular transducer, transcription regula-
tor, biological regulation, developmental process, multicel-
lular organismal process, pigmentation, reproduction,
reproductive process and response to stimulus showed
significant (P-value < 0.05) differences in counts between
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SCP vs. SCUP styles and SIP vs. SIUP styles. These results
suggested that despite certain mechanisms of SC and SI
appear to be conserved, the regulation mechanisms appear
to be different between these two reproductive systems.

GO enrichment analysis of all DEGs in SCP vs. SCUP and
SIP vs. SIUP

Significantly enriched GO terms were identified using
singular enrichment analysis (SEA). The results showed
that nine GO terms were significant in DEGs of SCP vs.
SCUP based on a P-value < 0.05 and the false discovery
rate (FDR) <0.05 cutoffs (Figure 3A), which comprised
two, three and four terms for the cellular components,
molecular functions, biological processes categories, re-
spectively. Seventy-eight GO terms were significant in
DEGs of SIP vs. SIUP based on a P-value < 0.05 and the
FDR < 0.05 cutoffs (Figure 3B, only 9), which comprised
eight and 70 terms for the molecular functions and bio-
logical processes categories, respectively. The detailed
results of the SCP vs. SCUP and SIP vs. SIUP Go enrich-
ment analysis are presented in Additional file 3.

KEGG pathway mapping of all DEGs in SCP vs. SCUP and
SIP vs. SIUP

To further investigate the influence of the DEGs on
pathways, statistical pathway enrichment analysis of
DEGs in SCP vs. SCUP and SIP vs. SIUP were performed

100

798

B SCPvsSCUPGO.txt M SIPvsSIUPGO.txt

Percent of genes

0.1
0.01
p = 1 o A pe
25858 TE2525558 9
0305352388885 S58
~0 0 SSE 0 S ISTT
S90S EITLE"SRSES
) Oo0x O L0Q %
OSALSFTOI0 SN S 08
PGS P §E o
S%52 & @ So
3558 2 SE
o582 O Sy
S3%g a3
() Q9
cgs8 1]
o 5
-~ A
XOQg
oI g
&qo
&

525

[3)]
Number of genes

Cellular Component Molecular Function

Biological Process

Figure 2 GO assignment and comparison of all DEGs in SCP vs. SCUP and SIP vs. SIUP. All DEGs in SCP vs. SCUP and SIP vs. SIUP were annotated
in three main categories: biological processes, cellular components and molecular functions. The left and right hand y-axes indicate the percentage
and the number of annotated genes in each category, respectively.
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based on KEGG database, using Fisher’s exact test. The
DEGs of SCP vs. SCUP were enriched in 105 KEGG meta-
bolic pathways and the DEGs of SIP vs. SIUP were enriched
in 80 KEGG metabolic pathways (Additional file 4). The
top ten KEGG metabolic pathways and three P-value < 0.05
metabolic pathways of the DEGs in SCP vs. SCUP are
shown in Figure 4A. Among these 105 pathways of SCP vs.
SCUP, those containing the greatest numbers of DEGs
transcripts were “Metabolic pathways” (containing 111
DEGs) and “Biosynthesis of secondary metabolites”
(containing 75 DEGs). Other GO terms associated with
higher numbers of DEGs were “Starch and sucrose metab-
olism” (16 DEGs), “Plant hormone signal transduction”
(16 DEGs), “Biosynthesis of amino acids” (15 DEGs),
“Carbon metabolism” (15 DEGs), “Plant-pathogen inter-
action” (12 DEGs), “Phenylpropanoid biosynthesis” (11
DEGs), “Glycolysis/Gluconeogenesis” (nine DEGs), and
“Amino sugar and nucleotide sugar metabolism” (eight

DEGs); The pathways of “Biosynthesis of secondary
metabolites”, “Biotin metabolism”, “Brassinosteroid bio-
synthesis” and “Degradation of aromatic compounds” had
P-values < 0.05 (Figure 4A). For SIP vs. SIUP, of 13 KEGG
metabolic pathways were identified. The top 11 KEGG
metabolic pathways and two P-value < 0.05 metabolic path-
ways of DEGs in SIP vs. SIUP are shown in Figure 4B.
Among the 80 pathways of SIP vs. SIUP, those containing
the greatest numbers of DEGs were “Metabolic pathways”
(69 DEGs), “Biosynthesis of secondary metabolites” (40
DEGs), “Plant hormone signal transduction” (22 DEGs),
“Plant-pathogen interaction” (10 DEGs), “Starch and sucrose
metabolism” (9 DEGs), “Biosynthesis of amino acids” (nine
DEGs), “Phenylpropanoid biosynthesis” (nine DEGs), “Car-
bon metabolism” (eight DEGs), “Pentose and glucuronate
interconversions” (eight DEGs), “Phenylalanine metabolism”
(seven DEGs). The pathways of “Cysteine and methionine

metabolism”, “ Pentose

” o«

Plant hormone signal transduction”,
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Figure 4 Pathway enrichment analysis of DEGs in SCP vs. SCUP and SIP vs. SIUP based on KEGG. A. Enriched pathways in SCP vs. SCUP;
B. Enriched pathways in SIP vs. SIUP.
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and glucuronate interconversions”, “Flavonoid biosynthesis”
and “Stilbenoid, diarylheptanoid and gingerol biosynthesis”
all had P-values < 0.05 (Figure 4B). In addition, the pathways
of “Cysteine and methionine metabolism” and “Plant hor-
mone signal transduction” were significant pathways in
DEGs of SIP vs. SIUD, based on a P-value<0.05 and the
FDR < 0.05 cutoffs (Figure 4B). The detailed results of the
SIP vs. SIUP significant pathways enrichment analysis are
presented in Figures 5 and 6.

“Cysteine and methionine metabolism” is the ethylene
biosynthesis pathway, which was significantly enriched
in the SIP vs. SIUP analysis. DEGs were enriched in the
step of O-Acetyl-L-serine conversion to L-Cysteine, L-
Homocysteine conversion to L-Methionine, L-Methionine
conversion to S-adenosyl-L-methionine (AdoMet), AdoMet
conversion to l-aminocyclopropane-1-carboxylate (ACC)
and ACC production ethylene (Figure 5). L-Methionine
conversion to AdoMet was the first step of ethylene biosyn-
thesis, AdoMet conversion to ACC was the rate-limiting
step in ethylene biosynthesis and ACC production ethylene
was the last steps for ethylene biosynthesis. Plant hormone

signal transduction is very important to hormone-instigated
biochemical changes during plant growth, development,
and environmental information processing pathways, which
were also significantly enriched in the SIP vs. SIUP com-
parison. DEGs were also enriched in Auxin signal transduc-
tion, Abscisic acid (ABA) signal transduction, Ethylene
signal transduction, Jasmonic acid (JA) signal transduction
and Salicylic acid (SA) signal transduction (Figure 6).
Significant pathways enrichment analysis showed that
cysteine and methionine metabolism and plant hormone
signal transduction were the most important pathways in
SIP vs. SIUP comparison, and plant hormone signal trans-
duction was the key biological event. All the plant hor-
mone signaling pathways pointed to it and the significant
pathway of “Cysteine and methionine metabolism” also
(Figure 7). This evidence indicated that plant hormone
signal transduction plays important roles in tomato SI.

Discussion
RNA-seq is a powerful tool that can provide a global over-
view of gene expression at the transcriptome level. With
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Figure 5 Expression features of cysteine and methionine metabolism pathway genes. Red boxes represent tomato genes that were identified as
differentially expressed in SI compared with pollinated and unpollinated styles. Light green boxes represent genes that have been previously
identified in tomatoes. White boxes represent genes that belong to the KEGG pathway, but have not been identified in tomatoes until now.

reductions in sequencing costs and the advance of
technologies, RNA-seq will become more accessible to
researchers to identify and track the expression changes
of all genes [7]. The present study identified 1341 sig-
nificant (P-value < 0.05) DEGs after comparing UP and
P styles in SC and 804 significant (P-value < 0.05) DEGs
in the comparison of UP and P styles in SI, using RNA-
seq analysis. The total number of gene changes demon-
strated that SC self-pollination and SI self-pollination

are complex processes. This finding is consistent with
other plant pollination studies. For example, 1025 dif-
ferentially expressed genes were potentially involved in
the pollination response and SI mechanisms in sheep-
grass [26]. In a comparison of pollinated and unpolli-
nated stigmas with styles, 4785 DEGs were identified in
SI lemon [25]. These data demonstrate the complex na-
ture of the transcriptome changes in SC self-pollination
and SI self-pollination.
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Pollination shares striking similarities with fungal in-
fection in terms of biological responses and processes
that result in cell death [27,28]. Our transcriptome GO
enrichment analysis identified several significant GO
terms involved in pathogen invasion responses, such as
defense response to fungus, response to fungus, immune
response, and immune system process in the SCP wvs.
SCUP comparison. This result is consistent with other
plant pollination studies, such as in Arabidopsis [29,30]
and rice [31]. However, GO terms involved in stimuli
and hormones were the most important of the 78 signifi-
cant GO terms in the SIP vs. SIUP comparison.

Pollination leads to senescence of petunia corollas by
inducing many hormonal, physiological, and molecular
changes [32]. Ethylene is a gaseous plant hormone with
a wide range of effects on plant growth and development
[33]. Ethylene is synthesized from L-Methionine via the
intermediates AdoMet and ACC (Figure 5) [34-36].
AdoMet is made from L-Methionine by the enzyme S-
adenosylmethionine synthase (SAM), representing the
first step of ethylene biosynthesis (Figure 5). 1-
aminocyclopropane-1-carboxylate synthase (ACS) gene
family members and 1-aminocyclopropane-1-carboxylate
oxidase (ACO) gene family members are two important
enzymes for ethylene biosynthesis. ACS catalyzes the
conversion of AdoMet to ACC, which is the rate-
limiting step in ethylene biosynthesis. ACO then cata-
lyzes the conversion of ACC to ethylene (Figure 5) [37].
After SI self-pollination, one SAM gene (S-adenosyl-
methionine synthase 2-like) (Solyc10g083970), five ACS
gene family members (Solyc00g095760, Solyc08g081550,
Solyc08g008100, Solyc08g081540, Solyc00g095860) and
four ACO gene family members (Solyc02g036350,

Solyc07g026650, Solyc07g049530, Solyc07g049550) were
significantly upregulated, which indicated that SI self-
pollination is associated with results in significant upreg-
ulation of ethylene biosynthesis related genes and ethyl-
ene production. It has been reported that ethylene
biosynthesis is induced by pollination in petunias [38].
After SC self-pollination, although the pathway of “Cyst-
eine and methionine metabolism” was not a significant
enrichment pathway in the SCP vs. SCP comparison,
two ACS gene family members (Solyc08g081540,
Solyc00g095860) and one ACO gene family member
(Solyc07g049530) were significantly upregulated, which
indicated that SC self-pollination results in some upreg-
ulation of ethylene biosynthesis of partly related genes.
The above results suggest that SI self-pollination induces
more ethylene production than SC self-pollination.

Plant hormone signal transduction is very important
to hormone triggered biochemical changes [39]. Plant
hormone signal transduction plays an important role in
pollination of petunias pollination; for example, RNA-
seq revealed that plant hormone signal transduction-
related KEGG pathways were enriched in petunia
corollas when comparing pollinated and unpollinated
samples [32]. After SI self-pollination, plant hormone
signal transduction-related KEGG pathways were signifi-
cantly enriched in the SIP vs. SIUP comparison, but not
after SC self-pollination (Figure 6). This result indicated
that plant hormone signal transduction might play an im-
portant role in tomato SI. Plants recognize and transduce
the ethylene signal via ethylene receptors (ETR) [40] in
the ethylene signal transduction pathway (Figure 6) [41].
We identified two ethylene receptors, LeETR6 (Solyc
06g053710) and tETR (Solyc09g089610), which were
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significantly upregulated in the SIP vs. SIUP comparison,
both of which mapped to the plant hormone signal trans-
duction KEGG pathway. LeETR2 (Solyc07g056580) was
the only ethylene receptor identified from the SCP vs.
SCUP comparison, and significantly downregulated in P
styles compared with UP styles. This protein also mapped
to the plant hormone signal transduction KEGG pathway,
which was not a significantly enriched pathway in the SCP
vs. SCUP comparison. The above results indicated that SI
self-pollination not only involves the induction of ethylene
production, but also enhanced the perception ethylene. Al-
though SC self-pollination may involve some enhancement
of ethylene production, the ability to perceive ethylene was
weakened by the significant downregulation of LeETR2.
Plant responses to ethylene initiates with ethylene binding
to ETRs and terminates in a transcription cascade of
plant-specific transcription factors families, especially
the ethylene-insensitive protein 3 (EIN3/EIL) and
ethylene-responsive transcription factor (ERF). EIN3
protein is a key transcription factor for mediating the
expression of ethylene-regulated genes and morpho-
logical responses. EIN3 interacts physically with the
Ein3-binding f-box proteinl/2 (EBF1/EBF2) and is
ultimately and quickly degraded through a ubiquitin/
proteasome pathway mediated by the SCF complex,
which comprises a RING-box protein 1 (RBX1), Cullin
1 (Cull), S-phase kinase-associated protein 1 (Skp1), F-
box protein (F-box) [42,43]. We identified one EBF1/2
(Solyc07g008250) from the SC and two EBF1/2
(Solyc07g008250, Solyc12g009560) from the SI, both of
which were significantly upregulated in P compared
with UP styles. In addition, we also identified one Skpl
(Solyc01g111640) and one Cull (Solyc01g067120) from
SI, which were significantly upregulated in P compared
with UP styles. This result indicated that key transcrip-
tion factor EIN3 was negatively regulated by targeting
EIN3 it for degradation through the ubiquitin/prote-
asome pathway after SI self-pollination, but not in SC
pollination.

A previous study demonstrated that auxin was signifi-
cantly increased after compatible pollination and ethylene
was strongly increased after incompatible pollination
[44,46]. The last step of indole-3-acetic acid (IAA) biosyn-
thesis is performed by aldehyde dehydrogenase. We identi-
fied one aldehyde dehydrogenase (aldehyde dehydrogenase
family 2 member B4, Solyc08g068190) from SC that was
significantly upregulated in P compared with UP styles and
one aldehyde dehydrogenase (aldehyde dehydrogenase
family 3 member H1-like, Solyc06g060250) from SI that
was significantly downregulated in P compared with UP
styles. This result is consistent with the results of the previ-
ous study. Auxin is likely to be directly or indirectly in-
volved in pollen-pistil recognition and pollen tube
elongation in Nicotiana [45] and might have an important
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role in the SI response in plants such as Theobroma cacao
[46], Petunia hybrida [47] and Olea europaea [48]. Auxins
regulate plant growth and development by a complex sig-
nal transduction network [49], which was included in the
significantly enriched KEGG pathways of plant hor-
mone signal transduction KEGG in the SIP vs. SIUP
comparison. Auxin influx carrier (AUX1 LAX family)
is a polar auxin transporter in cells that is involved in
attaining a hormone maximum (Figure 6) [50]. After
SC self-pollination, LAX2 protein (auxin influx carrier,
AUX1 LAX family) (Solyc01g111310) was significantly
downregulated. Auxins alter three major gene families:
auxin/indole-3-acetic acid (Aux/IAA), GH3 and small
auxin-up RNA (SAUR) to direct plant growth and de-
velopment (Figure 6) [49,51]. Aux/IAA gene families:
IAA1 (Solyc09g083280), IAA2 (Solyc06g084070), IAA3
(Solyc09g065850), IAA19 (Solyc03g120380), I1AA22
(Solyc06g008580), IAA26 (Solyc03gl121060), IAA35
(Solyc07Vg008020) and IAA36 (Solyc06g066020) were
significantly upregulated in the SIP vs. SIUP comparison,
and only TAA2 (Solyc06g084070), IAA29 (Solyc08g021820)
and TAA 35 (Solyc07g008020) were significantly upregu-
lated in the SCP vs. SCUP comparison. For the GH3 gene
families, only one probable indole-3-acetic acid-amido syn-
thetase GH3.1-like gene (Solyc02g092820) was signifi-
cantly upregulated in the SCP vs. SCUP comparison.
For the SAUR gene families, small auxin-up protein 58
(Solyc06g053260), auxin-induced protein 10A5-like
(Solyc03g033590), uncharacterized LOC101249064
(Solyc03g124020) and uncharacterized LOC101254455
(Solyc12g009280) were significantly upregulated, and
auxin-induced protein 15A-like (Solyc01g110570) and
auxin-induced protein 10A5-like (Solyc01g110560)
were significantly downregulated in the SIP vs. SIUP
comparison. Only auxin-induced protein 15A-like
(Solyc09g009980) and indole-3-acetic acid-induced
protein ARG7-like (Solyc04g081250) were significantly
upregulated in the SCP vs. SCUP comparison. These
results indicated that although auxin was strongly in-
creased after compatible pollination, because the auxin
influx carrier (AUX1 LAX family) (Solyc01g111310) was
significantly downregulated, fewer auxin-responsive genes
showed altered expressions. During SC pollination, the
auxin influx carrier (AUX1 LAX family) was not affected,
resulting in many auxin-responsive genes showing altered
expression after incompatible pollination. A previous
study indicated that auxin influx carriers (AUX1 LAX
family) were involved in auxin-ethylene interactions in
Arabidopsis thaliana [52]; however, whether auxin influx
carriers (AUX1 LAX family) are also involved in auxin-
ethylene interactions in tomato SI is unknown.

Ethylene and JA, as well as ABA and auxin, have direct
or indirect interactions [32], but the roles of JA and ABA
in tomato pollination, especially in SI self-pollination, were
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unknown. ABA is a phytohormone that acts in seed dor-
mancy, plant development and environmental stress. The
carotenoid biosynthesis pathway is an ABA biosynthesis
pathway (Figure 6) that was enriched in SC and SL
Endogenous ABA levels are regulated by both ABA bio-
synthesis and ABA catabolism: xanthoxin dehydrogenase
is a key enzyme for ABA biosynthesis and ABA 8'-hydrox-
ylase is a key enzyme for ABA catabolism [53,54].
Xanthoxin dehydrogenase (Solyc12g056600) was signifi-
cantly upregulated in SC not in SI and ABA 8’-hydroxy-
lase 1-like (CYP707A2, Solyc08g005610) was significantly
upregulated in SI but not in SC, which indicated that en-
dogenous ABA levels increased in SC and decreased in SI
styles during pollination. Pyrabactin resistance/pyrabactin
resistance-like (PYR/PYL) family is an ABA receptor that
is very important to ABA recognition and signaling
[55,56]. We identified two genes of the PYR/PYL family:
ABA receptor PYL8-like (Solyc03g007310) from SI and
ABA receptor PYL6-like (Solyc06g050500) from SC.
PYL8-like was significantly downregulated in SI and
PYL6-like was significantly upregulated in SC styles during
pollination, which indicated that the ability to perceive
ABA was weakened in SI and enhance in SC. A previous
study showed that PYR/PYLs are negative regulatory re-
ceptors, whereby ABA binds to PYR/PYLs, which in turn
binds to type 2C protein phosphatases (PP2Cs) to inhibit
PP2Cs. SNF1-related protein kinase subfamily 2 (SnRK2)
is located downstream of PP2Cs and is negatively regu-
lated by PP2Cs (Figure 6). SnRK2 (serine/threonine-pro-
tein kinase SAPK3-like, Solyc08g077780) was upregulated
in SI (in which PP2Cs are not inhibited) and an SnRK2
(serine/threonine-protein kinase SAPK7-like, Solyc05g05
6550) was downregulated in SC, wherePP2Cs are inhib-
ited. In addition, SnRK2s can phosphorylate b-ZIP tran-
scription factors, which bind to the ABA-responsive
element to activate ABA-responsive genes. Phosphorylated
b-ZIP transcription factors are important to active ABA-
responsive genes [57]. One b-ZIP transcription factor
(Solyc10g076920) was significantly downregulated in the
SCP vs. SCUP comparison, but not in the SIP vs. SIUP
comparison. This indicated that ABA might have important
regulatory roles in SI. Jasmonates are phytohormones that
are essential for plant development and survival, and can
induce jasmonate ZIM-domain proteins (JAZs) to be de-
graded through the ubiquitin/proteasome pathway, medi-
ated by the SCF“°"™ complex. In addition, JAZs negatively
regulate MYC2, which is a key jasmonate responses tran-
scriptional activator [58]. We identified a JAZ (jasmonate
ZIM-domain protein 1, Solyc12g009220) and a transcrip-
tion factor MYC2 (Solyc08g076930), both of which were
both significantly upregulated in the SIP vs. SIUP compari-
son. The TGA family comprises key transcription factors of
the salicylic acid (SA)-mediated signal transduction path-
way [59]. After SI self-pollination, TGA family
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transcription factor (Solyc10g080410) was significantly
upregulated.

Conclusions

This is the first global transcriptome-wide comparative
analysis of styles from SC and SI tomatoes using a high-
throughput RNA-seq. The enriched GO term analysis of
the identified DEGs showed that nine GO terms were
significantly enriched in the SCP vs. SCUP comparison
and 78 GO terms were significantly enriched in the SIP
vs. SIUP comparison. The ethylene biosynthesis pathway
of the cysteine and methionine metabolism pathway and
the plant hormone signal transduction pathway play an
important role in tomato SI. Further GO and KEGG
analyses showed that SI self-pollination induced more
ethylene production and catabolism of ABA, and SC
self-pollination induced more auxin production and
ABA biosynthesis. Moreover, the phytohormones ethyl-
ene, auxin and ABA play important roles by plant hor-
mone signal transduction in tomato SI.

Methods

Plant materials

Tomato seeds of S. chilense (LA0130, SI) and S. pimpinel-
lifolium (LA1585, SC) were obtained from the Charles
Rick Tomato Genetics Resource Center (UC, Davis http://
tgrc.ucdavis.edu/index.aspx). The seeds were germinated
in peat pellets and seedlings with three to four leaves were
grown on medium containing the perlite: peat (1:1) under
a thermoperiod of 26/20°C (day/night) in a greenhouse.
Plants were supplied with a commercial fertilizer every
week. During flowering, 24 h UP and P styles (containing
stigmas) (Additional file 5) were collected from S. chilense
(LA0130) (SIUP/SIP) and S. pimpinellifolium (LA1585)
(SCUP/SCP), respectively, and immediately frozen in li-
quid nitrogen and stored at —-80°C for RNA extraction.
Three biological replicates of each sample were collected
and used for RNA extraction.

RNA extraction and deep sequencing

Total RNA was extracted from each sample using an
RNAprep pure Plant Kit (Tiangen, Beijing, China), accord-
ing to the manufacturer’s protocol. The RNA concentra-
tion of each sample was measured using a NanoDrop
2000 (Thermo Scientific, Waltham, MA, USA). The
RNA quality was assessed using an Agilent2200 (Agilent
Technologies, Santa Clara, CA, USA).

The sequencing library for each RNA sample was pre-
pared using a TruseqTM RNA sample prep Kit (Illumina,
San Diego, CA, USA), following the manufacturer’s proto-
col. Briefly, mRNA was purified using poly-T oligo-
attached magnetic beads (Invitrogen,Carlsbad, CA, USA)
from 5 pg total RNA. The mRNA was fragmented, and
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the RNA fragments were reverse transcribed and amp-
lified to double-stranded ¢DNA. Index adapters were
then ligated to the cDNA according to the protocol of
the TruseqTM RNA sample prep Kit (Illumina). The li-
brary was quantified using a TBS-380 mini-fluorometer
(Picogreen, Cohasset, MA, USA). The clustering of the
index-coded samples was performed on a cBot Cluster
Generation System, using a TruSeq PE Cluster Kit v3-
cBot-HS (Illumina), according to the manufacturer’s
instructions. After cluster generation, the library prepara-
tions were sequenced on an Illumina Hiseq 2500 platform
and a sequence length of 2*101 bp paired-end reads were
generated.

Filtering raw reads and mapping

The raw reads were pass-filtered using the Trimmomatic
tool [60] and then used for mapping. The reference tomato
genome and gene model annotation files were downloaded
from the genome website (http://solgenomics.net/) directly.
The paired-end clean reads were aligned to the reference
tomato genome using Tophat [61] and the mapped reads
were counted with using HT-seq [62].

Identification of DEGs

Gene expression levels were estimated as RPKM [63].
Differential expression analysis of SCUP/SCP groups
and SIUP/SIP groups was performed using the DESeq R
package (1.10.1), which provides statistical routines for
determining differential expression in digital gene ex-
pression data using a model based on the negative bino-
mial distribution. After statistical analysis, the DEGs
were identified using significance analysis by t-tests, with
a P-value < 0.05 and at least two-fold changes (either up-
or downregulation) being considered significant.

GO analysis

The blast2go [64] program was used to obtain GO annota-
tions for all identified genes. GO functional classification
was performed using the WEGO online tool [65] to gain
an understanding of the distribution of gene functions at
the macro level. GO is the key functional classification of
NCBI, which was applied to analyze the functions of the
DEGs [66,67]. GO enrichment analysis of DEGs was im-
plemented using SEA [68], in which Fisher’s exact test and
a x* test were used to classify the GO categories; the FDR
was calculated to correct the P-value [69,70]. P-values for
the GOs of all the DEGs were computed. The significant
GO terms were defined as having a P-value < 0.05 and an
FDR < 0.05.

Pathway analysis
KEGG is a database resource for understanding high-level
functions and utilities of biological systems, such as cells,
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organisms and ecosystems, from molecular-level informa-
tion, especially large-scale molecular datasets generated by
genome sequencing and other high-through put experi-
mental technologies (http://www.genome.jp/kegg/). KEGG
pathway analysis was used to identify the significant path-
ways involving the DCEGs [71-73]. Fisher’s exact test
and a x* test were used to identify significant pathways
(P-value < 0.05 and FDR < 0.05) [74-76]. We used the
KEGG Orthology Based Annotation System (KOBAS)
software to test the statistical enrichment of DEGs in
KEGG pathways.

Availability of supporting data

The data sets supporting the results of this article are avail-
able in the Gene Expression Omnibus repository under ac-
cession no GSE67654 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE67654) [77].

Additional files

Additional file 1: Table S1. RNA-seq of data of all counts for SI and SC
compared with self-pollinated and unpollinated styles.

Additional file 2: Table S2. List of differentially expressed genes for SI
and SC compared with self-pollinated and unpollinated styles.

Additional file 3: Table S3. GO analysis of differentially expressed genes
for Sl and SC compared with self-pollinated and unpollinated styles.
Additional file 4: Table S4. Pathway analysis differentially expressed
genes for Sl and SC compared with self-pollinated and unpollinated styles.

Additional file 5: Figure S1. The structure of the tomato pistil. Red
lines show the cutting position of a style containing a stigma.
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