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Abstract 

Background  In the cerebral cortex, disinhibited activity is characterized by propagating waves that spread across 
neural tissue. In this pathological state, a widely reported form of activity are spiral waves that travel in a circular 
pattern around a fixed spatial locus termed the center of mass. Spiral waves exhibit stereotypical activity and involve 
broad patterns of co-fluctuations, suggesting that they may be of lower complexity than healthy activity.

Results  To evaluate this hypothesis, we performed dense multi-electrode recordings of cortical networks where 
disinhibition was induced by perfusing a pro-epileptiform solution containing 4-Aminopyridine as well as increased 
potassium and decreased magnesium. Spiral waves were identified based on a spatially delimited center of mass and 
a broad distribution of instantaneous phases across electrodes. Individual waves were decomposed into “snapshots” 
that captured instantaneous neural activation across the entire network. The complexity of these snapshots was 
examined using a measure termed the participation ratio. Contrary to our expectations, an eigenspectrum analysis 
of these snapshots revealed a broad distribution of eigenvalues and an increase in complexity compared to baseline 
networks. A deep generative adversarial network was trained to generate novel exemplars of snapshots that closely 
captured cortical spiral waves. These synthetic waves replicated key features of experimental data including a tight 
center of mass, a broad eigenvalue distribution, spatially-dependent correlations, and a high complexity. By adjusting 
the input to the model, new samples were generated that deviated in systematic ways from the experimental data, 
thus allowing the exploration of a broad range of states from healthy to pathologically disinhibited neural networks.

Conclusions  Together, results show that the complexity of population activity serves as a marker along a continuum 
from healthy to disinhibited brain states. The proposed generative adversarial network opens avenues for replicat‑
ing the dynamics of cortical seizures and accelerating the design of optimal neurostimulation aimed at suppressing 
pathological brain activity.
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Background
In disinhibited cortical circuits, neural activity is char-
acterized by patterns that propagate across widespread 
networks [1]. These patterns take on different forms, 
including planar waves traveling in a single direction, sad-
dle waves emerging from the interaction between multi-
ple sites of propagation, and spiral waves that evolve in a 
circular motion around a fixed spatial locus [2–8]. These 
spiral waves are found during interictal epileptic activity 
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[9–12] and are reported in cortical networks both in vitro 
[1] and in  vivo [13]. Their origin and characteristics, 
however, remain to be fully elucidated, as they constitute 
rare events relative to background activity and cannot be 
captured by simple computational models including clas-
sic balanced excitation/inhibition networks [14].

A promising avenue to describe patterns of activity is 
to examine their complexity, indicative of the number of 
distinct factors needed to capture neural fluctuations. 
In many instances, the activity of large networks can be 
closely approximated using only a small number of fac-
tors that capture much of the variance across neurons [2]. 
This low complexity suggests that a few broad features, 
such as oscillations or shared patterns of fluctuation, may 
explain most population-level activity, thus greatly sim-
plifying descriptions of neural dynamics and providing a 
strong guidance to theories of brain function [15–17].

While alterations in neural complexity are expected in 
disinhibited brain networks [18, 19], diverging lines of 
evidence point to either an increase or decrease in com-
plexity, thus leaving unresolved the relation between 
complexity and pathological brain states. Previous 
work suggests that pathologically disinhibited states are 
accompanied by a decrease in complexity given that they 
exhibit highly stereotypical forms of activity. More specif-
ically, disinhibiting cortical neurons by blocking GABAA 
transmission increases synchronization and reduces the 
complexity of oscillations [18, 19]. Other work, however, 
suggests that disinhibited waves contribute to an increase 
in neural complexity as they form intricate patterns that 
extend both in time and across neuronal tissue [14, 20, 
21]. Examining the complexity of spiral waves is key to 
disambiguating these viewpoints.

In this work, we studied cortical population activity in 
disinhibited slices recorded with a high-density multi-
electrode array (HD-MEA) [22]. Disinhibited neural 
activity exhibited spiral waves whose amplitude was con-
centrated in the delta frequency range (1–4  Hz). These 
waves were analyzed by extracting “snapshots” that cap-
tured the instantaneous neural activation across whole 
cortical networks. The complexity of these snapshots was 
analyzed using a measure termed the participation ratio 
(PR) [23–26].

To capture spiral waves and account for their com-
plexity, a deep generative adversarial network (GAN) 
was trained to generate snapshots of activity that 
matched those obtained experimentally [27]. After 
training, the GAN model produced synthetic snapshots 
that closely captured the experimental data in terms 
of their high complexity, tight center of mass, and spa-
tially-dependent correlations. Going further, the model 
was employed to generate a range of new samples that 
deviated from the data in systematic ways and covered 

a broad spectrum of conditions where complexity 
ranged from pathological to healthy states.

Taken together, results suggest that the complex-
ity of population activity provides a marker of neural 
fluctuations along a continuum of states from healthy 
to pathologically disinhibited. Furthermore, deep 
GAN networks offer a promising avenue to study the 
dynamic control of disinhibited neural activity using 
brain-computer interfaces with implications for dis-
eases that impact brain networks.

Results
Spiral waves
Activity from coronal prefrontal cortex (PFC) was 
recorded in acute slices (Fig.  1A) using a HD-MEA 
after the application of a pro-epileptiform (PE) solu-
tion that included 4-Aminopyridine (4-AP) as well as 
reduced extracellular magnesium (Mg2+) and increased 
extracellular potassium (K+). A total of 219 spiral waves 
were identified across three slices following a set of cri-
teria (see “Methods”). These waves were broadly dis-
tributed across electrodes, generating slow fluctuations 
in activity across recording sites (Fig.  1B). The spati-
otemporal evolution of these waves displayed a rotating 
pattern characteristic of a spiral (Fig.  1C and Addi-
tional file 1). While spiral waves were not the only form 
of activity present in these recordings, they formed 
a prominent and repeatable pattern over time. Spiral 
waves were detected at an average rate of 7.3 per min-
ute and their mean voltage amplitude was concentrated 
in delta frequencies, with lower amplitude found in 
higher bands (Fig. 1D). The duration of spiral waves was 
estimated by counting the number of consecutive snap-
shots (1 ms windows of instantaneous activity) where a 
wave was identified. The average duration of waves was 
2.52 s with standard deviation (SD) of 1.00 s, with both 
shorter and longer waves present (Fig. 1E). While these 
values are inherently imprecise due to the manual iden-
tification of time windows surrounding spiral waves, 
they provide an indication that these waves represent 
slow-evolving events whose timecourse largely exceeds 
synaptic time constants [28].

By comparison, related work has reported spirals with 
relatively short durations (< 1  s) [1, 13]. These events, 
however, were primarily limited to a single cycle, whereas 
manual inspection of spirals in our data revealed that 
approximately one third of events had more than a sin-
gle cycle (one cycle: 63.79%; two cycles: 31.03%; three or 
more cycles: 3.45% of all spiral waves). The presence of 
two or more cycles prolonged the duration of spiral event 
compared with previous accounts and is consistent with 
in vivo cortical waves [3].
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Center of mass
Next, the center of mass of each spiral wave was com-
puted by averaging together the central row and column 
of individual snapshots (“Methods”, Eqs. 1–2). The center 
of mass was highly consistent across repeated waves of 
the same slice (Fig. 2A). Variability across waves was pri-
marily delimited to the inter-electrode spacing (20  μm) 
(Fig.  2A, inset). An example of average voltage activity 
during a single wave is shown in Fig. 2B. Activity across 
the network arose in “domains” where groups of neurons 
were activated over delimited regions of space. Further-
more, voltage activation near the center of mass was 
lower than surrounding regions [29].

Direction of rotation
Each spiral wave was assigned a clockwise or counter-
clockwise direction of rotation by visual inspection. 
Overall, 161 waves rotated clockwise and 58 waves coun-
ter-clockwise. Because spiral waves may arise by planar 
waves colliding into each other [1], it is possible that the 
direction of rotation depends upon the exact arrival times 
of these simpler waves, which is subject to variability over 
time. Therefore, we speculated that the angle of rotation 
may change over the course of a given recording. Con-
sistent with this idea, the direction of rotation alternated 
across individual waves in two of the slices (Fig. 2C, slices 
#2 and #3). In these recordings, waves repeated the same 

rotation several times before switching direction [13]. By 
comparison, another slice yielded rotational directions 
that remained mostly consistent over the entire recording 
(Fig. 2C, slice #1). Thus, cortical networks could exhibit 
spiral waves with both alternating directions of rotation 
and waves with more stable patterns characterized by a 
preferred direction.

Instantaneous phase
Another key feature of spiral waves is the broad distribu-
tion of instantaneous phases across individual electrodes 
[1]. Instantaneous phases were computed by applying a 
Hilbert transform to delta band-filtered snapshots of 
activity at a resolution of 1  ms. An example of instan-
taneous phase obtained at a given time point (Fig.  3A) 
revealed the presence of a phase gradient radiating from 
the center of mass of the spiral wave (Fig. 3B). Across all 
waves, the distribution of instantaneous phases exhib-
ited a broad range of values (Fig.  3C). Thus, snapshots 
of activity displayed a wide distribution of phases in line 
with a well-documented signature of spiral waves.

Going further, phase maps were employed to generate 
vector fields using Matlab’s quiver function. These vec-
tor fields indicate the speed and direction of propagat-
ing activity across cortical tissue and were employed to 

Fig. 1  Rotating spiral waves in disinhibited cortical activity. A Rodent PFC acute slice recorded with a HD-MEA. B Voltage traces across individual 
channels. Colors correspond to spatial locations of electrodes. C Example of spiral wave observed after bath application of PE solution. See movie 
in Additional file 1. D Mean band-filtered voltage across delta (δ, 0–4 Hz), theta (θ, 4–7 Hz), alpha (α, 7–12 Hz), beta (β, 12–30 Hz), and gamma (γ, 
30–80 Hz) frequencies. E Distribution of spiral wave durations
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Fig. 2  Spatiotemporal attributes of spiral waves. A Mean center of mass of individual spiral waves across recordings. Inset shows a zoom of center 
of mass for spiral waves of a single slice (darker color) and individual time frames (“snapshots”) of each wave (lighter color). B Solid black lines 
are voltage traces at individual electrodes on the array. The center of mass is colored according to slice #2 in panel A. C Rotational direction and 
duration of spiral waves across three in vitro cortical slices

Fig. 3  Instantaneous phase of spiral waves. A Spatial distribution of instantaneous phases during a rotating wave. Black arrow: direction of vector 
field used in panel B. B Instantaneous phase along the vector field in A. C Global distribution of phases across all spiral waves. D Quiver plot 
showing vector fields of an individual spiral wave calculated between consecutive phase maps separated by 10 ms. Solid black circle: center of mass
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validate the presence of spiral waves in segments of neu-
ral data [7]. Vector fields are shown by arrows that span 
a range of orientations representing the flow of spiral 
waves around a fixed center of mass (Fig. 3D).

Distance‑dependent correlations
Next, network interactions during spiral waves were 
examined by computing the Pearson correlation between 
voltages at all pairs of electrodes. Individual correlation 
matrices were obtained for each spiral of a given net-
work, then averaged to create a mean correlation matrix 
(Fig.  4A). A widely reported feature of correlations in 
cortex is their spatial dependence, whereby neighboring 
cells are on average more strongly correlated than dis-
tant pairs [30]. This spatial ordering is also observed in 
synaptic connectivity where the probability of a mono-
synaptic contact falls off exponentially with physical 
distance between neurons [31–33]. Therefore, we rea-
soned that correlations should decrease with physical 
distance between pairs of electrodes. Consistent with 
this prediction, we found a lower mean correlation 
with increased distance on the array (Pearson correla-
tion test, R2 = 0.8789, p = 2.5193e−07) (Fig.  4B). This 
analysis was repeated by focusing on the correlation 
between the center of mass and surrounding points on 
the array (Fig.  4C). As expected, correlations decreased 
with increased physical distance from the center of mass 

(R2 = 0.3, p = 4.5221e−241) (Fig. 4D). Thus, spiral waves 
displayed distance-dependent interactions consistent 
with prior findings on functional and structural cortical 
connectivity.

Wave complexity
The complexity of spiral waves was estimated by first 
applying an eigenspectrum decomposition to popula-
tion activity, then computing the PR based on the result-
ing eigenvalues (see “Methods”). Eigenvalues followed 
a skewed distribution with a broad right tail [25, 34, 35] 
(Fig.  5A). To evaluate whether complexity was altered 
in disinhibited cortex, the mean PR of slices was com-
pared before and after application of the PE solution. 
An equivalent number of snapshots was selected across 
both conditions (Fig.  5B). The PR across all snapshots 
yielded a markedly higher value for disinhibited networks 
compared to baseline (Student’s t-test, T436 = 2.979, 
p = 0.0032) (Fig. 5C). The average PR value for the base-
line was 22.2 (SD: 2.1) compared to 34.31 (SD: 4.24) for 
spirals. Therefore, spiral waves yielded a higher complex-
ity than baseline, strengthening the view that these waves 
formed a state of high complexity in cortex [14, 20, 21].

Because the PR is prone to overestimating complex-
ity in neural data [26], the above results were compared 
to an alternative measure termed the Levina–Bickel 
maximum likelihood estimation (LBMLE) [36]. This 

Fig. 4  Spatial distribution of correlations during spiral waves. A Pairwise correlations were computed for each spiral wave then averaged to create 
a matrix of mean correlations. B The pairwise correlation between electrodes decreased as a function of their spatial distance. Vertical bars: standard 
error of the mean. Dashed line: best-fitting line of regression. C Correlation between the center of mass of a spiral and surrounding electrodes. Filled 
black circle: center of mass. D Correlations relative to the distance from center of mass
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non-linear measure estimates complexity using a geo-
metric approach to calculate the distance between 
data points. Ten spiral waves and comparable data seg-
ments from baseline recordings were selected at ran-
dom from three cortical slices. For all except one spiral 
wave, LBMLE complexity was higher with spiral waves 
than baseline (Fig.  5D). The discrepancy between linear 
and non-linear measures of complexity is comparable 
with related work [26]. Hence, both linear (PR) and non-
linear (LBMLE) approaches showed that spiral waves 

yield increased complexity compared to baseline cortical 
circuits.

Next, we examined how the number of channels (N ) 
impacted the PR. Random subsets of channels were 
selected from 10 spiral waves and the PR of those chan-
nels was computed. Results show an increase in the PR 
as the number of selected channels increased (Fig.  5E). 
This increase could be compensated by scaling the PR 
by 

√
N , resulting in a stable estimate of the PR when at 

least a few hundred channels were included (Fig.  5F). 
This effect does not alter our conclusions regarding the 

Fig. 5  Eigenvalues and complexity of spiral waves. A Distribution of ranked eigenvalues for spiral waves in disinhibited slices treated with a PE 
solution compared to baseline recordings. B Examples of snapshots from baseline data vs. spiral wave. C Participation ratio of baseline recordings 
and spiral waves. D LBMLE across 10 individual spiral waves and baseline activity of three cortical slices (filled circle, cross, and triangle markers). 
Dashed line shows unity. E, F Complexity (PR and normalized PR) versus number of randomly selected multi-electrode channels. Grey lines: 
individual spirals; solid black line: average over 10 spirals

Fig. 6  Complexity of planar waves. A Quiver plot showing vector fields of an individual planar wave. B PR of baseline activity compared to planar 
waves
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increased complexity of spiral waves (Fig. 5C) given that 
the same number of channels was employed relative to 
baseline. However, it may be relevant in cases where N  
varies across conditions.

Finally, the complexity of baseline activity was com-
pared to planar waves characterized by vector fields that 
were mainly aligned along a single direction (Fig.  6A). 
A set of 12 planar waves were manually identified 
from PE activity. These waves exhibited significantly 
lower PR than baseline (Student’s t-test, T87 = 14.4365, 
p = 8.1302e−25) (Fig. 6B). Thus, disinhibited activity was 
comprised of a mixture of high complexity spiral waves 
as well as lower complexity planar waves. Other forms of 
activity, including saddle waves, were likely present but 
not explicitly detected here.

Capturing spiral waves in a deep GAN
A deep GAN [27] was trained to produce snapshots that 
closely matched spiral waves obtained in disinhibited 
cortical networks (see “Methods”). This model is com-
prised of a generative network that produces synthetic 
samples and a discriminator network whose goal is to 
distinguish between real and synthetic data (Fig.  7A). 
The GAN was trained for 10,000 epochs, at which point 
the performance of both the generator and discriminator 
networks saturated (Fig. 7B).

Once training was completed, noisy input (mean of 
zero and SD of 25) was injected to the generator network 
to produce synthetic exemplars of spiral waves (Fig. 7C). 
A total of 1000 novel snapshots of dimensions 64 × 64 

pixels matching the size of the HD-MEA were gener-
ated in this fashion. Synthetic snapshots were analyzed 
similarly to experimental data using their eigenspectrum, 
center of mass, spatial correlations, and PR.

First, applying an eigenspectrum decomposition 
to the GAN snapshots yielded a broad distribution of 
eigenvalues (Fig. 7D) reminiscent of experimental data 
(Fig. 5A). Second, the center of mass of snapshots was 
concentrated in a delimited area of space (Fig.  7E) as 
in experiments (Fig.  2A). Third, spatial correlations 
were computed across snapshots of individual waves, 
then averaged together to yield a 4096 × 4096 pixels 
correlation matrix. As with experimental data, syn-
thetic images had higher correlations for nearby spatial 
regions (Fig. 7F). This is expected given that the model 
generated spatially delimited “regions” where activity 
was highly correlated (Fig. 7C).

Next, a series of analyses examined the PR of snap-
shots generated by the GAN model. To study a broad 
range of synthetic images, we varied the SD of the noise 
injected as input to the generator network. By increas-
ing the noise SD, waves of activity began to break 
apart into smaller spatial clusters (Fig. 8A) and yielded 
a more diffuse center of mass (Fig.  8B). Increasing 
noise SD resulted in higher values of PR, which began 
to saturate around an SD of 500 (Fig.  8C). PR values 
obtained from baseline and PE experimental data were 
included in Fig.  8C as points of comparison, showing 
that manipulating noise SD yielded a continuum of PRs 
covering the range of experimental data as well as more 

Fig. 7  Generative adversarial network trained to capture snapshots of spatial activity. A Architecture of the GAN model including both a generator 
and discriminator network. “conv.”: convolution operator. B Performance of the discriminator and generator networks. C Snapshots generated by 
the network after training. D Distribution of eigenvalues across 1000 snapshots generated by the network. E Center of mass across all snapshots. F 
Pairwise correlations decreased with spatial distance across the GAN snapshots
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extreme cases. Manipulating the mean of the injected 
noise also yielded a broad range of PR values capturing 
the scope of experimental data (Fig. 8D).

To compare the results of GAN with experimen-
tal data, the effect of noise on PR values was directly 
assessed by adding Gaussian noise with different means 
and SD to snapshots of a given cortical spiral wave and 
computing the resulting PR value. This analysis yielded 
PR distributions that were qualitatively comparable to 
those obtained by adding noise to GAN networks. Spe-
cifically, noise SD increased the PR until an asymptotic 
value was reached (Fig. 8E). Further, altering the mean 
of the Gaussian noise yielded a distribution of PR val-
ues that was maximal at zero (Fig.  8F). Hence, GANs 
provided the ability to not only generate novel sam-
ples that were faithful to the statistics of the training 
data, but also samples that deviated in systematic ways 
from those statistics. This key feature of GANs could 
be exploited to study the impact of noise on various 
measures of neural complexity [26] as well as design 
brain-computer protocols to study the effects of neuro-
stimulation on epileptiform activity [37].

The performance of the GAN was further assessed 
using two common performance measures, namely 
the Inception Score [38] and the Frechet Inception 
Distance [39]. In both instances, we varied the mean 
of the noise injected to the GAN and found that bet-
ter matches to the experimental data were obtained 
when the noise was near zero (Fig. 8G, H). Hence, the 

goodness-of-fit of snapshots generated by the GAN was 
dependent upon the statistics of the noise injected into 
the network.

Finally, we examined how the number of snapshots 
extracted from each spiral wave affected the PR. For both 
neural and synthetic data, we extracted a given number of 
snapshots per spiral and found that increasing the num-
ber of snapshots yielded higher values of PR (Fig. 9A). A 
good fit between the GAN and experimental data was 
found when the noise injected to the GAN had SD = 70 
(Pearson correlation test, R2 = 0.9795, p = 4.9036e−08). 
Normalizing the PR by the square root of the number of 
snapshots eliminated most of this effect (Fig. 9B). Thus, 
while PR is influenced by the number of snapshots, this 
effect can be largely overcome by normalization and does 
not alter our conclusions given that the number of snap-
shots remained constant across conditions.

Fig. 8  The input provided to generative networks controlled the statistics of snapshots. A Examples of snapshots where the SD of the input noise 
was increased from 50 to 500. B Center of mass of 1000 snapshots. C The participation ratio increased along with the SD of the input noise. Dashed 
lines show the participation ratio of baseline and disinhibited cortical activity. 100 images were generated for each value of noise SD. D Effect 
of input strength on the participation ratio of snapshots. Input strength is in arbitrary units (a.u.). E, F Additive Gaussian noise to a cortical spiral 
wave altered the PR. G, H The Frechet Inception Distance (FID) and Inception Score are impacted by the input strength to the GAN. The log of the 
Inception Score is shown for ease of visualization

Fig. 9  Complexity versus the number of snapshots per spiral wave. A 
GAN approximated HD-MEA data when the SD of its input was 70. B 
Normalizing PR by the square root of the number of snapshots
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In sum, the deep GAN model captured key aspects of 
spiral waves observed in disinhibited cortical networks. 
Going further, this model was employed to explore a 
broad range of spatiotemporal activity by manipulat-
ing the noise injected as input to the generator network. 
Below, we discuss the implications of these results for the 
characterization of pathological network states.

Discussion
In this work, spiral waves arose in disinhibited cortical 
networks and exhibited stereotypical characteristics in 
terms of phase distribution, center of mass, spatial cor-
relations, and neural complexity. Our main finding is 
that a deep generative neural network produced novel 
exemplars that captured these characteristics. Further, by 
adjusting the amplitude and variance of the GAN’s input, 
the model generated patterns that spanned a broad range 
of complexity values encompassing both healthy and 
pathological states of activity.

Practical applications
There are two main avenues where GANs may be applied 
to neuropathological activity. First, GANs may inform 
neurostimulation protocols aimed at the suppression of 
epilepsy [37]. Results of the GAN network suggest that 
it may be possible to control the dynamical state and 
complexity of neural circuits by adjusting the amplitude 
and variance of injected input. In line with our results, 
the effect of noise on reducing episodes of neural syn-
chrony has been suggested in theoretical work [40, 41]. 
In clinical settings, it remains challenging to find regimes 
of electrical stimulation that are effective at suppressing 
seizures [42]. This could be addressed by designing gen-
erative networks that produce pathological activity, then 
tuning the input of these networks to optimally suppress 
this activity. Results of simulations could then be applied 
to deep brain stimulation and brain–machine interfaces.

A second avenue of application for GAN models is the 
generation of large datasets of plausible exemplars from 
a known distribution. This is an important application 
given that certain brain events such as seizures occur 
infrequently but are key to understanding the underlying 
neural pathology. The current work is a prime example of 
such application, where a GAN was employed to generate 
a dataset of spiral waves that are relatively rare in cortical 
recordings. This dataset can then be employed to exam-
ine the robustness of key properties of neural activity and 
train decision-based systems that serve as diagnostic aid 
[43–45].

Related approaches
Our work can be compared to approaches that fall 
into two categories, namely generative models and 

biologically-inspired networks. Increasingly sophisti-
cated generative models have emerged in recent years, 
with the capability to produce realistic images [46–49] 
and videos [50–54]. Few studies, however, have applied 
GANs to brain data [55–58], and none thus far have 
looked at epileptiform brain activity.

Biologically-inspired models have been successful at 
capturing UP-DOWN states of rhythmic activity [59–
61] as well as spiral waves [1, 37, 62–64]. A key advan-
tage of these models is that they suggest candidate 
neural mechanisms to produce spiral waves. Notably, 
waves are proposed to emerge via three main scenar-
ios: (i) an initially localized oscillation that propagates 
through lateral interactions; (ii) a shared input that 
drives nearby cortical sites with different transmission 
delays; and (iii) several sites that oscillate at similar 
frequencies and form coherent patterns [62]. Biolog-
ically-inspired models, however, are not designed to 
function as generative models that capture the statis-
tics of a given dataset. A hybrid approach will hopefully 
emerge where biologically-inspired GANs can serve as 
data generators while embodying biological principles. 
Ideally, this approach would allow GANs to behave 
as a dynamical system that captures the mechanisms 
involved in generating seizure activity.

While our work employed PR and LBMLE as meas-
ures of complexity, various linear and non-linear alter-
natives have been proposed [26]. While non-linear 
approaches may provide a more accurate estimation of 
complexity, it is unclear what method best applies to 
disinhibited neural data compared across experimental 
conditions. A complete theoretical analysis of PR and 
related measures will be needed to shed light on the 
relation between noise, disinhibited activity, and neu-
ronal complexity.

Measures of neural complexity
Several measures of neural complexity have been pro-
posed [26]. Linear methods such as the PR are widely 
used and straightforward to interpret due to their sim-
plicity. However, linear methods tend to overestimate 
the dimensionality of neural data. Hence, we compared 
the PR to a non-linear LBMLE method (Fig.  5D). With 
both approaches, results consistently showed that spiral 
waves led to an increase in complexity compared to base-
line activity. Another factor to consider is that measures 
of complexity such as the PR scale with the number of 
channels (N ) analyzed (Fig.  5E) and the resolution (i.e., 
number of snapshots) of the data (Fig.  9A). This does 
not affect our main conclusions given that the number of 
neurons and snapshots was constant across spiral waves 
and baseline conditions. However, for applications where 
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the number of channels and resolution may vary, it would 
be useful to scale the PR by these values. This will yield 
more stable estimates of complexity (Figs. 5F, 9B).

Alternatives to GANs
While GANs were successful at capturing several aspects 
of spiral waves and hold the state-of-the-art for image 
generation, it is worth considering the advantages and 
drawbacks of potential alternatives, including diffusion 
models [65], variational autoencoders [66], and U-nets 
[67]. Diffusion models are a class of likelihood-based 
models that have recently been shown to produce high-
quality images and avoid the “collapse” problem associ-
ated with GANs that produce images within a limited 
range of the training space. These models, however, tend 
to be slower and require more user intervention, in the 
form of classifier guidance. Variational autoencoders pro-
cess input data by reducing it to a latent space of lower 
dimensionality prior to reconstruction. Results are gener-
ally inferior in quality than GANs. Finally, U-net is a gen-
erative model that uses a segmentation network as the 
discriminator, where the goal is to partition an image into 
several basic constituents. A restriction of this approach, 
however, is that the input and output dimensions of the 
network must be the same. How these different genera-
tive models compare when trained on neural data is an 
interesting question for future work.

Comparison to in vivo spiral waves
Despite the in  vitro nature of the data analysed herein, 
our results share several characteristics of spiral waves 
found in vivo during sleep-like states [3], epileptic activ-
ity [13], and anaesthesia [6]. These characteristics include 
a broad phase distribution, a low amplitude near the 
center of mass, and the co-occurrence of spiral waves 
with other forms of activity including planar waves. The 
advantage of an in vitro approach using an HD-MEA is 
the ability to monitor spiral waves using a large number 
of channels simultaneously. The resulting data allowed us 
to elucidate several aspects of spiral waves that had not 
previously been explored, including spatial correlations 
and complexity. These results will benefit from in  vivo 
support in future studies.

Limitations and future work
While our results suggest increased complexity in dis-
inhibited cortical networks, it is unclear whether these 
results would generalize to surrounding brain regions. 
In hippocampus, for instance, chaotic dynamics were 
mainly confined to the dentate gyrus and subiculum, 
while lower levels of chaotic activity were found in areas 

CA1–CA4 [20]. It would be worthwhile to explore sei-
zure-like activity across brain regions and capture their 
differences using generative networks.

Furthermore, disinhibited networks produce various 
forms of waves that have not been explored here, includ-
ing saddle patterns formed by the interaction between 
multiple waves [2–8]. Future work should be aimed at 
capturing the diversity of waves produced during healthy 
and disinhibited cortical states.

Caution should be warranted when attempting to 
draw general conclusions about neural complexity based 
strictly on spiral waves without also considering other 
forms of neural events as well as inter-wave activity. Spi-
ral waves are interleaved with other neuronal patterns, 
including periods of both synchronized and desynchro-
nized activity [4]. It is possible that analyzing spiral waves 
in isolation may suggest increased neural complexity, 
while a broader range of activity may reveal otherwise. 
Here, we focused on spiral waves as they constitute an 
intricate form of neural activity that has thus far eluded 
a complete characterization. More broadly, neural com-
plexity remains poorly understood as it covaries with 
many factors including cognitive attention [14], task 
demands [68, 69], arousal state [70], and neural patholo-
gies [22].

Finally, the prospects of using artificial neural networks 
to monitor and dynamically control epileptic events in 
real time will require the implementation of GANs that 
can handle continuous input streams and produce time-
evolving synthetic data. This field of research is currently 
under development and requires a combination of GANs 
with recurrent neural networks [71, 72].

Conclusions
During states of disinhibited activity, cortical circuits 
generate propagating waves whose spatial and temporal 
evolution follows reliable patterns [1]. A deep generative 
neural network trained on cortical spiral waves captured 
key aspects of these patterns. Once trained, the model 
was employed to show that neural complexity varies 
along a continuum—from lower values in healthy states 
to higher values in disinhibited states. The complexity 
of the simulated data was achieved solely by controlling 
the amplitude and variance of the input fed to the model, 
suggesting a framework that can be employed to exam-
ine the stimulus-driven suppression of aberrant network 
activity. This work opens the door to novel approaches 
that derive synthetic exemplars from neuroscience data 
to study rare forms of activity and probe their causal 
origins.
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Methods
Electrophysiological data collection
Animals
All data were collected using three Sprague Dawley rats 
of both sexes (2 males and 1 female), aged 14 to 21 days, 
purchased from Charles River. Animals were housed in 
standard housing conditions with cage enrichment and 
ad libitum access to water and standard chow. All experi-
ments were conducted in accordance with the Canadian 
Council on Animal Care guidelines and all procedures 
were approved by the University of Ottawa Animal Care 
and Veterinary Services.

Acute slice preparation
Animals were deeply anaesthetized using isofluorane 
(Baxter Corporation) and subsequently euthanized via 
decapitation. Brains of the animals were quickly extracted 
and submerged into a frozen choline dissection buffer. 
The buffer consisted of the following: 119.0 mM choline 
chloride, 2.5  mM KCl, 4.3  mM MgSO4, 1.0  mM CaCl2, 
1.0 mM NaH2PO4, 1.3 mM sodium ascorbate, 11.0 mM 
glucose, 26.2  mM NaHCO3, and was perfused using 
carbogen (95% O2/5% CO2). Acute cortical slices con-
taining the PFC were produced using a Leica VT1000S 
vibratome. The brain was sliced coronally at a thickness 
of 300  µm. Once the slices were collected, they were 
placed in a recovery chamber filled with a standard arti-
ficial cerebrospinal fluid (ACSF) consisting of 119.0 mM 
NaCl, 2.5  mM KCl, 1.3  mM MgSO4, 2.5  mM CaCl2, 
1.0  mM NaH2PO4, 11.0  mM glucose, and 26.2  mM 
NaHCO3. The ACSF was continuously perfused using 
carbogen (95% O2/5% CO2) and maintained at a temper-
ature of 37 °C. Following slicing, the chamber was left to 
recover for 1 h prior to experiments where it equilibrated 
to room temperature.

Multi‑electrode arrays
Generation of epileptiform activity
Baseline data was recorded using standard ACSF prior 
to application of the PE solution. Slices were included in 
the study if they displayed neural activity during baseline 
recordings, defined as threshold-crossing events in volt-
age traces on the acquisition software. Following base-
line recordings, epileptiform activity was generated by 
applying a pro-epileptiform ACSF (PE-ACSF) contain-
ing the following: 120 mM NaCl, 8.5 mM KCl, 1.25 mM 
NaH2PO4, 0.25  mM MgSO4, 2  mM CaCl2, 24  mM 
NaHCO3, 10 mM dextrose, and 0.05 mM 4-AP [73]. The 
PE-ACSF included a potassium channel blocker (4-AP) 
as well as reduced extracellular magnesium (Mg2+) and 
increased extracellular potassium (K+), all of which have 
been reported to induce epileptiform activity [73–79] and 
increase synchronization [80, 81]. The PE-ACSF solution 

was applied for 20 min prior to beginning the recordings 
and epileptiform activity was recorded for 10 min.

Multi‑electrode recordings
Extracellular potentials were collected using an active 
pixel sensor HD-MEA. This array uses a complementary 
metal-oxide semiconductor monolithic chip in which the 
pixels were modified to detect changes in electric volt-
ages from electrogenic tissue. The circuit is designed to 
provide simultaneous recordings from 4096 electrodes 
with a sampling rate of 7.7 kHz per channel. The chips are 
comprised of 64 × 64 electrodes arranged as a pixel ele-
ment array whereby each pixel measures 21 μm × 21 μm 
with an electrode pitch of 42 μm. The active area of the 
array is 7.22  mm2 and has a pixel density of 567 pixels/
mm2 [22, 82]. Data were acquired using BrainWave soft-
ware (3Brain Gmbh, Switzerland) and imported to Mat-
lab (MathWorks, Natick) for offline analysis.

Identification of spiral waves
Voltages at individual channels were processed by first 
applying a second order bandpass Butterworth filter in 
the delta range (1–4  Hz) to the raw voltages in the for-
ward and reverse directions using the filtfilt function in 
Matlab [56, 83, 84]. Artefacts were removed by setting 
time-points with absolute values greater than 200 μV to 
the mean of the signal. Data segments containing spiral 
waves were extracted based on visual inspection and later 
verified by the following criteria [29]: (i) a broad distribu-
tion of instantaneous phases around the center of mass 
(Fig.  3A–C); (ii) rotating vector fields (Fig.  3D); (iii) a 
decrease in voltage near the center of mass (Fig. 2B); and 
(iv) spatially-dependent correlations between pairs of 
channels (Fig. 4).

Center of mass
The center of mass of a given spiral wave was obtained 
as follows [85, 86]. Assuming a 64 × 64 array of elements 
aij reflecting the band-filtered voltage at a particular time 
and spatial location (row i and column j up to N  elec-
trodes), the center row (r) and column (c) are given by

and

The above expressions were computed for each 1  ms 
time frame (“snapshot”) of a given spiral wave, then aver-
aged to provide the mean center of mass of each wave.

(1)r =
∑N

i,j i · aij
∑N

i,j aij
,

(2)c =
∑N

i,j j · aij
∑N

i,j aij
.
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Complexity
The complexity of a given spiral wave was estimated by 
applying an eigenspectrum decomposition [87, 88] to 
6 evenly-spaced snapshots of each spiral wave, yielding 
ranked eigenvalues �1, . . . , �N where N  is the total num-
ber of channels. Then, complexity was calculated using 
the PR [23–25],

corresponding to the square of the eigenspectrum’s first 
moment normalized by its second moment. If patterns of 
neural activity are limited to a few dimensions, only a few 
eigenvalues will be positive, and the PR will be low. How-
ever, more complex, high-dimensional neural activity will 
be reflected by a broad distribution of eigenvalues and a 
high PR value.

Generative adversarial network
In the GAN framework, two artificial neural networks 
compete against each other [27]. The “generative model” 
(G) attempts to produce synthetic samples that closely 
match the original data, while its counterpart, the “dis-
criminative model” (D), learns to discriminate these 
synthetic samples from genuine ones. The competition 
between these two networks drives the GAN to produce 
synthetic samples that are indistinguishable from the 
original data. Once successfully trained, novel samples 
can be obtained from the generative model by feeding 
random noise to its input layer.

Here, a GAN was trained to produce synthetic samples 
of spiral waves. Once cortical spiral waves were identi-
fied and verified based on the above criteria, a sample of 
6 snapshots were collected per spiral, corresponding to 
evenly spaced time points between the approximate time 
of initiation and termination of the wave. The complete 
dataset consisted of 1314 images obtained from 219 spi-
ral waves. Each input to the GAN consisted of all 6 snap-
shots from an individual wave tiled to form a pattern of 
size 64 pixels × 64 pixels × 6 snapshots.

Formally, assume some real data 
{

x(i)
}m

i=1
∼ Pr , 

where Pr is the data distribution. The goal was to gen-
erate some novel data x̃ whose distribution Pg is a close 
approximation of Pr . This was achieved by feeding noise 
to the generator network, x̃ = Gθ (z), given noisy priors 
{

z(i)
}m

i=1
∼ p(z) . The input z to the generator was sam-

pled from a Gaussian distribution.
The generative and discriminative networks were 

trained according to a minimax objective function,

(3)PR =

(

∑N
i �i

)2

∑N
i �

2
i

,

where V (D,G) is a min–max value function and x is 
the original data. This objective function was optimized 
using the Adam optimizer [89] with a discriminator net-
work learning rate of α = 0.0002. The generator network 
learning rate was α = 0.001. The total number of training 
iterations was set to 10,000. The generator network was 
composed of six hidden layers with rectified linear units 
(ReLU) and a hypertan (htan) output layer. The discrimi-
nator network had eight hidden layers with leaky ReLU 
units and a htan output layer. A convolution step pre-
ceded each hidden layer. The full model was trained using 
the Matlab Deep Learning library with default parame-
ters unless otherwise stated. Output images were 64 × 64 
pixels in size, matching the dimensions of the input snap-
shots obtained from the HD-MEA.

The performance of the generator network (Fig.  7B) 
was computed by the score

where Ŷgenerated contains the probabilities for the gener-
ated images. For the discriminator network, the score 
was

where Ŷreal contains the discriminator output prob-
abilities for real images. The ideal scenario is where both 
scores are close to 0.5. However, this is not a requirement 
to obtain a successful GAN; in fact, several measures 
were employed to compare the generated images with 
experimental data, including eigenspectrum distribution 
(Fig.  7D), center of mass (Fig.  7E), spatial correlations 
(Fig. 7F), complexity (Fig. 8C–F), Frechet Inception Dis-
tance (Fig. 8G), and Inception Score (Fig. 8H).

Abbreviations
PFC	� Prefrontal cortex
PE	� Pro-epileptiform
ACSF	� Artificial cerebrospinal fluid
PE-ACSF	� Pro-epileptiform artificial cerebrospinal fluid
HD-MEA	� High-density multi-electrode array
GAN	� Generative adversarial network
ReLU	� Rectified linear units
htan	� Hypertan
SD	� Standard deviation
PR	� Participation ratio
LBMLE	� Levina–Bickel maximum likelihood estimation

(4)

min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z) [log (1− D(G(z)))],

(5)SG = mean
(

Ŷgenerated

)

,

(6)
SD = 0.5mean

(

Ŷreal

)

+ 0.5mean
(

1− Ŷgenerated

)

,
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Additional file 1. Movie showing an example of a single spiral wave 
recorded with a HD-MEA. Color map shows voltages ranging between 
[− 200, 200] μV. Each frame of the movie was a snapshot of 100 ms.
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