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Abstract 

Background:  Spinal cord injury (SCI) is a common trauma in clinical practices. Subacute SCI is mainly characterized 
by neuronal apoptosis, axonal demyelination, Wallerian degeneration, axonal remodeling, and glial scar formation. It 
has been discovered in recent years that inflammatory responses are particularly important in subacute SCI. However, 
the mechanisms mediating inflammation are not completely clear.

Methods:  The gene expression profiles of GSE20907, GSE45006, and GSE45550 were downloaded from the GEO 
database. The models of the three gene expression profiles were all for SCI to the thoracic segment of the rat. The 
differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA) were performed using R 
software, and functional enrichment analysis and protein–protein interaction (PPI) network were performed using 
Metascape. Module analysis was performed using Cytoscape. Finally, the relative mRNA expression level of central 
genes was verified by RT-PCR.

Results:  A total of 206 candidate genes were identified, including 164 up-regulated genes and 42 down-regulated 
genes. The PPI network was evaluated, and the candidate genes enrichment results were mainly related to the pro-
duction of tumor necrosis factors and innate immune regulatory response. Twelve core genes were identified, includ-
ing 10 up-regulated genes and 2 down-regulated genes. Finally, seven hub genes with statistical significance in both 
the RT-PCR results and expression matrix were identified, namely Itgb1, Ptprc, Cd63, Lgals3, Vav1, Shc1, and Casp4. 
They are all related to the activation process of microglia.

Conclusion:  In this study, we identified the hub genes and signaling pathways involved in subacute SCI using bioin-
formatics methods, which may provide a molecular basis for the future treatment of SCI.
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Introduction
Spinal cord injury (SCI) is a serious complication of spi-
nal fracture, in which the spinal cord or cauda equina is 
damaged to different degrees due to the displacement 
of the vertebral body or the intrusion of bone fragments 
into the spinal canal. It is a common trauma in clinics 
and has the characteristics of high incidence and dis-
ability rate. SCI is the main cause of long-term physical 

impairment and disability, which is a huge burden on 
the quality of life of patients and the medical system 
[1–4]. Despite significant advances in the state of the art 
of medical care in spinal surgery, there are currently no 
effective treatment options for this neurological disorder, 
mostly limited to supportive measures [5–7]. Traumatic 
SCI is divided into primary injury and secondary injury. 
Primary injury refers to mechanical direct injury to the 
spinal cord [8]; Secondary injury refers to the subsequent 
pathological reaction caused by direct phases. Secondary 
injury includes three stages: acute, subacute, and chronic 
injury. Acute secondary injury occurs within 0–48  h of 
injury and is initially characterized by increased calcium 
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influx, ion imbalance, lipid peroxidation, free radical pro-
duction, inflammation, and edema [9]. The stage of suba-
cute secondary injury occurs two days to two weeks after 
injury and is characterized by neuronal apoptosis, axonal 
demyelination, Waller degeneration, axonal remodeling, 
and glial scar formation [9]. Over time, subacute lesions 
developed into chronic secondary lesions characterized 
by glial scar maturation, capfsular formation, and axonal 
dieback [10].

The most important stage in the pathophysiologi-
cal process of SCI involves a secondary injury caused 
by neuroinflammation in the lesion area, accompanied 
by abnormal molecular signals, vascular changes, and 
secondary cell dysfunction, which is uncontrolled and 
destructive cascade [11–14]. Gene expression and signal 
pathways of that inflammatory cascade in subacute injury 
are complex [15]. During this period, the inflammatory 
cascade has dual effects, not only aggravating the tissue 
cell damage but also serving as an important promoting 
factor for the plastic change after SCI [16–18]. How to 
balance these dual effects is very important for the effect 
of intervention and treatment. Therefore, the relevant 
molecular mechanisms of inflammation in the subacute 
phase after SCI are worthy of in-depth study.

Bioinformatics is an emerging interdisciplinary sub-
ject that combines molecular biology and information 
technology, which opens up a new way for the diagno-
sis and treatment of human diseases [19]. Gene chip, 
as an emerging technology, has been used for efficient 
and large-scale access to biological information and 
can widely collect disease expression profile data. Some 
scholars have unveiled the activation pathways and 
molecular targets during acute or chronic SCI by identi-
fying differentially expressed genes (DEGs) using micro-
array or RNA sequencing analysis [20–25]. However, the 
sequencing analysis for subacute SCI is relatively rare. In 
this paper, the bioinformatics tools are used to analyze 
the data from the sham operation group and SCI group 
of GSE20907, GSE45006, GSE45550 in the common gene 
chip databases, aiming to identify the key biomarkers of 
abnormally expressed genes in subacute SCI and provide 
targets for the diagnosis and treatment of subacute SCI.

Materials and methods
Download expression matrix data
Expression matrices of GSE20907, GSE45006, and 
GPL45550 were downloaded from the GEO database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The ages of rats in 
the three data sets were about 9–11  weeks. GSE20907 
[26] microarray data were based on the GPL6247 plat-
form by performing a T9-T10 laser axonotomy in female 
Long Evans rats, followed by a moderate spinal contu-
sion injury by dropping 10 g of the rod from a height of 

25  mm using NYU Impactor. GSE45006 [27] microar-
ray data were based on the GPL1355 platform and oper-
ated on female Wistar rats for T6-T8 laminectomy and 
moderate to severe impact compression damage using 
a 35  g Walsh clip for 1  min. GSE45550 [28] microarray 
data were based on the GPL1355 platform by performing 
dorsal laminectomy in the thoracic vertebrae T7-T9 of 
female Sprague Dawley rats, and the contusion was gen-
erated by dropping 10  g cylinders onto the T8 segment 
of the spinal cord from a height of 25 mm. Four groups 
of data from sham, on the 3rd, 7th, and 14th day after 
operation were extracted from each expression matrix 
for analysis. Information on these data sets is shown in 
Table 1. The experimental strategy in this paper is shown 
in Fig. 1-a.

Data preprocessing and identification of DEGs
The expression matrix was subjected to batch effect elim-
ination and batch normalization using R software (ver-
sion 4.1.0; https://​www.r-​proje​ct.​org/) and R-package 
SVA [29]. The Limma package in R (Limma;http://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​limma.​
html) was used to identify DEGs by comparing expres-
sion values between sham and subacute SCI. The corre-
sponding P-value of the gene symbols after the t-test was 
used. The adjusted P < 0.05 and |logFC|> 1 were used as 
the selection criteria.

Weighted correlation network analysis (WGCNA)
WGCNA (v1.61; https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​WGCNA/​index.​html) is a tool [30] for construct-
ing gene co-expression networks and identifying gene 
clusters or modules. Thus, the WGCNA integration 
algorithm R (v3.4.1) was used to analyze highly relevant 
native gene clusters or modules for subacute SCI. There 
were ≥ 10 cutoff genes, cutting height = 0.85, Z‐ score ≥ 5, 
and stability-related stability correlation P ≤ 0.05 in this 
study. The connection of nodes (genes) between the two 
was used to calculate the data set, and genes with the cor-
relation coefficient < 0.5 were excluded. The conservation 
status of WGCNA module and the traits related charac-
teristics were analyzed.

Table 1  Number of samples per group contained in each 
dataset

Group GSE Sham 3 days 7 days 14 days

GSE20907 8 4 4 2

GSE45006 4 4 4 4

GSE45550 6 6 6 6

https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
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Time dynamic clustering analysis
To characterize the dynamics of subacute SCI gene 
expression, R-package Mfuzz[31] (v2.1; http://​cran.r-​
proje​ct.​org/​web/​packa​ges/​Mfuzz/​index.​html) was used 
for temporal dynamic cluster analysis. Fuzzy C-means 
clustering analysis, the core algorithm of Mfuzz, can 
aggregate genes with similar expression patterns. The dif-
ferential genes were divided into four different clusters 
according to the expression pattern of subacute SCI. The 
cluster-score of the gene indicated the similarity of each 
cluster.

Functional enrichment analysis.
The KEGG/GO analysis was performed using the 

Metascape website (http://​www.​metas​cape.​org/) [32].

Protein–protein interaction network (PPI)
The PPI analysis was performed using the Metascape 
website (http://​www.​metas​cape.​org/) [32]. The con-
nectivity (degree) and hub nodes (genes) in PPI [33] 
were obtained using scale-free property to obtain. And 
MCODE algorithm was applied to this network, and 
GO enrichment analysis was applied to each MCODE 

network, each MCODE network being assigned a unique 
shape. For the hub nodes, the size of the shape repre-
sented the value of MCODE-degree. The results of PPI 
were imported into Cytoscape software (v3.9.0; http://​
www.​cytos​cape.​org/) and further analyzed in combi-
nation with the results of temporal dynamic clustering 
analysis.

Comparison of expression of candidate genes 
and real‑time polymerase chain reaction (RT‑PCR)
The heat map was made using R-packages Complex-
Heatmap (v3.1; https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​Compl​exHea​tmap/​index.​html) and GGplots (v3.0; 
https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​ts/​index.​
html) to compare the expression levels of candidate 
genes.

The hub genes were selected for RT-PCR. Female 
Sprague Dawley rats (6–8  weeks of age, average weight 
210 g) were acquired from the Laboratory Animal Center 
of Nantong University (Nantong, China). Rats were pro-
vided with normal food and water and housed at 20–26 
℃ under 55%-65% humidity with a 12  h/12  h artificial 

Fig. 1  Research roadmap and data preprocessing. a Research roadmap. b PCA chart of three data sets without removing batch effect. c PCA chart 
of three data sets after removing batch effect. d Venn diagram of DEGs in sham operation group and 3 d, 7 d, and 14 d groups after subacute SCI. 
In each annotation circle, Red represented the number of up-regulated genes, Blue represented the number of down-regulated genes, and Yellow 
represented the number of genes with the opposite trend in the intersection set. Principal component analysis, PCA

http://cran.r-project.org/web/packages/Mfuzz/index.html
http://cran.r-project.org/web/packages/Mfuzz/index.html
http://www.metascape.org/
http://www.metascape.org/)
http://www.cytoscape.org/
http://www.cytoscape.org/
https://cran.r-project.org/web/packages/ComplexHeatmap/index.html
https://cran.r-project.org/web/packages/ComplexHeatmap/index.html
https://cran.r-project.org/web/packages/ggplots/index.html
https://cran.r-project.org/web/packages/ggplots/index.html
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diurnal cycle. Rats underwent general anesthesia (20 ml/
kg) by intraperitoneal injection of avertin (2, 2, 2-tribro-
moethanol, Sigma-Aldrich) in 0.9% saline solution and 
were injured by impact compression using a 35 g Walsh 
clip for 1 min at thoracic level T7-T9 and sacrificed (CO2 
asphyxia) for spinal cord tissue removal 3, 7, and 14 days 
after SCI. Five rats in each group. Total RNA was isolated 
using TRIZOL reagent (Invitrogen, Thermo Fisher Scien-
tific, Inc.) and reverse transcribed into cDNA according 
to the manufacturer’s instructions. RT-PCR was per-
formed using SYBR green dye(Takara) in a thermal cycler 
under the following parameters: initial denaturation step 
at 95 ℃ for 30 min; 40 cycles at 95 ℃ for 5 s; And 60 ℃ 
for 30 s. The complete experimental procedure was per-
formed on each sample in duplicate. The mRNA primers 
are shown in Table 2.

Data analysis
SPSS 22.0 software (IBM, Armonk, NY, USA) was used 
for all statistical analyses. If the data both showed nor-
mality and homogeneity of variance, they were expressed 
as mean and standard deviation. The Unpaired Student’s 
t-test was used for inter-group comparison. If the data 
were not showed normality or homogeneity of variance, 
the quantitative variables were expressed as the median 
of the ranges and compared between groups using the 
Mann–Whitney Wilcoxon test, respectively. All signifi-
cance levels were set to P < 0.05 and plotted using Graph-
Pad Prism 6 (GraphPad Software Inc., CA, USA).

Results
Data preprocessing and identification of DEGs
To eliminate the batch effect of merging different data-
sets, microarray results from GSE20907, GSE45006, and 
GSE45550 were batch corrected and normalized using 

PCA (Fig. 1b, c), and DEGs were selected by comparing 
the surgical group and the subacute SCI groups (3 days 
/7 days /14 days) using R-package Limma. The Venn dia-
gram was drawn using R software (Fig.  1d). There were 
2414 genes in the union of DEGs detected, and 402 genes 
in the intersection of DEGs detected. In the sham opera-
tion group, there were 771 down-regulated genes and 
972 up-regulated genes compared with the 3-day group, 
477 down-regulated genes and 677 up-regulated genes 
compared with the 7-day group, and 398 down-regulated 
genes and 571 up-regulated genes compared with the 
14-day group.

WGCNA of the union of DEGs
The union of 2414 DEGs was taken as the expression 
matrix and used as the input data for network construc-
tion. According to the rules of scale-free networks, the 
larger the correlation coefficient is, the more significant 
the scale-free property of the network is. According to 
the prerequisite of the approximate scale-free topology 
processed by WGCNA, the soft threshold power of the 
adjacency matrix is 9, and the standard that the square 
of the intrinsic gene correlation coefficient is greater 
than 0.85 is taken as the standard for module identifi-
cation (Fig.  2a). At this time, the average connectivity 
was 1, indicating that the gene module was constructed 
according to the approximate scale-free topology stand-
ard (Fig. 2b). After the soft threshold was determined, the 
expression matrix of the differential genes was converted 
into an adjacency matrix, a topology matrix, and a dis-
similarity matrix between genes. On this basis, the hierar-
chical clustering method is used for gene clustering, and 
the dynamic cutting algorithm is used for module iden-
tification of the system clustering tree. Fifteen different 
co-expression modules were obtained and expressed in 

Table 2  Hub genes primers used in this study

Gene Name Forward primer Reverse primer

Itgb1 Integrin subunit β1 GGA​GAT​GGG​AAA​CTT​GGT​GGT​ TAG​AGT​TTC​CAG​ACA​GTG​TGCC​

Fcgr2b Fc gamma receptor IIb TCC​AAG​CCT​GTC​ACC​ATC​AC TGG​CAG​CTA​CAG​CAA​TTC​CA

Ptprc Protein tyrosine phosphatase receptor type C TGA​CTC​GGA​AGA​AAC​CAG​CA AGT​CTG​CTT​TCC​TTC​TCC​CC

S100a4 S100 calcium binding protein A4 CAA​ATA​CTC​AGG​CAA​CGA​GGG​ CAC​ATC​ATG​GCA​ATG​CAG​GAC​

Cd63 Cd63 GGG​GCC​TGC​AAA​GAG​AAC​TA TTG​TCC​AAA​ATG​GTG​GCC​GT

Lgals3 Galactose-specific lectin 3 AGG​CTC​CTC​CTA​GTG​CCT​AT CCT​CCA​GGC​AAG​GGC​ATA​TC

Lamc1 Laminin subunit gamma 1 TCT​TGG​ACC​TTA​CAG​CCC​GT GTG​CAC​ACC​ACT​TCC​TTT​GTC​

Vav1 Guanine nucleotide exchange factor 1 AGG​AGT​GTC​TGG​GAA​GGG​TG AGT​TCC​ACA​ATG​TCC​CCA​GG

Shc1 Shc adaptor protein 1 TGT​GAA​TCA​GAG​AGC​CTG​CC TCA​TCC​CAA​GCT​GAG​CCA​TC

Casp4 Cysteine peptidase 4 GTG​ACA​AGC​GCT​GGG​TTT​TT TCT​GCA​CAG​CCT​TGT​GAA​CT

Mapk12 Mitogen-activated protein kinase 12 CCA​TTC​ATG​GGC​ACT​GAC​CT GTC​ATC​TCA​CTG​TCC​GCC​TG

Vegfa Vascular endothelial growth factor a AAG​GCG​CGC​AAG​AGAGC​ AAT​TGG​ACG​GCA​ATA​GCT​GC
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different colors (Fig. 2c). These modules were correlated 
to clinical features and modules of continuous correla-
tion were found (Fig. 2d). From the results, we could see 
that the correlation coefficients of the three subgroups 
of subacute SCI in the Turquoise module were gradu-
ally decreased (Rho3 = 0.24, Rho7 = 0.21, Rho14 = 0.19), 
suggesting that the genes in this module had a continu-
ous correlation with subacute SCI. Figure  2e shows the 
number of genes in each module, in which the Turquoise 
module contained 530 genes.

Functional enrichment analysis of candidate genes
398 genes in the Intersection (402 genes exclude 4 genes 
with different trends) and 530 genes in the Turquoise 
module were crossed again to obtain 206 candidate genes 
(Fig.  3a). The GO function and KEGG pathway of can-
didate genes were annotated with Metascape, and the 
top 20 results were shown in Fig.  3b and Table  3. We 
found that these genes were mainly associated with 12 
GO Biological Processes, including Tumor Necrosis Fac-
tor Production, Myeloid Leukocyte Activation, Leuko-
cyte Migration, Positive Regulation of Cell Migration, 

Lymphocyte Proliferation, Innate Immune Response, 
Wound Healing, Negative Regulation of Cytokine Pro-
duction, Immune Effector Process, Regulation of Cell 
Adhesion, Positive Regulation of Smooth Muscle Cell 
Proliferation, and Regulation of Tumor Necrosis Factor-
mediated Signaling Pathway; It was associated with five 
KEGG Pathways, including Leishmaniasis, Pertussis, 
Staphylococcus Aureus Infection, Proteoglycans in Can-
cer, and Legionellosis; It was associated with two Reac-
tome Gene Sets, including Innate Immune System and 
Hemostasis; Related to one WikiPathways for IL-5 signal-
ing pathway.

Temporal dynamic clustering analysis and PPI analysis 
of candidate genes
Temporal dynamic clustering analysis was performed 
on the candidate genes using R-package Mfuzz. As 
shown in Fig.  3c, d, the candidate genes were divided 
into four clusters with different expression modes. 
Cluster-1 represented 79 genes with continuous high 
expression over time after SCI, Cluster-2 represented 
16 genes with continuous low expression over time 

Fig. 2  WGCNA of the union of DEGs. a scale independence, b mean connectivity. The network topology analysis for adjacency matrix with 
different soft threshold power. Red numbers in the boxes indicate the soft thresholding power corresponding to the correlation coefficient square 
value(y-axis). c consensus module dendrogram was produced by clustering of 2414 genes with a variation coefficient of expression > 0.1, based on 
the criteria of correlation coefficient square of eigengenes above 0.85, soft threshold power of 9, the number of genes > 10, and cut height = 0.95. 
d Module-trait associations. Each row corresponds to a module trait gene, and each column corresponds to a trait. Red indicated a positive 
correlation between modular trait genes and traits, and blue indicated a negative correlation. Each cell contains the correlation coefficient Rho and 
the P-value in parentheses. e Pie chart of the number of genes in modules, each color representing each module. WGCNA, weighted correlation 
network analysis
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after SCI, Cluster-3 represented 85 genes with high 
expression after SCI, and Cluster-4 represented 26 
genes with low expression after SCI. PPI analysis of 
candidate genes was performed using the Metascape, 
and the results showed that 117 genes among the can-
didate genes served as hub nodes, as shown in Fig. 3e. 
There were 52 hub nodes in Cluster-1, 5 hub nodes in 
Cluster-2, 49 hub nodes in Cluster-3, and 11 hub nodes 

in Cluster-4. The top three network shapes for Log(q-
value) values are Diamond, Rectangle, and Triangle. 
As shown in Table 4, the hub nodes are mainly related 
to the innate immune regulation of GO function. 
MCODE-1 is mainly related to the regulation of the 
GPCR signaling pathway, MCODE-2 is mainly related 
to the cross-endothelial migration of leukocytes, and 
MCODE-3 is mainly related to the Kit receptor signal-
ing pathway and cytokine.

Fig. 3  Functional enrichment analysis and PPI analysis of candidate genes. a Venn diagram analysis of genes between the Turquoise module and 
the Intersection. b Functional enrichment analysis for 206 candidate genes. c Pie chart of the number of genes of four clusters in time-dynamic 
clustering analysis of 206 candidate genes. Four different colors represent different clusters. d Change trend of the relative expression level of four 
clusters in time-dynamic clustering analysis of 206 candidate genes. e PPI analysis of candidate genes. Four different colors represent different 
clusters in the temporal dynamic clustering analysis MCODE algorithm was applied to this network, and GO enrichment analysis was applied to 
each MCODE network, each MCODE network being assigned a unique shape. For the hub nodes, the size of the shape represented the value of 
MCODE-degree. PPI, protein–protein interaction
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Table 3  The top 20 results of the GO function and KEGG pathway of candidate genes

Category GO Description Genes Log(q-value)

GO Biological Processes GO:0032640 tumor necrosis factor production Tspo Hspb1 Jak2 Ptprc Stat3 Tnfrsf1a Tlr4 
Cybb Cyba Gpnmb Ifngr1 Ptpn6 Pycard 
Myd88 Ripk1 Axl Tlr2 Pf4 Clec4a3 Ly96

− 10

KEGG Pathway ko05140 Leishmaniasis Itgb1 Jak2 Itgam Tlr4 Mapk12  Cyba Ifngr1 
Ptpn6 Fcgr1a Myd88 Fcgr3a Itgb2 Tlr2 Ifngr2

− 10

Reactome Gene Sets R-RNO-168249 Innate Immune System Cd53 Ptprc Ctsc Cd63 Tlr4 C1qb Anxa2 
Mapk12  Lgmn Pygl Apaf1 Cyba Lyn Lgals3 
C3ar1 Shc1 Gmfg Ptpn6 Lcp2 Cd68 Fcgr2b 
Serpinb1a Folr2 C1qa Cfp Myd88 Fcgr3a 
Nkiras1 Itgb2 Tlr2 Ptges2 Cmtm6 Tlr7 C1qc 
S100a11

− 9.4

GO Biological Processes GO:0002274 myeloid leukocyte activation Hmox1 Jak2 Itgam Casp1 Ctsc Tlr4 Lyn Tgfbr2 
Ifngr1 Lcp2 Pycard Fcgr2b C1qa Myd88 
Fcgr3a Tnip2 Itgb2 Tlr2 Myo1f Ifngr2 Btk

− 8.5

GO Biological Processes GO:0050900 leukocyte migration B4galt1 Itgb1 Itgam Vav1 Ninj1 Anxa1 Stk10 
P2rx4 Lgmn Lyn Msn Lgals3 Vegfa C3ar1 
Pycard Folr2 Myd88 Itgb2 Tlr2 Pf4 Ccl27 
St3gal4 Cxcl16 Dock8

− 7.9

GO Biological Processes GO:0030335 positive regulation of cell migration Hmox1 Hspb1 Itgb1 Jak2 Ptprc Stat3 Anxa1 
Fgf9 Tlr4 P2rx4 Lgmn Pfn1 Dab2 Lyn Tgfbr2 
Lgals3 Vegfa C3ar1 Gpnmb P2ry6 Pycard Flna 
Tlr2 Myo1f Rras Ccl27 S100a11 Cxcl16 Dock8

− 7.6

KEGG Pathway ko05133 Pertussis Itgb1 Itgam Casp1 Tlr4 C1qb Mapk12  Pycard 
C1qa Myd88 Itgb2 C1qc Ly96

− 7.6

GO Biological Processes GO:0046651 lymphocyte proliferation Ptprc Itgam Anxa1 Tlr4 Inpp5d Lyn Msn 
Tgfbr2 Lgals3 Laptm5 Gpnmb Cdkn1a Ptpn6 
Cblb Pycard Fcgr2b Myd88 Pura Itgb2 Btk 
Dock8

− 7.1

WikiPathways WP44 IL-5 signaling pathway Jak2 Itgam Stat3 Vav1 Alox5ap Lyn Shc1 
Ptpn6 Hcls1 Itgb2 Btk

− 6.7

GO Biological Processes GO:0045087 innate immune response Jak2 Vav1 Casp1 Anxa1 Tlr4 C1qb Cybb Cyba 
Lyn Lgals3 Ptpn6 Slc15a3 Pycard Serpinb1a 
Mrc1 Capg C1qa Cfp Fbxo9 Myd88 Cdc42ep2 
Tlr2 Tnfaip8l2 Myo1f Tlr7 Ifitm3 C1qc Cxcl16

− 5.9

KEGG Pathway ko05150 Staphylococcus aureus infection Itgam C1qb C3ar1 Fcgr2b Fcgr1a C1qa 
Fcgr3a Itgb2 C1qc

− 5.6

GO Biological Processes GO:0042060 wound healing B4galt1 Hmox1 Hspb1 Itgb1 Jak2 Anxa1 Tlr4 
Anxa2 Lyn Tgfbr2 Vegfa Cdkn1a Timp1 Ptpn6 
Flna Il10rb Fcgr3a Lcp1 Axl Pf4 St3gal4 Clic1

− 5.6

GO Biological Processes GO:0001818 negative regulation of cytokine production Tspo Hmox1 Ppm1b Ptprc Anxa1 Tnfrsf1a Tlr4 
Inpp5d Laptm5 Gpnmb Ptpn6 Pycard Fcgr2b 
Serpinb1a Axl Tlr2 Clec4a3 Btk

− 5.6

GO Biological Processes GO:0002252 immune effector process Hmox1 Ptprc Itgam Stat3 Vav1 Anxa1 Ctsc 
Tlr4 C1qb Inpp5d Lyn Lgals3 Laptm5 Ptpn6 
Pycard Fcgr2b Fcgr1a C1qa Cfp Myd88 Lcp1 
Itgb2 Tlr2 Myo1f C1qc Btk

− 5.4

Reactome Gene Sets R-RNO-109582 Hemostasis Itgb1 Jak2 Cd63 P2rx4 Inpp5d Anxa2 Lyn 
Slc7a7 Vegfa Shc1 Gna15 Timp1 Ptpn6 Lcp2 
Kif22 Flna Itgb2 Pf4 Dock8 Gng13 Gngt2

− 4.9

GO Biological Processes GO:0030155 regulation of cell adhesion Hspb1 Itgb1 Jak2 Ptprc Vav1 Ninj1 Anxa1 
P4hb Cd63 Dab2 Lyn Tgfbr2 Lgals3 Vegfa 
Laptm5 Gpnmb Ptpn6 Cblb Pycard Efemp2 
Flna Itgb2 Tnfaip8l2 Myo1f Rras St3gal4 
Dock8 Coro1c

− 4.9

KEGG Pathway ko05205 Proteoglycans in cancer Itgb1 Stat3 Cd63 Tlr4 Mapk12 Msn Vegfa 
Cdkn1a Ptpn6 Cblb Hcls1 Flna Tlr2 Rras

− 4.7

GO Biological Processes GO:0048661 positive regulation of smooth muscle cell 
proliferation

Hmox1 Jak2 Fgf9 Tlr4 Cyba Tgfbr2 Vegfa 
C3ar1 Shc1 P2ry6 Myd88

− 4.6

KEGG Pathway ko05134 Legionellosis Itgam Casp1 Tlr4 Apaf1 Pycard Myd88 Itgb2 
Tlr2

−4.4
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Comparison of hub genes expression levels and RT‑PCR 
verification
The 117 genes were produced into heat map as shown 
in Fig. 4, and the 12 hub genes selected according to the 
MCODE-degrees and the cluster-scores are shown in 
Table  5, which are Itgb1, Fcgr2b, Ptprc, S100a4, Cd63, 
Lgals3, Lamc1, Vav1, Shc1, Casp4, Mapk12, and Vegfa. 
Figure  5 shows the different expression levels of the 12 
hub genes in the control and experimental groups in 
the combined data set. Figure 6 shows the results of hub 
genes validation in rats by RT-PCR. The relative expres-
sion levels of the seven central genes, Itgb1, Ptprc, Cd63, 
Lgals3, Vav1, Shc1, and Casp4, were consistent with 
the expression matrix. The relative expression level of 
Fcgr2b increased on the 3rd day after SCI but decreased 
on the 7th and 14th days. The relative expression levels 
of S100a4 and Lamc1 were statistically significant on the 
3rd and 14th days after SCI, but not on the 7th day. The 
relative expression levels of Mapk12 and Vegfa decreased 
on the 3rd day after SCI, which was consistent with the 
expression matrix, but increased on the 7th and 14th 
days after SCI, which was inconsistent with the expres-
sion matrix.

Discussion
SCI leads to motor and sensory dysfunction, and the 
cascade of primary injury leads to the complex cas-
cade of secondary injury events. Studies have shown 

that triggering immunoreaction in the subacute phase 
after spinal cord injury combined with rehabilitation 
training is more conducive to the recovery of spinal 
cord function [34]. As an animal with high homology 
to humans, low price, and easy feeding, rats have been 
widely used to make spinal cord injury models. In this 
study, gene expression profiles of GSE20907, GSE45006, 
and GSE45550 were combined for the first time to con-
duct DEGs analysis of the subacute SCI in rats. Although 
the differences among the SCI models with three gene 
expression profiles may lead to differences in signaling 
pathways and functional molecules, we assume that com-
mon and collective molecular mechanisms of injury may 
occur even in different SCI models, and identifying these 
mechanisms can provide new ideas for the treatment and 
prognosis judgment of SCI.

In this study, we first performed WGCNA using the 
union of DEGs. WGCNA has been well applied in bio-
medical research, and its analysis has mainly focused on 
specific phenotypes and co-expression modules. Genes 
in the same module are considered to be functionally 
related, with higher reliability and biological significance 
[35, 36]. Therefore, this analysis allows the identification 
of biologically relevant modules and core genes that can 
ultimately be used as biomarkers for SCI detection or 
treatment. The analysis results of WGCNA showed that 
the Turquoise module was considered to be the module 
most related to the subacute SCI (3 days to 14 days), and 

Table 3  (continued)

Category GO Description Genes Log(q-value)

GO Biological Processes GO:0010803 regulation of tumor necrosis factor-mediated 
signaling pathway

Casp1 Tnfrsf1a Laptm5 Casp4 Pycard Nkiras1 
Ripk1

− 4.4

Table 4  GO enrichment analysis of MCODE network in PPI.MCODE algorithm was applied to this network, and GO enrichment 
analysis was applied to each MCODE network

PPI protein–protein interaction

Network Shape Gene Go Description Log(q-value)

ALL Ellipse – R-RNO-168249 Innate immune system − 17.2

GO:0050778 positive regulation of immune response − 15.4

GO:0002252 immune effector process − 12.9

MCODE_1 Diamond C3ar1 Ccl27 Pf4 S1pr3 Cxcl16 Hebp1 
Gngt2 Anxa1 Gng13

R-RNO-418594 G alpha (i) signalling events − 16.9

R-RNO-500792 GPCR ligand binding − 15.5

R-RNO-388396 GPCR downstream signalling − 14.7

MCODE_2 Rectangle Itgb2 Cybb Cyba Vav1 Cd53 Cmtm6 Stk10 rno04670 Leukocyte transendothelial migration − 7.2

ko04670 Leukocyte transendothelial migration − 7.2

GO:0042554 superoxide anion generation − 6.2

MCODE_3 Triangle Shc1 Ptpn6 Inpp5d Lyn Cblb Lcp2 WP147 Kit receptor signaling pathway − 11.4

R-RNO-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling − 9.8

R-RNO-21099 PECAM1 interactions − 8.6
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then intersected with the intersection of DEGs to obtain 
206 candidate genes. At this time, the functional enrich-
ment analysis and PPI analysis of these candidate genes 
were conducted to analyze the possible potential inter-
actions and potentially significant molecular regulatory 
network mechanisms between DEGs-encoded proteins, 
and the results showed that the candidate genes were 
mainly related to the production of cellular inflamma-
tory tumor necrosis factor and the innate immune regu-
latory response. Studies have shown that identification 
of various immune responses, including activation of 
the complement system, induction of innate and adap-
tive immune responses, and antibody production [37, 38] 
based on GO functional analysis is the most significantly 

upregulated biological process during acute SCI. This 
study also showed the same results during subacute SCI, 
indicating that inflammatory injury is still dominant in 
subacute SCI. The results of temporal dynamic clustering 
analysis showed that the expression patterns of 206 can-
didate genes were mainly Cluster 1 which continuously 
showed high expression over time and Cluster 3 which 
always maintained a high expression level and the expres-
sion level did not significantly change over time. Besides, 
the main hub nodes in PPI were Cluster 1 and Cluster 3 
with up-regulated DEGs, while only five genes in Cluster 
2 were the hub nodes. The Log(q-value) value of the hub 
nodes in MCODE-1 was the largest, indicating that the 
GPCR signaling pathway played a very important role in 

Fig. 4  Heat map of 117 hub nodes in PPI. The numbers on the left represent clusters of time dynamic analysis. PPI, protein–protein interaction. PPI, 
protein–protein interaction
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subacute SCI. The peptide energy system was the most 
abundant network for human ligand receptor-mediated 
signaling, which has been widely studied in inflamma-
tion. It has been shown that the GPCR ligand promotes 
neuroinflammation in central nervous system diseases 
[39], which supports our findings. It is well known that 
the cross-endothelial migration of leukocytes is an indis-
pensable link in tissue inflammation, so the results in 
MCODE-2 also indicate this point. In addition, the Kit 
receptor and cytokine-related signaling pathways in 
MCODE-3 have been widely studied in inflammatory 
mechanisms, and it has been shown to play a role in the 
peripheral nervous inflammation mechanism [40].

According to MCODE-degree and cluster-score, 
twelve hub genes were screened and verified by RT-PCR. 
The results showed that the relative expression levels 
of seven hub genes, namely Itgb1, Ptprc, Cd63, Lgals3, 
Vav1, Shc1, and Casp4, were consistent with microar-
ray hybridization. It is worth mentioning that all of them 
were related to the activation process of microglia. As is 
known to all, activated microglia are the key factors for 
the occurrence and development of SCI [41–43]. Itgb1 
belongs to the family of adhesion molecules, and its sig-
nal transmission is bidirectional, including cell polarity 
change, regulation of movement, gene expression, and 
other mechanisms. The "internal–external" and "external-
internal" signal regulation are closely related and affect 
each other [44]. Studies have shown that Itgb1 is widely 
expressed in the nervous system and may play a central 
role in physiological processes [45]. Moreover, abnormal 
expression of Itgb1 is related to neuropathic pain, inflam-
mation, and malignant diseases due to peripheral nerve 
injury [46]. Meanwhile, a recent study has pointed out 
that the administration of anti-Itgb1 antibody (β1-Ab) in 

the subacute SCI successfully prevented glial scar forma-
tion and enhanced axonal regeneration [47]. Ptprc can be 
used as a specific marker for the activation of microglia 
[48]. After T-cell activation, Ptprc recruits and dephos-
phorylates SKAP1 and FYN, and dephosphorylates LYN, 
thereby regulating LYN activity. Cd63 acts as a cell sur-
face protein in the activation regulation of the signal-
ing cascade of cell development, activation, growth, and 
movement. Cd63 plays a role in the activation of Itgb1 
and integrin signaling, leading to the activation of AKT, 
FAK/PTK2, and MAP kinases [49]. A recent study has 
shown that the expression of Cd63 in both plasma and 
spinal cord tissues is increased after SCI in mice [50]. 
Lgals3 is involved in central nervous system inflam-
mation, including neutrophil activation and adhesion, 
chemical traction of mononuclear macrophages, regula-
tion of apoptotic neutrophils, and activation of mast cells 
[51]. Some scholars have pointed out that Lgals3 plays 
an important role in regulating microglial activation 
and neuroinflammation, serving as a biomarker of neu-
rodegenerative diseases [52]. Vav1 can mediate the Rho 
activation of JAK as a guanine nucleotide exchange fac-
tor of Rho family GTP enzymes and plays an important 
role in the development and activation of T cells and B 
cells [53]. Vav1 is highly expressed in the early reaction 
and regeneration stage of sciatic nerve injury and acti-
vates the Rac1 GTP enzyme to promote axonal regenera-
tion of DRG neurons [54]. Shc1, a downstream target of 
tumor suppressor p53, is essential for the ability of stress-
activated p53 to induce increased intracellular oxidants, 
cytochrome c release, and apoptosis. Although studies 
have suggested that Shc1 plays an important role in regu-
lating microglia polarization [55], research on Shc1 in the 
nervous system is relatively rare. Casp4 is involved in the 
activation of inflammatory bodies and has been widely 
studied. An Alzheimer’s disease study pointed out that 
Casp4 regulates microglia [56] in a way that increases the 
pro-inflammatory process. Our study showed that these 
seven hub genes could be used as potential targets for 
exploring the molecular mechanisms related to the devel-
opment of subacute SCI over time and for balancing the 
injury and repair induced by SCI.

In addition, we also verified the mRNA relative expres-
sion levels of five other hub genes (Fcgr2b, S100a4, 
Lamc1, Mapk12, and Vegfa) in spinal cord tissues in the 
subacute SCI, although their results do not conform to 
the expression matrix. Fcgr2b is a low-affinity receptor 
in the Fc region of immunoglobulin γ complex, and its 
cytoplasmic domain contains an inhibitory motif (ITIM), 
which is the only inhibitory Fcg receptor. The results of 
a mouse experimental model with cerebral ischemia 
showed that the expression level of Fcgr2b of micro-
glia/macrophage activated by inflammatory reaction 

Table 5  The MCODE-degrees and the cluster-scores of 12 hub 
genes

Gene MCODE_
degree

Cluster Cluster_score Up/down

Itgb1 12 1 0.708 up

Fcgr2b 7 1 0.691 up

Ptprc 5 1 0.746 up

S100a4 4 1 0.758 up

Cd63 4 1 0.420 up

Lgals3 3 1 0.791 up

Lamc1 3 1 0.762 up

Vav1 19 3 0.503 up

Shc1 16 3 0.589 up

Casp4 3 3 0.420 up

Mapk12 15 4 0.393 down

Vegfa 11 4 0.624 down



Page 11 of 14Yan et al. BMC Neuroscience           (2022) 23:51 	

remained unchanged [57]. but the research on Fcgr2b in 
the nervous system was relatively rare, the reason why 
the relative mRNA expression level of Fcgr2b increased 
in the early stage of subacute SCI but decreased in the 
advanced stage needs to be further explored. S100a4 is 
a calcium-binding protein. It plays a role in a variety of 
cellular processes, including motility, angiogenesis, cell 
differentiation, apoptosis, and autophagy [58]. Lamc1 
belongs to the extracellular matrix glycoprotein family 
and is the major non-collagen component of the base-
ment membrane. They are related to various biologi-
cal processes, including cell adhesion, differentiation, 

migration, signal transduction, neurite outgrowth, and 
metastasis [59]. In this study, there was no statistical dif-
ference between the 7-day after subacute SCI group and 
the sham operation group possibly due to sample size. 
Mapk12 plays a vital role in cellular processes, involv-
ing inflammation, cell growth, cell differentiation and 
cell cycle action [60]. Vegfa is able to inhibit apoptosis 
and induce endothelial cell proliferation, promote cell 
migration, and axonal regeneration [61]. RT-PCR veri-
fication showed that their expression levels decreased 
when stimulated by inflammatory injury, but increased 
when the disease progressed due to regeneration and 

Fig. 5  Violin plot of the normalized expression levels of 12 hub genes based on the combined expression matrix
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repair of the injury site. Further experimental studies are 
needed to explain the mechanism of why the expression 
matrix is inconsistent with RT-PCR verification. This is 
also a limitation of our study. In our study, the predictive 
results were mainly based on bioinformatics analysis, and 
the research sample was from rats but not humans, so 
clinical and relevant biological experiments are needed to 
further explore and prove the action mechanism of cen-
tral genes. To sum up, our study provides some meaning-
ful insights into the disease progression mechanisms and 
targeted therapeutic strategies for subacute SCI patients, 
and helps to develop new therapeutic strategies for SCI.

In this study, comprehensive bioinformatics analysis was 
performed on the gene expression profiles of rats at three 
different time points after subacute SCI. A total of 12 hub 
genes were identified and seven hub genes with statistical 
significance in both the RT-PCR results and the expression 
matrix were identified. The biological functions and path-
ways of the identified genes provide more detailed molecu-
lar mechanisms for understanding the disease progression 
of subacute SCI. In conclusion, we have identified the hub 
genes and signaling pathways involved in subacute SCI by 
using bioinformatics methods, which may provide a molec-
ular basis for the future treatment of SCI.

Acknowledgements
We thank all the authors for their time and effort in this study, and all the 
institutions for their financial support.

Author contributions
LY conceived and designed the experiments, analyzed the data, prepared 
figures and/or tables. Data collection were performed by JF, XD, BC and HH. ZC 
contributed to the study conception and design. The first draft of the manu-
script was written by LY and all authors commented on previous versions of 
the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Science and Technology Bureau of Nantong 
Municipality under Grant No. JC2020013 and the Health Committee of Jiangsu 
Province under Grant No. ZDB2020004. The funders had no role in study 
design, data collection and analysis, decision to publish, or preparation of the 
manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article and its supplementary information files.

Declarations

Ethics approval and consent to participate
We declare that this study was conducted in accordance with ARRIVE guide-
lines, that all methods were conducted in accordance with relevant guidelines 
and regulations. All study procedures were approved by the institutional ani-
mal care and utilization committee of Laboratory Animal Center of Nantong 
University (Protocol number: S20211229-408).

Fig. 6  RT-PCR validation. a–l Relative expression levels of 12 hub genes. 5 samples per group in duplicate were analyzed using RT-PCR and 
summarized as mean average ± SE with P < 0.05. A pairwise comparison was made between the sham operation group and 3, 7, and 14 days after 
subacute SCI, a Mann–Whitney Wilcoxon’s test was performed. *P < 0.05, **P < 0.01. RT-PCR, real-time polymerase chain reaction; SCI, spinal cord 
injury; SE, standard error



Page 13 of 14Yan et al. BMC Neuroscience           (2022) 23:51 	

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 April 2022   Accepted: 1 August 2022

References
	1.	 Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O’Connor KC, Garshick 

E. Traumatic spinal cord injury in the United States, 1993–2012. JAMA. 
2015;313(22):2236–43.

	2.	 James ND, McMahon SB, Field-Fote EC, Bradbury EJ. Neuromodulation 
in the restoration of function after spinal cord injury. Lancet Neurol. 
2018;17(10):905–17.

	3.	 O’Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and 
repair. J Clin Invest. 2017;127(9):3259–70.

	4.	 Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current options for cell 
therapy in spinal cord injury. Trends Mol Med. 2017;23(9):831–49.

	5.	 Calvert JS, Grahn PJ, Zhao KD, Lee KH. Emergence of epidural electrical 
stimulation to facilitate sensorimotor network functionality after spinal 
cord injury. Neuromodulation. 2019;22(3):244–52.

	6.	 Lavis T, Goetz LL. Comprehensive care for persons with spinal cord injury. 
Phys Med Rehabil Clin N Am. 2019;30(1):55–72.

	7.	 Thomaz SR, Cipriano G Jr, Formiga MF, Fachin-Martins E, Cipriano GFB, 
Martins WR, Cahalin LP. Effect of electrical stimulation on muscle atrophy 
and spasticity in patients with spinal cord injury - a systematic review 
with meta-analysis. Spinal Cord. 2019;57(4):258–66.

	8.	 Stahel PF, VanderHeiden T, Finn MA. Management strategies for acute 
spinal cord injury: current options and future perspectives. Curr Opin Crit 
Care. 2012;18(6):651–60.

	9.	 Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: 
an overview of pathophysiology, models and acute injury mechanisms. 
Front Neurol. 2019;10:282.

	10.	 Tran AP, Warren PM, Silver J. The biology of regeneration failure and suc-
cess after spinal cord injury. Physiol Rev. 2018;98(2):881–917.

	11.	 Beattie MS, Li Q, Bresnahan JC. Cell death and plasticity after experimen-
tal spinal cord injury. Prog Brain Res. 2000;128:9–21.

	12.	 Blight AR. Spinal cord injury models: neurophysiology. J Neurotrauma. 
1992;9(2):147–9.

	13.	 Grossman SD, Rosenberg LJ, Wrathall JR. Relationship of altered gluta-
mate receptor subunit mRNA expression to acute cell loss after spinal 
cord contusion. Exp Neurol. 2001;168(2):283–9.

	14.	 Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a compre-
hensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57.

	15.	 Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, 
Padr R, Neuwirth J, Komrska V, Vavra V, et al. Autologous bone marrow 
transplantation in patients with subacute and chronic spinal cord injury. 
Cell Transplant. 2006;15(8–9):675–87.

	16.	 Gensel JC, Zhang B. Macrophage activation and its role in repair and 
pathology after spinal cord injury. Brain Res. 2015;1619:1–11.

	17.	 Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury 
and repair in the traumatically injured spinal cord. Curr Pharm Des. 
2005;11(10):1223–36.

	18.	 Rust R, Kaiser J. Insights into the dual role of inflammation after spinal 
cord injury. J Neurosci. 2017;37(18):4658–60.

	19.	 Ortuno FM, Torres C, Glosekotter P, Rojas I. New trends in biomedical 
engineering and bioinformatics applied to biomedicine - special issue of 
IWBBIO 2014. Biomed Eng Online. 2015;14(Suppl 2):I1.

	20.	 Duran RC, Yan H, Zheng Y, Huang X, Grill R, Kim DH, Cao Q, Wu JQ. The 
systematic analysis of coding and long non-coding RNAs in the sub-
chronic and chronic stages of spinal cord injury. Sci Rep. 2017;7:41008.

	21.	 Du H, Shi J, Wang M, An S, Guo X, Wang Z. Analyses of gene expression 
profiles in the rat dorsal horn of the spinal cord using RNA sequencing in 
chronic constriction injury rats. J Neuroinflammation. 2018;15(1):280.

	22.	 Guo L, Lv J, Huang YF, Hao DJ, Liu JJ. Bioinformatics analyses of differen-
tially expressed genes associated with spinal cord injury: a microarray-
based analysis in a mouse model. Neural Regen Res. 2019;14(7):1262–70.

	23.	 Liu ZG, Li Y, Jiao JH, Long H, Xin ZY, Yang XY. MicroRNA regulatory 
pattern in spinal cord ischemia-reperfusion injury. Neural Regen Res. 
2020;15(11):2123–30.

	24.	 Niu SP, Zhang YJ, Han N, Yin XF, Zhang DY, Kou YH. Identification of 
four differentially expressed genes associated with acute and chronic 
spinal cord injury based on bioinformatics data. Neural Regen Res. 
2021;16(5):865–70.

	25.	 Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of regeneration 
and hub genes and pathways at different time points after spinal cord 
injury. Mol Neurobiol. 2021;58(6):2643–62.

	26.	 Siebert JR, Middelton FA, Stelzner DJ. Intrinsic response of thoracic propri-
ospinal neurons to axotomy. BMC Neurosci. 2010;11:69.

	27.	 Chamankhah M, Eftekharpour E, Karimi-Abdolrezaee S, Boutros PC, San-
Marina S, Fehlings MG. Genome-wide gene expression profiling of stress 
response in a spinal cord clip compression injury model. BMC Genomics. 
2013;14:583.

	28.	 Baligand C, Chen YW, Ye F, Pandey SN, Lai SH, Liu M, Vandenborne K. 
Transcriptional pathways associated with skeletal muscle changes after 
spinal cord injury and treadmill locomotor training. Biomed Res Int. 
2015;2015:387090.

	29.	 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for 
removing batch effects and other unwanted variation in high-through-
put experiments. Bioinformatics. 2012;28(6):882–3.

	30.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics. 2008;9:559.

	31.	 Kumar L. M EF: Mfuzz: a software package for soft clustering of microarray 
data. Bioinformation. 2007;2(1):5–7.

	32.	 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, 
Benner C, Chanda SK. Metascape provides a biologist-oriented resource 
for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

	33.	 Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in 
protein networks. Nature. 2001;411(6833):41–2.

	34.	 Schmidt E, Raposo P, Vavrek R, Fouad K. Inducing inflammation following 
subacute spinal cord injury in female rats: a double-edged sword to 
promote motor recovery. Brain Behav Immun. 2021;93:55–65.

	35.	 Li D, Dossa K, Zhang Y, Wei X, Wang L, Zhang Y, Liu A, Zhou R, Zhang X. 
GWAS uncovers differential genetic bases for drought and salt tolerances 
in sesame at the germination stage. Genes. 2018;9(2):87.

	36.	 Shi K, Bing ZT, Cao GQ, Guo L, Cao YN, Jiang HO, Zhang MX. Identify the 
signature genes for diagnose of uveal melanoma by weight gene co-
expression network analysis. Int J Ophthalmol. 2015;8(2):269–74.

	37.	 Pineau I, Lacroix S. Proinflammatory cytokine synthesis in the injured 
mouse spinal cord: multiphasic expression pattern and identification of 
the cell types involved. J Comp Neurol. 2007;500(2):267–85.

	38.	 de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. A 
molecular platform in neurons regulates inflammation after spinal cord 
injury. J Neurosci. 2008;28(13):3404–14.

	39.	 Dusaban SS, Purcell NH, Rockenstein E, Masliah E, Cho MK, Smrcka AV, 
Brown JH. Phospholipase C epsilon links G protein-coupled receptor 
activation to inflammatory astrocytic responses. Proc Natl Acad Sci U S A. 
2013;110(9):3609–14.

	40.	 Trias E, Kovacs M, King PH, Si Y, Kwon Y, Varela V, Ibarburu S, Moura IC, 
Hermine O, Beckman JS, et al. Schwann cells orchestrate peripheral nerve 
inflammation through the expression of CSF1, IL-34, and SCF in amyo-
trophic lateral sclerosis. Glia. 2020;68(6):1165–81.

	41.	 Brockie S, Hong J, Fehlings MG. The role of microglia in modulating neu-
roinflammation after spinal cord injury. Int J Mol Sci. 2021;22(18):9706.

	42.	 Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage 
metabolism in CNS injury and disease: The role of immunometabolism in 
neurodegeneration and neurotrauma. Exp Neurol. 2020;329:113310.

	43.	 Mesquida-Veny F, Del Rio JA, Hervera A. Macrophagic and microglial 
complexity after neuronal injury. Prog Neurobiol. 2021;200:101970.

	44.	 Askari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, 
Humphries MJ. Focal adhesions are sites of integrin extension. J Cell Biol. 
2010;188(6):891–903.

	45.	 Barros CS, Nguyen T, Spencer KS, Nishiyama A, Colognato H, Muller U. 
Beta1 integrins are required for normal CNS myelination and promote 
AKT-dependent myelin outgrowth. Development. 2009;136(16):2717–24.

	46.	 Previtali SC, Feltri ML, Archelos JJ, Quattrini A, Wrabetz L, Hartung H. 
Role of integrins in the peripheral nervous system. Prog Neurobiol. 
2001;64(1):35–49.



Page 14 of 14Yan et al. BMC Neuroscience           (2022) 23:51 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	47.	 Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima 
K, Yoshizaki S, Harimaya K, Nakashima Y, et al. Interaction of reactive 
astrocytes with type I collagen induces astrocytic scar formation through 
the integrin-N-cadherin pathway after spinal cord injury. Nat Med. 
2017;23(7):818–28.

	48.	 Li Y, Zhou D, Ren Y, Zhang Z, Guo X, Ma M, Xue Z, Lv J, Liu H, Xi Q, et al. 
Mir223 restrains autophagy and promotes CNS inflammation by target-
ing ATG16L1. Autophagy. 2019;15(3):478–92.

	49.	 Estebanez B, Jimenez-Pavon D, Huang CJ, Cuevas MJ, Gonzalez-Gallego 
J. Effects of exercise on exosome release and cargo in in vivo and ex vivo 
models: a systematic review. J Cell Physiol. 2021;236(5):3336–53.

	50.	 Khan NZ, Cao T, He J, Ritzel RM, Li Y, Henry RJ, Colson C, Stoica BA, Faden 
AI, Wu J. Spinal cord injury alters microRNA and CD81+ exosome levels 
in plasma extracellular nanoparticles with neuroinflammatory potential. 
Brain Behav Immun. 2021;92:165–83.

	51.	 Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill 
E, Szele FG. Novel galectin-3 roles in neurogenesis inflammation and 
neurological diseases. Cells. 2021;10(11):3047.

	52.	 Tan Y, Zheng Y, Xu D, Sun Z, Yang H, Yin Q. Galectin-3: a key player in 
microglia-mediated neuroinflammation and Alzheimer’s disease. Cell 
Biosci. 2021;11(1):78.

	53.	 Montresor A, Bolomini-Vittori M, Toffali L, Rossi B, Constantin G, Laudanna 
C. JAK tyrosine kinases promote hierarchical activation of Rho and Rap 
modules of integrin activation. J Cell Biol. 2013;203(6):1003–19.

	54.	 Wang Q, Gong L, Mao S, Yao C, Liu M, Wang Y, Yang J, Yu B, Chen G, Gu X. 
Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve 
injury. Exp Neurol. 2021;343:113788.

	55.	 Peng J, Pang J, Huang L, Enkhjargal B, Zhang T, Mo J, Wu P, Xu W, Zuo 
Y, Peng J, et al. LRP1 activation attenuates white matter injury by 
modulating microglial polarization through Shc1/PI3K/Akt pathway after 
subarachnoid hemorrhage in rats. Redox Biol. 2019;21:101121.

	56.	 Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J, 
Dickstein DL, Bozdagi O, Zhang B, Buxbaum JD. The human-specific 
CASP4 gene product contributes to Alzheimer-related synaptic and 
behavioural deficits. Hum Mol Genet. 2016;25(19):4315–27.

	57.	 Mota M, Porrini V, Parrella E, Benarese M, Bellucci A, Rhein S, Schwaninger 
M, Pizzi M. Neuroprotective epi-drugs quench the inflammatory response 
and microglial/macrophage activation in a mouse model of permanent 
brain ischemia. J Neuroinflammation. 2020;17(1):361.

	58.	 Li ZH, Bresnick AR. The S100A4 metastasis factor regulates cellular motility 
via a direct interaction with myosin-IIA. Cancer Res. 2006;66(10):5173–80.

	59.	 Ustun Y, Reibetanz M, Brachvogel B, Nischt R, Eckes B, Zigrino P, Krieg T. 
Dual role of laminin511 in regulating melanocyte migration and differen-
tiation. Matrix Biol. 2019;80:59–71.

	60.	 Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The role of p38gamma in 
cancer: from review to outlook. Int J Biol Sci. 2021;17(14):4036–46.

	61.	 Cattin AL, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJ, Gar-
cia Calavia N, Guo Y, McLaughlin M, Rosenberg LH, Quereda V, et al. 
Macrophage-induced blood vessels guide schwann cell-mediated 
regeneration of peripheral nerves. Cell. 2015;162(5):1127–39.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of hub genes in the subacute spinal cord injury in rats
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Materials and methods
	Download expression matrix data
	Data preprocessing and identification of DEGs
	Weighted correlation network analysis (WGCNA)
	Time dynamic clustering analysis
	Protein–protein interaction network (PPI)
	Comparison of expression of candidate genes and real-time polymerase chain reaction (RT-PCR)
	Data analysis

	Results
	Data preprocessing and identification of DEGs
	WGCNA of the union of DEGs
	Functional enrichment analysis of candidate genes
	Temporal dynamic clustering analysis and PPI analysis of candidate genes
	Comparison of hub genes expression levels and RT-PCR verification

	Discussion
	Acknowledgements
	References




