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Abstract 

Background:  Globally, tobacco use causes approximately 6 million deaths per year, and predictions report that with 
current trends; more than 8 million deaths are expected annually by 2030. Cigarette smokings is currently account-
able for more than 480,000 deaths each year in United States (US) and is the leading cause of preventable death in 
the US. On average, smokers die 10 years earlier than nonsmokers and if smoking continues at its current propor-
tion among adolescents, one in every 13 Americans aged 17 years or younger is expected to die prematurely from 
a smoking-related illness. Even though there has been a marginal smoking decline of around 5% in recent years 
(2005 vs 2015), smokers still account for 15% of the US adult population. What is also concerning is that 41,000 out of 
480,000 deaths results from secondhand smoke (SHS) exposure. Herein, we provide a detailed review of health com-
plications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic 
and plasma protein changes associated with chronic smoking. Further, we discuss prophylactic interventions and 
associated benefits and provide a rationale for the scope of clinical treatment.

Conclusions:  Considering these premises, it is evident that much detailed translational and clinical studies are 
needed. Factors such as the length of smoking cessation for ex-smokers, the level of smoke exposure in case of SHS, 
pre-established health conditions, genetics (and epigenetics modification caused by chronic smoking) are few of the 
criteria that need to be evaluated to begin assessing the prophylactic and/or therapeutic impact of treatments aimed 
at chronic and former smokers (especially early stage ex-smokers) including those frequently subjected to second 
hand tobacco smoke exposure. Herein, we provide a detailed review of health complications and major pathologi-
cal mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes 
associated with chronic smoking. Further, we discuss about prophylactic interventions and associated benefits and 
provide a rationale and scope for clinical treatment.
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Annual deaths of more than 480,000 in US due to ciga-
rette smoking can be statistically categorized as follows: 
lung cancer ~  29%, other cancers ~  8%, ischemic heart 
disease ~  28%, chronic obstructive pulmonary disease 
(COPD) ~ 21%, stroke ~ 4% and other diagnoses ~ 10% 
[1]. Further, for every person dying due to smoking, there 

are ~  30 people with a severe smoking-related illness 
[2]. Out of the many deaths associated with CS, around 
40,000 are due to second hand smoke (SHS) exposure 
[2]. Epidemiologically, nearly 16.7% adult men and 13.6% 
adult women smoke, and around 17% of them fall in the 
age group of 25–64 years. Ethnically, cigarette smoking is 
highest among non-Hispanic American Indians/Alaska 
Natives and people of multiple races, while it is the low-
est among Asians.

Tobacco addiction and dependence make it impor-
tant to ensure that both effective behavioral and 
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pharmacological cessation treatments are made available 
to smokers who want to quit [3]. The Fagerstrom test for 
nicotine dependence helps understanding the severity 
of addiction. The higher the total Fagerström score, the 
more intense is the patient’s physical dependence on nic-
otine. Clinically, treatments targeting different aspects of 
nicotine addiction, such as reinforcement, withdrawal, 
and cue-associated learning ranging from complete ces-
sation to substitution with less harmful products are 
enforced accordingly. Pharmacologic intervention such 
as nicotine replacement therapy include the use of both 
over the counter and prescription products like nicotine 
patch, gum, lozenges, inhalers and nasal sprays. Pre-
scription non-nicotine medications such as bupropion 
(inhibits norepinephrine and dopamine reuptake) and 
varenicline tartrate (a partial α4β2 agonist) have also 
been found to be effective for quitting [3–6]. Counseling 
is often combined with medication and the combination 
has been found to be more effective for treating tobacco 
dependence than either medication or counseling alone. 
Smoking cessation reduces the risk of several associated 
health disorders. According to the Centers for Disease 
Control and Prevention (CDC), 1  year of smoking ces-
sation significantly decreases the risk of heart attack and 
stroke. The risk for lung cancer drops by half, 10  years 
after quitting smoking [3–6]. However, many stud-
ies report that quitting smoking after 45  years of age 
does not have any beneficial health effect and does not 
decrease the risks for cardiovascular and other diseases 
associated with CS [7].

The Food and Nutrition Board of the National Acad-
emy of Sciences recommends a higher dietary allowance 
(RDA) of vitamin C for smokers (35 mg/day more com-
pared to non-smokers) [8]. However, the health benefit 
and overall impact of this regimen on chronic smokers 
is still uncertain. As for the prophylactic treatment with 
other antioxidants, the results are quite controversial and 
highly dependent upon the experimental settings, purity 
of the agent/s and regimen of administration [9–13]. 
Laboratory studies have reported beneficial effects of a 
number of popular antioxidants and health supplements 
emphasizing their reactive oxygen species (ROS) scav-
enging and/or anti-inflammatory properties [14, 15] such 
as vitamins, resveratrol, melatonin, lipoic acid, etc. with-
out taking into consideration their impact on the growth 
and proliferation of the cancerous cells [16]. In contrast, 
some clinical studies evaluating the health benefits of 
vitamins and antioxidants in smokers have shown mixed 
results including beneficial effects and instances where 
no changes were observed. These studies have been dis-
cussed in this paper. Unfortunately, no guidelines exist 
for clinical treatment for these patients (ex-smokers) or 
people exposed to SHS to alleviate the health impact of 

smoking. Clinical treatment only begins upon the mani-
festation of a challenging chronic disease such as cancer, 
diabetes and others.

This review paper discusses upon the health compli-
cations due to cigarettes smoking and the mechanisms 
involved in those pathophysiological complications. It 
further elaborates upon the current status of prophylactic 
interventions in smokers, thereby leading the discussion 
to the necessity and scope for therapeutic intervention in 
smokers including those exposed to SHS.

Discussion
Cigarette smoke composition
Tobacco smoke from a burning cigarette is a highly con-
centrated aerosolized collection of chemical particles 
ranging from aromatic amines, nitrosamines, aza-amines, 
ammonia, pyridine, acrolein to nicotine and many oth-
ers. Addiction to tobacco smoking is primarily caused by 
nicotine. However, recent studies have also shown that 
non-nicotine components in tobacco such as anabasine, 
anatabine and norharmane have addictive properties (by 
acting as a monoamine oxidase inhibitor) on their own 
and can further reinforce that of nicotine. Tobacco smoke 
contains more than 7000 chemicals including 69 differ-
ent carcinogens as well as a number of oxidative elements 
which can severely impact cells and tissue function and 
are prodromal to the onset of major health disorders [4, 
5, 7].

Chemicals in cigarette smoke may be present in either 
particulate phase, the gas phase or a combination of 
both. The gas phase primarily contains sufficiently vola-
tile chemical constituents such as hydrocarbons, nitrosa-
mines, carbonyl compounds and gases such as nitrogen 
(N2), oxygen (O2), carbon dioxide (CO2), CO, hydro-
gen cyanide (HCN), hydrogen sulfide, acetaldehyde, 
methane, ammonia and others. The particulate phase 
contains water, phenols, humectants, carboxylic acids, 
terpenoids, paraffin waxes, catechols, polycyclic aro-
matic hydrocarbons (PAHs), tobacco-specific nitrosa-
mines (TSNAs) and alkaloids such as nicotine, anatabine 
and others. In summary, combustion of a cigarette deliv-
ers toxic, carcinogenic and addictive compounds to the 
smokers [7].

Health complications and major pathological mechanisms
Smokers in comparison to non-smokers are 2–4 times 
more likely to suffer from coronary heart disease and 
stroke and approximately 25 times more likely to develop 
lung cancer. Further, smoking has been associated with 
the onset of diabetes mellitus (DM), rheumatoid arthritis, 
pneumonia, asthma, blindness, hardening of the arteries, 
reduced fertility and impairment of the immune system 
leading to enhanced risk and progression of infections 
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of all kinds. The risk of developing diabetes is 30–40% 
higher for smokers in comparison to non-smokers and 
the impact is dependent upon the number of cigarettes 
smoked. Smoking during pregnancy increases the risk of 
ectopic pregnancy, preterm delivery, stillbirth, low birth 
weight, orofacial clefts in infants and sudden infant death 
syndrome [4, 17].

Cigarette smoking is a prodromal risk factor for numer-
ous cerebrovascular and neurological disorders includ-
ing stroke, Alzheimer’s [18], depression [7, 18], cognitive 
impairment and vascular dementia [19]. The negative 
cerebrovascular and neurological impact of smoking is 
largely due to ROS generated upon tobacco smoking [20, 
21], consequent inflammation [22] and blood–brain bar-
rier (BBB) impairment [23]. As a matter of fact smoking 
during pregnancy impacts the cerebrovascular develop-
ment in the fetus [4, 7].

The pathological impact of tobacco smoke involves four 
major mechanisms, namely mutation, inflammation, oxi-
dative stress and hemodynamic changes, which we will 

elaborately discuss in the following topics (see also the 
schematic in Fig. 1).

(a)	 Smoking and mutation

Each puff of a cigarette contains several carcinogens 
belonging to multiple chemical categories such as PAHs, 
TSNAs, aromatic amines, metals, oxidants and free radi-
cals that cause genotoxicity leading to eventual develop-
ment of invasive cancers from healthy normal tissues 
[24]. These carcinogens undergo metabolic detoxification 
catalyzed by a variety of enzymes such as glutathione-
S-transferases (GSTs), uridine-5′-disphosphate-
glucuronosyltransferases (UGTs), epoxide hydrolases, 
and sulfatases. These carcinogens may also undergo 
metabolic activation by the action of P450 enzymes 
to forms that covalently bind to DNA and form DNA 
adducts. However, some carcinogens can form DNA 
adducts without any activation. These DNA adducts are 
regularly removed by the cellular repair mechanisms. 

Fig. 1  Proposed mechanisms for the toxicity observed due to cigarette-smoking. A combination of alterations/activation of various oxidation 
stress, inflammatory pathways and vascular changes accompany the beginning and progression of CS-induced vascular and cerebrovascular com-
plications. Mutations in oncogenes play a major role in CS-induced cancers
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Nevertheless, persistent formation of DNA adducts can 
cause miscoding which can eventually result in accumu-
lation of permanent somatic mutations in critical genes 
(oncogenes and tumor-suppressor genes) leading to loss 
of normal growth mechanisms. The individual’s balance 
between the metabolic detoxification and activation of 
carcinogens vary and contributes to the differential path-
ological response in smokers with some developing can-
cer in just a couple of months while others taking years 
of chronic exposure to develop any pathology [7, 24, 25].

TP53 gene mutations have been reported in around 
40% of human lung cancers and are observed to be more 
common in smokers in comparison to nonsmokers. On 
similar lines, KRAS gene mutation has been reported in 
approximately 30–40% of adenocarcinomas but rarely 
in squamous cell carcinoma, small cell lung cancer or 
tumors from non-smokers. TP53 gene acts as a tumor 
suppressor gene by sensing DNA damage and by play-
ing a critical role in cell-cycle checkpoints, DNA repair, 
apoptosis and senescence. Studies have reported muta-
tions in TP53 and other critical tumor suppressor genes 
such as RB, CHFR, MYO18B, PTEN and LKB1, resulting 
in a loss of their function, thereby leading to immortali-
zation of bronchial epithelial cells. This is paralleled by 
activation of oncogenes such as KRAS leads to the dis-
ruption of several cellular pathways such as transcrip-
tion, translation, cytoskeletal organization and cell–cell 
interactions, thus promoting neoplastic transformation 
[7, 24–26].

(b)	 Smoking and inflammation

Studies demonstrate that tobacco smoke activates pro-
inflammatory/inflammatory pathways as evidenced by 
increased counts of circulating leukocytes and its adhe-
sion to blood vessel walls, C-reactive protein, and acute-
phase reactants such as fibrinogen [27–29]. These are due 
to both nicotine and other non-nicotine contents of the 
cigarettes. Studies report that nicotine acts as a chemo-
tactic agent for migration of neutrophils besides increas-
ing leukocyte adhesion to micro endothelium. Nicotine 
also acts by inducing the expression of a variety of proin-
flammatory cytokines such as Interleukins 6, 12 in vari-
ety of cells. Nicotine has also been reported to stimulate 
dendritic cells for enhanced proliferation of T cells and 
cytokines [7]. Further, these changes are augmented by 
the generation of ROS and other chemical forms result-
ing from the combustion of both nicotine and non-
nicotine contents present in a cigarette. Immunologic 
mechanisms includes a greater Th2/Th1 ratio to increase 
the production of IgE, leading to greater allergic sensiti-
zation [30]. Lately, increasing evidence report T-helper 
2 (Th2) cells activation upon smoke exposure and that 

it positively impacts the regulation of cytokines such as 
IL-4, IL-5, and IL-13 [31, 32]. These have been suggested 
to be responsible for increases in the frequency and 
severity of asthma-related exacerbations due to smoke 
exposure [33, 34].

An important mechanism by which smoking pro-
duces an inflammatory response is the activation of the 
NF-κB pathway which results in enhanced transcription 
of many genes involved in immune regulation. Activation 
of NF-κB by smoke also induces the protein expression 
of adhesion molecules besides promoting the migra-
tion of macrophages [35]. However, prolonged exposure 
to CS has been shown to have no effects on inflamma-
tory mediators such as VCAM-1, ICAM-1 and cytokines 
in  vivo [36, 37]. A decrease in endurance capacity and 
systemic inflammation has also been reported upon pro-
longed smoke exposure in mice [38]. Overall, the initial 
stimulation of inflammatory mechanisms followed by 
a loss of activation in immune responses correlates well 
with reports that smokers suffer from a compromised 
immunity and are highly susceptible to infections.

(c)	 Smoking and oxidative stress

Oxidants and electrophiles arising from internal metab-
olism and xenobiotic sources play an important role in 
maintaining physiological functions, cell signaling and 
cellular defense mechanisms. However, excessive genera-
tion of ROS by both internal (such as DM) and external 
factors (such as tobacco smoke—TS) initiates events such 
as anti-oxidant depletion, lipid peroxidation, and cellular 
toxicity thereby creating a state of redox imbalance [39]. 
A growing body of evidence indicates that oxidants and 
electrophiles are among the principal mediators involved 
in the initiation and progression of several vascular and 
cerebrovascular diseases, such as chronic inflammatory 
disease, stroke, neurodegenerative diseases such Alz-
heimer’s, Parkinson’s and amyotrophic lateral sclerosis 
(ALS), and aging [39–44]. Cells counteract ROS and oxi-
dative stress by action of: (a) housekeeping enzymes such 
as catalase, superoxide dismutase, glutathione peroxi-
dase; (b) direct antioxidants such as glutathione, ascorbic 
acid, tocopherols and; (c) indirect antioxidants consisting 
of a wide range of chemicals/natural agents that are capa-
ble of inducing cytoprotective responses [45]. Under nor-
mal conditions, ROS is scavenged or converted into less 
reactive molecules by the intracellular action of superox-
ide dismutase (SOD), catalase, glutathione (GSH) peroxi-
dase [46] or (extracellular) antioxidant vitamins such as 
ascorbic acid (vitamin C), and α-tocopherol (vitamin E) 
[47–50]. However, both active and passive smoking can 
generate ROS beyond the levels which human body can 
effectively eliminate. Supporting this fact, several studies 
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have shown that chronic smokers suffer from antioxidant 
shortage due to its increased mobilization to combat 
systemic oxidative stress evoked by ROS-enriched CS. 
Further, the oxidation and inflammation induced by CS 
in animals and cells are reduced on antioxidant supple-
mentation [20, 51, 52]. A recent study in our lab dem-
onstrated that CSE contains high concentrations of NO 
and hydrogen peroxide which corresponded with signifi-
cant increase in cellular oxidative stress (measured using 
CellROX® Green Reagent). Significant upregulation of 
culture medium level of proinflammatory cytokines (IL-
6, MMP-2) was also observed [53]. These events can lead 
to potential oxidative damage to vascular system and the 
endothelium over a period of sustained exposure to CS 
(e.g., chronic smokers) and facilitate the pathogenesis 
and progression of vascular disorders [7].

The DNA regulatory sequence accountable for stimula-
tion by indirect antioxidant pathway inducers was iden-
tified as an antioxidant response element (ARE), while 
Nrf2 was subsequently recognized as the xenobiotic-
activated receptor (XAR) major regulator responsible 
for the activation of ARE-dependent drug metabolizing 
enzymes [39]. In normal cells, Nrf2 is kept at low levels 
in cytoplasm by constitutive synthesis and degradation, 
which upon activation translocates into the nucleus and 
binds to the ARE loci. This results into the transcriptional 
activation of several antioxidant genes such as phase I/
II detoxification (including cytochrome P450s), efflux 
transporters (classified as Phase III detoxificants) and 
antioxidant based systems involving glutathione, thiore-
doxin and others [54, 55] (see also Fig.  2). Nrf2-ARE 
pathway has been reported to be activated upon acute 
CS exposure, while its deficiency in mice leads to the 
development of extensive emphysemas following chronic 
CS exposure for 6  months [39]. A dysfunctional Nrf2 
system (low levels, epigenetic changes and mutations) 
has been linked to elevated risk to develop both vascu-
lar diseases such as diabetes, cancer, COPD (regular and 
CS-induced) and chronic neurovascular diseases such as 
Parkinson’s disease (PD), Alzheimer’s disease (AD) and 
ALS [39, 42]. Our recent study in C57/BL6 mice exposed 
to CS for 1 month revealed significant downregulation in 
Nrf2 and its downstream protein NQO-1 levels in total 
brain homogenates [36], indicating a similarity in Nrf2 
deficiency observed in lungs upon chronic CS exposure.

(d)	 Smoking, hemodynamic and plasma protein changes

Nicotine activates the sympathetic nervous system 
thereby causing an increase in blood pressure and heart 
rate. Cryer and colleagues observed increases in plasma 
epinephrine (around 150%, from 44 to 113  pg/mL) and 
norepinephrine levels (from 227 to 315 pg/mL) paralleled 

with positive chronotropic and inotropic changes in 
smokers soon after smoking. They further reported that 
these increases in heart rate and blood pressure were 
eliminated upon pretreatment with α and β-receptor 
blockers, validating the relation between smoking and 
sympathetic nervous system response [56]. Smokers in 
comparison to non-smokers have higher levels of triglyc-
erides, very low density lipoprotein (VLDL), APO B, oxi-
dative modification of LDL cholesterol (LDLc) and lower 
levels of high-density lipoprotein cholesterol (HDLc) and 
APO A-I [57–60]. These alterations in lipid metabolism 
are detrimental and support the progression of athero-
genic dyslipidemia associated with cigarette smoking [7]. 
In addition to the effects of CS on the cellular elements 
of blood, smoking alters the protein levels of procoagu-
lant and anticoagulation factors such as increased levels 
of fibrinogen; increased nitration of tyrosine residues 
on fibrinogen [29, 61], decreased thrombolysis [62] and 
decreased levels of thrombomodulin [36], thereby facili-
tating a prothrombotic state capable of inducing stroke 
or other hemorrhagic events.

Prophylactic interventions and benefits
Antioxidants such as vitamins (vitamin C and E) [63, 
64], β carotene [65, 66], coenzyme Q10 (CoQ10), mel-
atonin, glutathione, lipoic acid, resveratrol [67] have 
shown to scavenge exogenous ROS in various experi-
mental settings (cells and exposure conditions), impli-
cating decrease in oxidative stress which is prodromal 
to risk and progression of several chronic diseases 
caused independently or due to CS. Besides acting as 
direct scavengers of ROS, both vitamin C and E have 
also been reported to reduce lipid peroxidation [68, 69], 
lymphocyte production, cytokine release, cellular adhe-
sion molecule expression in monocytes [64, 70] and 
histamine release [71] due to CS exposure thereby act-
ing as an anti-inflammatory agent. Five consecutive days 
of either vitamin C or E (100  mg/kg/day) pretreatment 
completely prevented DNA single strand breaks in the 
lung, stomach and liver of male ICR mice exposed to CS 
in comparison to controls [72]. Vitamin E treatment also 
increased the activity of antioxidant enzymes such as 
superoxide dismutase, catalase and glutathione peroxi-
dase in CS exposed animals compared to untreated posi-
tive controls [73]. In another in vitro study, serum from 
eight smokers and non-smokers (age, gender matched 
with no other coronary risk factors) was added to con-
fluent monolayers of human umbilical vein endothelial 
cells with and without l-arginine or vitamin C treatment 
for 24 h. Addition of l-Arginine reversed the increase in 
monocyte-endothelial cell adhesion due to CS. However, 
this inhibition in adhesion was not observed in cells 
upon vitamin C treatment [74].
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Different degrees of protective effects were observed 
in an in  vitro study where a comparative analysis was 
made between the popular antioxidants—CoQ10, mela-
tonin, glutathione, lipoic acid and resveratrol in terms 
of decrease in the levels of cytokine release such as IL-6 
and IL-8, proinflammatory adhesion molecule expres-
sion such as VCAM-1 and PECAM-1, monocyte adhe-
sion and release of angiogenic factor VEGF. Overall, all 
the antioxidants decreased the increase in VEGF levels 

due to CS exposure and demonstrated anti-inflammatory 
effects [67]. Several beneficial effects of antioxidant sup-
plementation against CS have mostly been reported both 
in  vitro and in  vivo. However, the translational signifi-
cance of administering these antioxidants for therapeutic 
effects is the most important aspect where mostly con-
troversial results arise.

An association between smoking and low levels of 
ascorbic acid (vitamin C) in serum has been reported 

Fig. 2  Activation of the cellular antioxidative response system under normal and stress condition. a Under normal conditions, the response to 
injury is adaptive, designed to restore homoeostasis and to protect the cell from further injury. b In response to excessive oxidative stress promoted 
by chronic CS exposure, NADPH oxidase is activated, producing an excess of O2– which in the presence of nitric oxide (.NO; also abundant in CS 
and release in response to IR) results in formation of peroxinitrite (ONOO–). Furthermore, the excess of H2O2 (not neutralized by catalase or GPx) 
leads to the formation of hydroxyl radicals (OH; Fenton’s reaction). The Nrf2-ARE system becomes dysfunctional leading to imbalances in mito-
chondrial redox homeostasis and biogenesis, inflammation, vascular and cellular damage which are all prodromal to a large number of CNS and 
systemic/peripheral pathologies
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which might be due to increased metabolic demand, 
elimination and decreased absorption of ascorbic acid. 
Oral supplementation with ascorbic acid has shown to 
raise its level in smokers. Despite its increased bioavail-
ability, oral supplementation with ascorbic acid in sev-
eral studies did not improve lipid peroxidation status in 
smokers [75]. Surprisingly, in a 2-month randomized, sin-
gle-blind, placebo-controlled clinical trial, LDL oxidation 
actually worsened in smokers subsequent to supplemen-
tation [76]. However, another ascorbic acid supplementa-
tion study in smokers reported a significant decrease in 
urinary levels of 8-epi-prostaglandin (PG) F2 α (8-epi-
PGF2α), a stable product of lipid peroxidation, suggest-
ing a positive modulation of prostaglandin metabolites 
formed in the arachidonic acid pathway which can func-
tionally compensate for the increased levels of free radi-
cal stress due to smoking [77]. Yet another study revealed 
no changes in urinary excretion rate of 8-hydroxydeoxy-
guanosine (8-OHdG), a repair product of DNA used as 
a biomarker to evaluate free radical damage, in smokers 
vs. non-smokers upon ascorbic acid, Vitamin E or CoQ10 
supplementation [78].

A beta carotene and retinol efficacy trial (CARET) con-
sisting of approximately 60% current smokers and 39% 
ex-smokers (total of 18,314 male and female subjects) 
exposed to asbestos, was conducted for 4 years to evalu-
ate the therapeutic efficacy of either retinol (25,000  IU/
day) plus β-carotene (30  mg/day) or placebo [79]. On 
similar lines, another Physicians Health Study (PHS), a 
long-term randomized, double-blind, placebo-controlled 
intervention trial designed to monitor the end points of 
cancer and cardiovascular incidence and mortality in 
22,071 male physicians consisting of smokers and non-
smokers upon beta-carotene or placebo administration 
was conducted [80]. Twelve years of supplementation 
with beta carotene produced neither benefit nor harm in 
the PHS study. Interestingly, the combination of beta car-
otene and vitamin A in the CARET study had no benefi-
cial effects and may have had an adverse effect on the risk 
and death due to lung cancer, cardiovascular disease, and 
other causes in smokers and workers exposed to asbes-
tos with no explanation for the possible adverse asso-
ciations that were observed. Furthermore, these studies 
clearly negated the efficacy or safety of supplemental beta 
carotene or vitamin A in efforts to reduce the burdens of 
cancer or heart disease in certain populations especially 
smokers and recent ex-smokers [79, 80].

Unlike β-carotene and ascorbic acid which are reported 
to be low in the serum of smokers, literature suggests 
that smokers have equivalent [81, 82] or higher [83, 84] 
concentrations of α-tocopherol in comparison to non-
smokers. Despite this similarity in α-tocopherol levels, 
smokers report higher tendency for lipid peroxidation [81, 

84], suggesting a need for additional levels of vitamins in 
smokers to combat the increased levels of oxidative stress 
and its subsequent effects on lipid peroxidation. In the 
α-tocopherol, β-carotene cohort study (ATBC study) con-
ducted in 29,133 male smokers, a 19% reduction in lung 
cancer incidence was observed in the highest versus low-
est quintile of serum α-tocopherol [85]. The relationship 
between reduction in cancer incidence and α-tocopherol 
supplementation appeared stronger among younger per-
sons and among those with less cumulative smoke expo-
sure. However, a subsequent intervention study tracking 
the clinical end points of the ATBC study did not indicate 
an overall role of α-tocopherol in positively modifying 
clinical endpoints of cancer or heart disease in smokers. 
Later reports suggested alteration in metabolism and lev-
els of several other antioxidant compounds after supple-
mentation with pharmacological doses of α-tocopherol 
in smokers [84, 86–88]. With respect to cardiovascular 
disease, the α-tocopherol intervention resulted in fewer 
deaths from ischemic heart disease and ischemic stroke 
but an increased incidence and mortality from hemor-
rhagic strokes. Overall, the number of total strokes was 
not statistically different between the control and smoker 
group receiving α-tocopherol supplementation. In another 
study by Porkkala-Sarataho et al. in a population of male 
smokers with daily doses of 200 mg of RRR-α-tocopheryl 
acetate, no improvement in in vivo plasma levels of malon-
dialdehyde (MDA) was noted. However, an increase 
in  vitro lag time was noted, suggesting increased ability 
of LDL to resist oxidative stress. The combined supple-
mentation of vitamin E and C (in a 36 month follow up) 
increased the oxidation resistance of total serum lipids 
more efficiently than either supplementation alone [89].

Overall, clinical trials with vitamins have shown mixed 
results in decreasing the pathological incidences associ-
ated with smoking. Nevertheless, the increase in capa-
bility of individuals to combat oxidative stress has been 
seen. These studies have mostly evaluated certain bio-
markers such as metabolites of nicotine or in vitro assess-
ment of lipid peroxidation and clinical parameters which 
might not be the ideal way to assess the beneficial effects. 
What about the improvement in the quality of health in 
ex-smokers upon the supplementation? Lifespan increase 
and decrease in incidence of pathological conditions does 
not necessarily indicate improved health of an individual. 
Other parameters such as decreased susceptibility to 
infections or increased expression of major transcrip-
tion factors such as NF-κB and Nrf2 in RBCs or platelets 
collected during such clinical trials can better reflect the 
anti-oxidative capacity of the cells. It might be possible 
that vitamins and other anti-oxidants are capable of com-
bating exogenous ROS, but are incapable in overcoming 
the cellular damage caused due to chronic smoking.
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Rationale and scope for clinical treatment
Strangely, immunocompromised diseases such as asthma 
and other chronic ailments such as diabetes and major 
cancer took a steep rise in its occurrence in the twentieth 
century after the prevalence of smoking, alcohol and sed-
entary lifestyle came in. Although tobacco consumption 
existed from ancient times, its consumption in the form of 
cigarettes became popular after the invention of the auto-
mated cigarette making machine in 1881 by James Bon-
sack [90]. As discussed earlier, tobacco smoke can damage 
each and every part of the human body primarily due to 
mutation, inflammation, oxidative stress and other vascu-
lar changes [7]. Sadly, there is no available clinical treat-
ment for these smokers that can prevent the occurrence of 
the metabolic changes further leading to various patholo-
gies. Both active and passive smoking causes glucose intol-
erance [91] besides major pathological changes such as 
insulin resistance and high levels of glycated hemoglobin 
(HbA1c) [92] as reported in diabetic patients. On similar 
lines, proof-of-concept experiments have demonstrated 
that Nrf2 (major redox transcription factor) deficient mice 
developed early and extensive emphysema upon chronic 
CS exposure for 6 months [93] and worsened the diabetic 
phenotype in mice [94]. Further, the synthetic triterpe-
noid 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imi-
dazole (CDDO-Im), a known Nrf2 inducer, significantly 
reduced lung oxidative stress, alveolar destruction and 
emphysema caused by chronic CS exposure [95].

A cohort study of 551 patients with systolic heart fail-
ure (HF) was evaluated for all-cause mortality or urgent 
transplantation to understand the impact of statin ther-
apy in these patients. About 73% of the total cohort, 80% 
of the statin treatment group and 66% of non-treatment 
group consisted of patients with smoking history. Sta-
tin therapy was found to be associated with significantly 
improved survival free from urgent transplantation (84% 
in statin-treated and 70% in non-treated patients) in sta-
tin treated group comprising of patients with higher rates 
of hypertension, diabetes, and smoking in comparison 
to controls (left ventricular ejection fraction and choles-
terol levels were similar between treated and non-treated 
patient groups) [96]. Another cohort study evaluating the 
efficacy of statin treatment on risk of coronary heart dis-
ease in patients with familial hypercholesterolaemia was 
conducted in 2146 patients with familial hypercholester-
olaemia without prevalent coronary heart disease. In this 
study too, about 77% of treatment group and 72% of the 
non-treatment group had a smoking history. Results indi-
cated that lower statin doses than those currently advised 
reduced the risk of coronary heart disease in patients 
with familial hypercholesterolaemia [97]. These beneficial 
effects might be due to the anti-atherothrombotic and 
anti-inflammatory actions of statins. Further stains have 

also known to modulate pathologic ventricular remod-
eling and angiotensin II signaling besides normalizing 
sympatho-excitation associated with heart failure [96].

On similar lines, metformin (MF) use in diabetic 
patients has been associated with lesser risks of can-
cer occurrence [98, 99]. Molecular studies both in  vitro 
and in  vivo have also shown that metformin treatment 
ameliorates the adverse effects of CS toxicity at cerebro-
vascular level and BBB endothelial cells. MF not only 
prevented the breakdown of tight junction proteins such 
as ZO-1 and Occludin but also was observed to negate 
the decrease in Nrf-2 and Glut-1 levels, thereby restoring 
the metabolic and redox balance of the cells [36]. Met-
formin was initially reported to act through activation of 
5′ AMP-activated protein kinase (AMPK) related path-
ways. However, numerous studies have also stated many 
of its beneficial effects to be independent of AMPK acti-
vation, highlighting its therapeutic potential in context of 
several other health challenges and diseases such as car-
diovascular diseases, cancer and ageing [100]. Metformin 
has been recently reported to promote neurogenesis and 
enhance spatial memory formation indicating its thera-
peutic value for the injured or degenerating neurovas-
culature [101]. Furthermore, MF has also been shown to 
attenuate BBB disruption and decrease/inhibit ischemic 
injury upon stroke via AMPK dependent and independ-
ent (Nrf2 antioxidant pathway) mechanisms [102, 103]. 
A recent published work by our group revealead that MF 
drastically reduces the brain and cerebrovascular tox-
icity of TS while also protecting BBB integrity through 
the activation of Nrf2 [36]. Additional in  vivo evidence 
shows that MF effectively reduces the risk for stroke and 
attenuates post-ischemic brain injury promoted by TS 
and e-Cig vaping. As such, MF could be used in the pro-
phylactic care treatment to renormalize the risk levels 
of stroke immediately following smoking cessation, thus 
warranting further studies in that direction [104].

Based on these premises, further research studies 
focused on clinical treatment for smokers, ex-smokers 
and SHS is warranted. Health supplements have shown 
some beneficial effects, however, their use is rarely 
advised by physicians other than for general wellbeing 
and support of hormonal balance.

In addition, omic technologies may enable the identifi-
cation of non-invasive markers for early identification of 
smokers at higher risk for tobacco-induced lung damage, 
thus enabling the development of preventive therapeutic 
strategies [1, 105–108].

Conclusion
From a translational and clinical point of view, studies 
clearly support the idea that strategies aimed at restoring 
metabolic and redox activity hold tangible therapeutic 
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potential to reduce the burden of CS not only in chronic 
smokers but also in early stage former smokers and SHS 
who are still at high risk of developing vascular, cerebro-
vascular disorders and more severe secondary brain 
injuries than life-long non-smokers. Clinical treatment 
for smokers holds viable promises. However, there are 
several challenges towards it, namely: (1) further in-
depth understanding of mechanisms involved in CS-
induced vascular and cerebrovascular impairments; (2) 
pre-clinical and clinical evaluation of therapeutic drugs 
in preventing secondary level injury such as cerebro-
vascular stroke upon CS exposure; (3) identification of 
vascular markers in smokers, ex-smokers and second 
hand smokers that indicate a significant level of oxida-
tive stress to begin clinical regimen and; (4) identifi-
cation of conditions such as epigenetic mutations in 
smokers (Nrf2 mutation has been linked to progressive 
growth of cancerous cells upon further stimulation) that 
indicate their exclusion from clinical treatment. Genetic 
variability in the basal expression of these anti-oxidant 
genes may provide a plausible explanation in the wide 
difference between people’s responses to smoking. As 
discussed earlier, carcinogens present in CS cause muta-
tions. Mutations in these transcription factors specifi-
cally Nrf2 has been implicated in robust proliferation of 
cancerous cells [109]. For such situations, newly devel-
oping technologies such as gene editing holds substan-
tial promises.
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