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Astaxanthin protects astrocytes
against trauma-induced apoptosis
through inhibition of NKCC1 expression via the
NF-kB signaling pathway

Mingkun Zhang'?, Zhenwen Cui**!, Hua Cui', Yong Wang'" and Chunlong Zhong?'

Abstract

Background: Astaxanthin (ATX) is a carotenoid pigment with pleiotropic pharmacological properties that is seen as
a possible drug for treating cerebral ischemic injury and subarachnoid hemorrhage. Nat—K*—2CI™ co-transporter-1
(NKCC1), an intrinsic membrane protein expressed by many cell types, is activated by various insults, leading to

the formation of cell swelling and brain edema. We previously established that ATX attenuated brain edema and
improved neurological outcomes by modulating NKCC1 expression after traumatic brain injury in mice. This paper
explored the molecular mechanism of ATX-mediated inhibition of NKCC1 utilizing an in vitro astrocyte stretch injury
model.

Results: Stretch injury in cultured astrocytes lowered cell viability time-dependently, which was substantially
reducing by pretreating with ATX (50 umol/L). Stretch injury increased Bax level and cleaved caspase-3 activity, and
decreased Bcl-2 level and pro-caspase 3 activity, resulting in the apoptosis of astrocytes. Additionally, stretch injury
substantially raised the gene and protein expressions of interleukin (IL)-14, IL-6, and tumor necrosis factor (TNF)-a
and prompted the expression and nuclear translocation of NF-kB. Pretreatment with ATX remarkably prevented the
trauma-induced initiation of NF-kB, expressions of pro-inflammatory cytokines, and cell apoptosis. Moreover, stretch
injury markedly elevated the gene and protein expression of NKCC1, which was partly blocked by co-treatment with
ATX (50 pmol/L) or an NF-kB inhibitor (PDTC, 10 umol/L). Cleaved caspase-3 activity was partially reduced by PDTC
(10 umol/L) or an NKCCT1 inhibitor (bumetanide, 50 umol/L).

Conclusions: ATX attenuates apoptosis after stretch injury in cultured astrocytes by inhibiting NKCC1 expression, and
it acts by reducing the expression of NF-kB-mediated pro-inflammatory factors.
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Background

Cerebral edema is secondary to primary lesions or dys-
function of the nervous system after traumatic brain
injury (TBI). One outcome of edema is the development
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of increased intracranial pressure, which can result in
brainstem compression, brain herniation, coma, and
failure of the respiratory and/or cardiovascular systems
[1]. Edema, as well as the complications associated with
it, is responsible for up to 50% of the mortality in all vic-
tims of TBI [2]. Despite the fact that vasogenic as well as
cytotoxic mechanisms participate in TBI-related brain
edema, cytotoxic edema (intracellular swelling) prevails
in the early phase (2—24 h) of TBI, at which point astro-
cytes are the major cell type affected [3]. Although it has
been documented over the course of several years as a
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critical post-TBI issue, cerebral edema treatment strate-
gies are currently limited, and a majority of them are not
effective.

Astaxanthin (ATX), a lipophilic compound extracted
from crustaceans, algae, shellfish, and a variety of plants
[4], has strong biological effects, including antioxida-
tive, anti-inflammatory, antitumor, and immunomodu-
latory activities [5, 6]. Recently, studies have shown that
the antioxidant and anti-inflammatory effects of ATX
are beneficial for the treatment of central nervous sys-
tem diseases without causing any side effects or toxicity
[7-10]. Treatment with ATX after subarachnoid hem-
orrhage significantly downregulated increased nuclear
factor kappa B (NF-kB) activity and the expression of
inflammatory cytokines via messenger RNA transcrip-
tion and protein synthesis, leading to the amelioration of
blood-brain barrier disruption, cerebral edema, neuronal
degeneration, and neurological dysfunction [8]. We pre-
viously reported that ATX attenuated brain edema and
improved neurological outcomes in TBI mice [11]. Yet,
the molecular mechanisms underlying the ATX-depend-
ent inhibition of the cerebral edema in TBI remain poorly
understood.

The Na*-K"-2CI~ co-transporter-1 (NKCC1) is an
intrinsic membrane protein expressed in a plethora of
cell types, including astrocytes, cortical and cerebellar
neurons, oligodendrocytes, brain capillary endothelial
cells, and epithelial cells of the choroid plexus [12, 13]. It
plays a vital part in cell volume homeostasis by transport-
ing chloride, sodium and/or potassium ions, across the
plasma membranes of cells. The inappropriate activation
of NKCC1 is implicated in the formation of cell swelling
and brain edema caused by various insults, including TBI
[12, 14-16], ischemic stroke [17-19], hemorrhagic stroke
[13], and tumors [20, 21]. Edema was markedly reduced
by the cotransporter inhibitor bumetanide or genetic
deficiency [13]. The goal of this study was to elucidate
whether the neuroprotective effects of ATX are associ-
ated with alterations of NKCC1 levels using an in vitro
astrocyte stretch injury model. Furthermore, we deter-
mined whether ATX administration decreased NKCC1
expression to clarify the possible regulatory pathway.

Methods

Materials

ATX (Santa Cruz Biotechnology, Santa Cruz, CA, USA,
98% pure) was dissolved in dimethyl sulfoxide (DMSO);
the DMSO content in every group was 0.1%. Pyrroli-
dine dithiocarbamate (PDTC), a NF-kB inhibitor, was
purchased from Beyotime (Jiangsu, China) and used at
a concentration of 10 pmol/L. Bumetanide, a NKCC1-
specific inhibitor, was purchased from Sigma-Aldrich
(St. Louis, MO, USA) and used at a concentration of
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50 pmol/L [22]. Anti-NKCCI1, anti-glial fibrillary acidic
protein (GFAP) and anti-NF-kB/p65 antibodies were
purchased from Millipore (Billerica, MA, USA) and
Santa Cruz Biotechnology, respectively. Anti-pro caspase
3 antibody was purchased from Abcam (Cambridge, MA,
USA). Antibodies against Bcl-2, Bax, cleaved caspase-3,
IL-1B, IL-6, TNF-a, B-actin, p-tubulin, and Histone H3
were purchased from Cell Signaling Technology (Dan-
vers, MA, USA).

Astroglial cell culture

All experimental protocols were performed in accord-
ance with the guidelines of the Institutional Ethics Com-
mittee of Renji Hospital, Shanghai Jiao Tong University
School of Medicine. Primary cultures of astrocytes were
isolated from the cerebral cortices of neonatal C57BL/6
mouse pups (P0-P3). After the meninges and blood ves-
sels were carefully removed under a dissecting micro-
scope, cerebral tissues were minced mechanically and
incubated in 0.25% trypsin for 10 min. Isolated cells
were grown until confluent in astrocyte medium [Dul-
becco’s modified Eagle’s medium supplemented with
4.5 g/L p-glucose, 4 mmol/L L-glutamine, 3.7 g/L sodium
bicarbonate, with 10% fetal bovine serum, penicillin
(100 units/ml) and streptomycin (100 mg/ml)]. Greater
than 90% of cells in these cultures were GFAP-positive.
The cells were maintained in a humidified atmosphere
at 37 °C with 95% air-5% CO,. The culture medium was
renewed after 24 h, and then every 2 days thereafter.

Cell injury

After 7-to-10 days, confluent cultures of astrocytes
grown in BioFlex® Plates were injured using a model
94A Cell Injury Controller [23]. Briefly, a 50-ms pulse of
compressed air was used to rapidly deform the Silastic
membrane of adherent astrocytes to produce a 7.5-mm
membrane deflection, which corresponds to a 54% mem-
brane stretch and severe cell injury. After the insult, cells
were placed in a 95-5% air—CO, incubator at 37 °C for
various times. The cells in the ATX-treated group were
incubated with ATX for 2 h before injury and for an addi-
tional 24 h without altering the culture medium. Cells
treated with PDTC or bumetanide were performed iden-
tically. The control-cultured cells were incubated over
24 h with culture medium. It is important to note that
no hypoxic or ischemic conditions were imposed on the
injured cells in these experiments.

Cell viability assay

A Cell Counting Kit-8 (CCK-8, Beyotime Biotechnology,
Jiangsu, China) was used to quantitatively evaluate cell
viability according to the manufacturer’s instructions. In
short, 90 ml of cell suspension was incubated along with
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10 ml of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-
5-(2,4-disulfophenyl)-2H-tetrazolium and monosodium
salt (WST-8) solution for 4 h at 37 °C in a 5% CO, atmos-
phere before terminating the assay. The optical density
(OD) values were measured at 450 nm using a microplate
reader (680; Bio-Rad, Hercules, CA, USA).

In situ cell death detection

Apoptotic cells were investigated by TdT-dUTP nick-end
labeling (TUNEL) assays with a one-step in situ cell death
detection kit (Roche, Germany) based on the manufac-
turer’s directions. After injury, astrocytes were fixed with
freshly prepared 4% paraformaldehyde solution in phos-
phate buffered saline (PBS) for 60 min at 4 °C, washed
with fresh PBS twice for 5 min, and then incubated with
0.1% Triton X-100 for 2 min on ice. The cells were then
incubated with 50 pl of TUNEL reaction mixture in a
humidified atmosphere for 1 h at 37 °C in the dark, and
then washed 3 times with PBS. Cell nuclei were stained
with 4/,6-diamidino-2-phenylindole (DAPI) (1:5000,
Carlsbad, CA, USA) for 5 min, and washed in PBS for
5 min at room temperature. Cell images were captured by
immunofluorescent microscopy. The cells that appeared
with red fluorescence were deemed to be apoptotic.

Total RNA extraction and relative quantitative real
time-PCR analysis

Total RNA was removed from cell cultures with TRIzol
reagent (Invitrogen) based on the company’s instruc-
tions. Extracts were treated with Rnase-free DNase to
eliminate any residual genomic DNA. Reverse transcrip-
tion was performed using a One Step SYBR® Prime-
Script " PLUS RT-PCR Kit (Takara Bio Inc., Shanghai,
China). The oligonucleotide primers used to amplify
the target genes were as follows: GAPDH, 5'-AGC-
CACATCGCTCAGACAC-3' (forward) and 5'-GCC-
CAATACGACCAAATCC-3'  (reverse); interleukin
(IL)-1B, 5'-ATGGGATAACGAGGCTTATGTG-3' (for-

ward) and 5-CAAGGCCACAGGTATTTTGTC-3'
(reverse); IL-6, 5-ACTTGCCTGGTGAAAATCAT-3'
(forward) and 5-CAGGAACTGGATCAGGACTT-3/

(reverse); tumor necrosis factor (TNF)-a, 5-TCAG-
CAAGGACAGCAGAGG-3' (forward) and 5'-CAG-
TATGTGAGAGGAAGAGAACC-3' (reverse); NKCC1:
5-TGATTCCACTTCCTTTATTGCAG-3’ (forward)
and 5-TTAATGAG TTGAGCTCCGGTGA-3' (reverse);
NF-xB, 5-TATTTCAACCACAGATGGCACT-3' (for-
ward) and 5-AGCAAAGGCAATACATACACTT-3’
(reverse). All assays were performed 3 times; the results
were normalized by GAPDH as an internal control to
calculate the ACt. PCR amplification was done with the
parameters: 95 °C for 40 s, 55 °C for 45 s, and 72 °C for
50 s. The relative gene expressions were determined with
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SDS software (Applied Biosystems, Carlsbad, CA, USA)
following 40 cycles.

Extraction of nuclear and cytosolic fractions

For protein extraction and isolation, a nuclear and cyto-
plasmic protein extraction kit (Beyotime, Jiangsu, China)
was used to separate nuclear and cytoplasmic proteins
according to the manufacturer’s recommendations. In
short, the cells were washed 3 times with PBS after treat-
ment, then scraped, and finally gathered by centrifu-
gation at 1500 x g for 5 min. Cell pellets were lysed on
ice for 15min with 200 ml extraction buffer A. After,
extraction buffer B was included and samples were vor-
texed for 30 s at 4 °C. After the centrifugation of samples
at 12,000x g for 5 min, supernatants were collected and
used as cytoplasmic fractions. Pellets were then lysed
for 30min on ice in 50 ml of nuclear extraction buffer
with brief vortexing. After another centrifugation step
at 12,000x g for 5 min, supernatants were collected and
used as nuclear fractions.

Western blot analysis

Proteins were extracted from cell cultures after treat-
ment, and protein concentrations were quantified using
a bicinchoninic acid protein assay kit (Pierce Biotech-
nology, Rockford, IL, USA). Then, 30 pg of protein was
loaded onto a 6 or 8% polyacrylamide gel for electropho-
resis and then electrotransferred onto a polyvinylidene
difluoride membrane (Millipore, Bedford, MA, USA),
which was then blocked with 5% non-fat milk followed
by incubation with the appropriate primary antibodies at
4 °C overnight. Following washing the blots 3 times, the
membranes were incubated with HRP-anti-rabbit IgG
(HangZhouHuaAn Biotechnology, Zhejiang, China) for
1 h at room temperature. Immunoreactive proteins were
identified via an ECL chemiluminescence system (Pierce
Biotechnology). The protein levels were determined by
densitometry using Image J1.43 software (National Insti-
tutes of Health, Bethesda, MD, USA).

Immunofluorescence

Astrocytes were seeded in BioFlex® Plates and pretreated
with 50 umol/L ATX or 10 umol/L PDTC for 2 h before
the induction of injury. Following 24 h of incubation, the
cells were fixed in 4% paraformaldehyde for 15 min, per-
meabilized with 0.3% Triton X-100 solution for 20 min,
and then obstructed in 10% bovine serum albumin for
30 min. Then, the cells were treated overnight at 4 °C with
primary rabbit anti-NKCC1 (1:50) antibody and mouse
anti-glial fibrillary acidic protein (1:200). After being
washed, the sections were incubated with secondary
antibody, Alexa Fluor 488 donkey anti-rabbit IgG (1:500,
Invitrogen) and Alexa Fluor 594 donkey anti-mouse IgG



Zhang et al. BMC Neurosci (2017) 18:42

(1:500, Invitrogen), for 1 h. DAPI (1;5000, Invitrogen) was
employed to counterstain the cell nuclei. A Leica confocal
laser-scanning microscope (Leica, Wetzlar, Hesse, Ger-
many) was used to acquire confocal microscopic images.

Statistical analysis

Statistical analyses were performed using GraphPad
Prism (version 5.01, GraphPad Software Inc., San Diego,
CA, USA). Data are presented as the mean + standard
error of the mean (SEM) and differences among groups
were assessed by one-way analysis of variance followed
by the Student—Newman-Keuls test. Statistical signifi-
cance was set when p < 0.05.

Results

Effects of ATX on astrocyte viability induced by injury

To determine the influence of injury and positive effect of
ATX on injured astrocytes, cells with stretch-induced cell
injury were treated with 10, 25, 50, or 100 pmol/L of ATX
for 24 h. CCK-8 assays were conducted to investigate cell
viability. The viability of astrocytes at 1, 3, 6, 12 and 24 h
after injury was 95.68 £ 2.72, 83.93 £ 3.68% (p < 0.05),
76.11 + 4.43% (p < 0.01), 70.97 £ 5.54% (p < 0.01), and
57.90 + 5.10% (p < 0.01) of the control values, respec-
tively (Fig. 1a). This suggested that cell viability slowly
diminished following injury and 24 h was selected for the
experiments. The viability of cells incubated with ATX
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at 10, 25, 50 and 100 pmol/L for 24 h was 96.52 + 1.69,
93.28 + 2.53, 91.55 + 2.77, and 87.04 + 2.40% (p < 0.05)
compared to the untreated control, respectively (Fig. 1b).
The outcomes revealed up to 50 pmol/L of ATX did not
have an impact on the viability of the astrocytes and this
non-cytotoxic ATX concentration was implemented in
every one of the experiments in our study. The decrease
in the viability of astrocytes after injury was signifi-
cantly alleviated by pretreatment with 50 pumol/L of
ATX compared with controls (Fig. 1c, 57.90 £ 5.10% vs
78.75 £ 4.43%, p < 0.05). As viewed in Fig. 1d, stretch-
induced cell injury triggered vivid morphological changes
characteristic of astrocyte damage, while pretreatment
with ATX for 2 h before injury somewhat reduced injury-
induced cytotoxicity and cell damage.

ATX inhibits the apoptotic cell death of astrocytes

after injury

The protein levels of Bax, Bcl-2, cleaved caspase-3, and
pro-caspase 3 were determined by Western blot analysis
to establish if ATX is acted by regulating apoptotic pro-
teins post-injury. Astrocytes were pretreated with ATX
(50 umol/L) and then injured and incubated for another
24 h. As demonstrated in Fig. 2A, Bax expression was
significantly increased and Bcl-2 expression was mark-
edly decreased after injury in comparison to the control
group (p < 0.01), while pretreatment with ATX inhibited
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Fig. 1 The protective effects of ATX on astrocyte viability after stretch injury. a Astrocytes underwent stretch-induced cell injury. Cell viability at 1,
3,6,12,and 24 h after injury was tested by CCK-8 assays. b Astrocytes were treated with different concentrations of ATX (10, 25, 50 or 100 pmol/L)
for 24 h. Cell viability was estimated using CCK-8 assays. € Astrocytes were pretreated with 10, 25, or 50 umol/L ATX for 2 h and then injured and
incubated for 24 h. CCK-8 assays were performed to evaluate cell viability. d Astrocytes were incubated with 50 pmol/L ATX for 2 h prior to injury for
another 24 h, and then morphological changes were analyzed (x 200). ATX astaxanthin. Mean = SEM (n = 3). *p < 0.05; **p < 0.01 versus the control
group; *p < 0.05 versus the injury group
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the upregulation of Bax and the downregulation of Bcl-2
(p < 0.05). In accordance with the aforementioned find-
ings, cleaved caspase-3 protein level was strongly induced
and pro-caspase 3 protein level was remarkably inhibited
after injury compared to the control group (p < 0.01),
indicating the involvement of caspase-3 in astrocytes
undergoing traumatic cell death (Fig. 2B). However,
administration of ATX for 2 h prior to injury significantly
downregulated cleaved caspase-3 expression and upregu-
lated pro-caspase 3 expression (p < 0.05).

Further, the trauma-induced apoptosis of astrocytes
was additionally verified via the identification of TUNEL-
positive staining in situ. As shown in Fig. 2C, the number
of apoptotic cells was markedly increased in comparison
to untreated cells, and the increased proportion of apop-
totic cells was partially attenuated in the ATX-treatment
group (50 umol/L).

These outcomes show ATX successfully obstructs
apoptotic cell death post-injury.

Astaxanthin down-regulates the expression of IL-1f, IL-6
and TNF-a in astrocytes after injury

Pro-inflammatory cytokines, which include IL-1{, IL-6,
and TNF-q«, are believed to moderate neuroinflamma-
tion and cause cell death in different neurodegenerative
diseases [24]. Thus, we studied the mRNA and protein
expressions of pro-inflammatory factors by qPCR and
Western blot analyses after injury. We pretreated astro-
cytes with ATX (50 umol/L) for 2 h and then injured
and incubated the cells for 24 h. As shown in Fig. 3, both
mRNA expressions and protein levels of IL-1f, IL-6, and
TNEF-a were elevated after injury compared with controls
(p < 0.01). However, the production of pro-inflammatory
mediators was significantly reduced by ATX (p < 0.05).
Furthermore, PDTC (10 pmol/L), an inhibitor of NF-«B,
also significantly inhibited the expressions of IL-1f, IL-6
and TNF-a after injury (p < 0.05).

Astaxanthin inhibits activation of the NF-kB pathway
in astrocytes after injury
Prior studies have revealed that the initiation of NF-kB
controls the expression of inflammatory genes encoding
pro-inflammatory cytokines (IL-1fB, IL-6, and TNF-«)
[25, 26]. Next, we investigate the expression of NF-kB
mRNA and protein using qPCR and Western blot analy-
ses at 1, 3, 6, 12, or 24 h after injury. As shown in Fig. 4A,
B, both mRNA expression and protein levels of NF-kB
were increased significantly after 3 h (p < 0.05 and <0.01,
respectively) compared to control cells, with levels peak-
ing at 12 h (p < 0.01) and lasting for 24 h (p < 0.01).

Then, Western blot analysis was performed to investi-
gate the impacts of ATX on the upregulation of NF-kB
proteins in astrocytes post-injury. Cells were pretreated
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with different concentrations of ATX for 2 h, injured, and
then incubated for 24 h. ATX at 25 or 50 umol/L showed
a significant inhibitory effect on the raised expression of
NF-«B (p < 0.05, Fig. 4C).

Nuclear and cytosolic extracts harvested from astro-
cytes after injury in the presence or absence of ATX were
isolated, and Western blot analysis showed the nuclear
translocation of NF-kB was elevated at 24 h after injury
(p < 0.01). Pre-incubation with ATX (50 umol/L) for 2 h
prior to injury significantly decreased the level of NF-kB
protein that translocated into the nucleus (p < 0.05,
Fig. 4D).

Astaxanthin down-regulates NKCC1 expression via the
NF-kB pathway in astrocytes after injury

As shown in Fig. 5A, the NKCC1 mRNA level was ele-
vated at 6 h after injury (p < 0.05), reaching a peak at 12 h
(p < 0.01), and lasting for 24 h (p < 0.05). The protein
expression of NKCC1 was similar after injury (Fig. 5B).
However, pretreatment with ATX (50 umol/L) or PDTC
(10 pmol/L), a NF-kB inhibitor, significantly reduced the
protein expression (Fig. 5C, p < 0.05).

A comparable effect was observed for NKCC1 expres-
sion by immunofluorescence staining (Fig. 5D). NKCC1
expression was significantly increased at 24 h after injury,
while administration of ATX (50 pmol/L) or PDTC
(10 pmol/L) decreased its expression compared to the
injured group.

Astaxanthin protects against injury-induced astrocyte
apoptosis by inactivating the NF-kB/NKCC1 pathway

Last, we explored the possible roles of PDTC and
bumetanide (inhibitors of NF-kB and NKCCI1, respec-
tively) in apoptosis of astrocytes after injury. The results
showed that pretreatment with PDTC (10 pmol/L) and
bumetanide (50 pmol/L) for 2 h significantly inhibited
the increase in cleaved caspase-3 protein expression in
astrocytes after injury (Fig. 6).

Altogether, these results suggest that ATX protects
astrocytes from apoptotic cell death and these neuro-
protective outcomes may be linked to the repression
of NF-«B activation and later diminished activation of
NKCC1.

Discussion

The present study used an in vitro astrocyte stretch
injury model to demonstrate that stretch injury directly
decreased cell viability, increased apoptotic cell death
and NKCCI1 expression in cultured astrocytes. Further-
more, ATX, a naturally occurring carotenoid, inhibited
these effects in a dose-dependent manner by decreasing
the levels of pro-inflammatory cytokines activated by the
NF-xB pathway after TBIL. To the best of our knowledge,
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our results show for the first time, the relationship
between ATX and NKCC1, a hallmark of cerebral edema,
in an in vitro TBI model and the underlying regulatory
mechanisms involved. Thus, ATX may be a novel thera-
peutic agent for the treatment of TBIL.

Brain edema is one of the major consequences of TBI,
and astrocyte swelling (cytotoxic edema) represents an
important component of brain edema in the early phase
[27]. Recent literature reported that in vitro trauma
results in cell swelling and a higher susceptibility to
cell death in cultured astrocytes [28, 29]. In the present
study, the cytoactivity of astrocytes was measured after
injury using CCK-8 assays. Cell viability was decreased

in a time-dependent manner and reached a minimum at
24 h following injury. Nevertheless, pretreatment with
various concentrations of ATX substantially improved
this decrease in cell viability. Likewise, morphological
changes that were representative of astrocyte damage
were noted post-injury, while pretreatment with ATX
somewhat reduced injury-induced cell damage. There
exist two important pathways of apoptosis: the extrin-
sic pathway (receptor-mediated apoptotic pathway) and
the intrinsic pathway (mitochondria-mediated apop-
totic pathway) with possible cross talk. Numerous stud-
ies suggest that trauma-induced cell death transpires via
the activation of apoptotic pathways [29, 30]. The cellular
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proteins in the innate pathway of apoptosis are part of
the Bcl-2 and caspase families. It has been proposed that
trauma causes cellular apoptosis by the buildup of Bax
and the activation of caspase-3 [30]. Thus, the suppres-
sion of pro-apoptotic Bax expression or activated cas-
pase-3 activity and the upregulation of anti-apoptotic
Bcl-2 expression could be linked with neuroprotective
effects against trauma. In agreement with these out-
comes, we showed that trauma led to a rise in the Bax/
Bcl-2 ratio and cleaved caspase-3/pro-caspase 3 ratio in
cultured astrocytes. This effect, however, was substan-
tially diminished by ATX, implying that it may protect
astrocytes from traumatic injury via the regulation of
apoptosis.

Inflammation is linked with astrocyte death and
numerous pro-inflammatory mediators, including IL-1(,
IL-6, and TNF-a, could be detrimental to astrocytes
[31]. Further, TBI can prompt and inflate inflammatory
reactions by their involvement in particular signaling
pathways, including the NF-xB pathway [32]. Activation
of the NF-kB pathway can cause a rise in the expres-
sion of many genes involved in inflammatory responses,
such as cytotoxic cytokines (IL-1B, IL-6, and TNF-a),

causing their raised expressions in tissues and direct
cytotoxic effects [33]. Therefore, it is necessary to estab-
lish if stretch injury changes the expression of cytokine
genes and if it is linked with the activation of NF-kB.
We showed that mRNA and protein levels of IL-1f,
IL-6, and TNF-a were increased in cultured astrocytes
at 24 h after stretch injury. However, pretreatment with
50 pmol/L ATX reversed the trauma-induced increase of
IL-1pB, IL-6, and TNF-a mRNA and protein expressions.
A comparable outcome was noted when we implemented
PDTC, an inhibitor of NF-«kB. This implies that ATX
prompts its neuroprotective effects by suppressing pro-
inflammatory cytokines, and these anti-inflammatory
outcomes may halt cell death induced by trauma.

NEF-kB consists of a family of transcription factors that
positively regulate the expression of genes involved in
inflammatory and other responses by binding to their
promoters [34, 35]. Typically, the idle form of NF-xB
stays in the cytoplasm as a heterodimer of p50 and p65
subunits. Its activation results in the dissociation and
translocation of p65 and p50 subunits to the nucleus,
where they up-regulate the transcription of pro-inflam-
matory genes [36]. We showed that NF-kB expression
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was significantly increased after stretch injury in a time-
dependent manner and that increased levels of NF-kB
were consistent with and relevant to the upregulation of
IL-1B, IL-6, and TNF-a. Further, stretch injury prompted
NF-kB translocation from the cytoplasm to the nucleus;
however, ATX substantially prevented raised NF-«xB
expression and reduced injury-induced NF-«B transloca-
tion into the nucleus. A previous study showed that ATX
reduced neuronal apoptosis in the cerebral cortex after
subarachnoid hemorrhage by downregulating increased
NF-«B activity and the expression of inflammatory
cytokines [8]. We additionally examined if the preven-
tion of NF-kB activation and translocation to the nucleus
are involved in the mechanism of ATX antagonism of
injury-induced apoptosis of astrocytes. The increased
protein levels of cleaved caspase-3 were notably lowered
by pretreatment with ATX and PDTC in astrocytes fol-
lowing stretch injury. Therefore, the activation of NF-xB
could play a critical part in the trauma-induced apoptosis

of astrocytes. Furthermore, ATX exhibited neuroprotec-
tive effects by inhibiting NF-kB activation and subse-
quently decreasing the upregulation of pro-inflammatory
cytokines.

NKCC]1, a membrane protein that allows the passage of
ions and water through the cell membrane, is implicated
in the formation of brain edema caused by various inju-
rious insults in vivo, including TBI [14-16]. It was also
involved in astrocyte swelling/brain edema in cultured
astrocytes after fluid percussion injury [22]. The current
study showed that NKCC1 mRNA and protein expres-
sion in primary astrocytes were significantly augmented
in a time-dependent manner when subjected to stretch
injury. However, the administration of 50 pmol/L ATX
for 2 h before injury significantly ameliorated NKCC1
protein levels. This further supports the relationship
between NKCC1 and astrocytes following in vitro trauma
and suggests ATX might be a potent inhibitor of NKCCI1.
Furthermore, NF-kB activation was strongly implicated
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in the stimulation of various ion channels/exchangers
in different conditions [37-40] and in the regulation of
post-traumatic astrocyte swelling/brain edema [3]. Jaya-
kumar et al. [27] reported a significant increase in NKCC
activity after trauma to cultured astrocytes, and NF-xB
inhibitor BAY-11 7082 blocked this activity, suggesting
NF-kB-mediated cell swelling after trauma is, in part,
a consequence of increased NKCC activity. Our data
illustrate that NKCC1 expression was associated with
increased NF-kB and that PDTC reduced NKCC1 expres-
sion. Therefore, ATX might reduce NKCC1 expression
through inhibition of the NF-kB pathway. Kim et al.
reported that NKCC was a good target for the induction
of cell apoptosis by the activation of intracellular Ca*"
signaling and that the NKCC inhibitors, bumetanide
and furosemide, markedly suppressed this effect [41].
We further examined whether the inhibition of NKCC1
activation was also involved in the antagonistic effect of
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ATX on the apoptosis of astrocytes after stretch injury.
Pretreatment with bumetanide (50 umol/L) significantly
downregulated the elevated cleaved caspase-3 protein
level in astrocytes, suggesting ATX reduced the trauma-
induced apoptosis of astrocytes by inhibiting NKCC1
activation.

In previous study, we demonstrated that ATX might
exert neuroprotection by ameliorating NKCC1-mediated
cerebral edema after TBI in mice [11]. In this study, we
elucidated that ATX prevented NKCC1 expression by
limiting NF-kB-mediated pro-inflammatory mediators
with an in vitro astrocyte stretch injury model. The dis-
coveries recorded in this research paper, highlighting the
anti-inflammatory role of ATX after trauma in cultured
astrocytes, is consistent with its application in other dis-
eases [8, 42—44]. Because ATX has other pharmacological
properties, such as antioxidative and immunomodulatory
properties, future studies should validate these properties
in a TBI model. Further, NF-kB activation is regulated by
a broad variety of upstream signals, including MAPKs
[45-47], and thus, extensive studies should be performed
to explore the explicit mechanisms.

Conclusions

In summary, our findings indicate that ATX attenuates
apoptosis after trauma in cultured astrocytes by inhib-
iting NKCC1 expression, and that it acts by reducing
NF-kB-mediated pro-inflammatory factors. Therefore,
ATX is an effective anti-inflammatory agent and might
possess therapeutic prospects for TBI treatment.
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