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Abstract 

Background:  As a complex system, the brain is a self-organizing entity that depends on local interactions among 
cells. Its regions (anatomically defined nuclei and areas) can be conceptualized as cellular ecosystems, but the similar-
ity of their functional profiles is poorly understood. The study used the Allen Human Brain Atlas to classify 169 brain 
regions into hierarchically-organized environments based on their expression of 100 G protein-coupled neurotrans-
mitter receptors, with no a priori reference to the regions’ positions in the brain’s anatomy or function. The analysis 
was based on hierarchical clustering, and multiscale bootstrap resampling was used to estimate the reliability of 
detected clusters.

Results:  The study presents the first unbiased, hierarchical tree of functional environments in the human brain. The 
similarity of brain regions was strongly influenced by their anatomical proximity, even when they belonged to differ-
ent functional systems. Generally, spatial vicinity trumped long-range projections or network connectivity. The main 
cluster of brain regions excluded the dentate gyrus of the hippocampus. The nuclei of the amygdala formed a cluster 
irrespective of their striatal or pallial origin. In its receptor profile, the hypothalamus was more closely associated with 
the midbrain than with the thalamus. The cerebellar cortical areas formed a tight and exclusive cluster. Most of the 
neocortical areas (with the exception of some occipital areas) clustered in a large, statistically well supported group 
that included no other brain regions.

Conclusions:  This study adds a new dimension to the established classifications of brain divisions. In a single frame-
work, they are reconsidered at multiple scales—from individual nuclei and areas to their groups to the entire brain. 
The analysis provides support for predictive models of brain self-organization and adaptation.

Keywords:  Neural networks, Ecosystems, Neurotransmitter receptors, Forebrain, Midbrain, Hindbrain, Pallium, 
Cerebral cortex, Hierarchical clustering, Multiscale bootstrap resampling

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The brain can be perceived as a well-tuned machine. In 
this view, each of its parts performs specific, pre-assigned 
computations (subroutines), which then are linked 
through local and long-range neuroanatomical connec-
tions. Throughout the history of neuroscience, this intui-
tion has been supported by human-made devices that are 
composed of functionally-dedicated, irreplaceable, and 
permanently connected parts. The value of this approach 
has been demonstrated by experimental and clinical 

observations in specific brain subsystems (particularly 
sensory and motor), and it remains a powerful guiding 
principle in basic research and clinical practice.

At a deeper conceptual level, the brain is very differ-
ent from human-made machines. It is a complex and 
adaptive dynamical system [1] that is not fundamentally 
different from other living systems such as individual 
cells, ecosystems, or human societies. In all of these self-
organizing (“dissipative”) systems [2, 3], the global order 
is not the master that drives the parts but rather a prod-
uct (“emergent phenomenon”) of local interactions. The 
simplicity of these local processes often defies intuition 
[4–8]. The potential of complex-systems approaches in 
neuroscience has been appreciated for decades [9, 10], 
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but it is only recently that they have begun to reshape our 
understanding of global brain properties, such as large-
scale regional networks [11–13], neurotransmitter recep-
tor communities [14], and nested cortical oscillations 
[15].

It is natural to expect that self-organizing forces oper-
ate at the level of local cellular ecosystems, correspond-
ing to anatomically defined brain regions. These regions 
are often assigned a specific role based on their distin-
guishing characteristics (e.g., the “serotonergic” raphe 
nuclei or the “motor” cortex). In reality, each brain region 
is a rich, adapting system containing diverse populations 
of cells and a multitude of other elements (traversing 
axons, the extracellular matrix, blood cells and cell frag-
ments [16], extracellular vesicles [17]). The internal rich-
ness of these systems, the core of their self-organization, 
is typically poorly understood and is often obscured by 
their assigned “function.” Treating them as ecosystems 
does not merely replace one metaphor with another met-
aphor; instead, it leads to specific predictions. In particu-
lar, it suggests that brain cells may support one another 
only when the benefits of cooperation outweigh compe-
tition, axon and vasculature routing may be only locally 
beneficial (with no meaningful global function), some cell 
groups in the healthy brain may be essentially parasitic 
(with other cells simply adapting to them), and the entire 
brain may be a “tensegrity” structure composed of these 
opposing forces. Scattered evidence from various brain 
systems supports this possibility [18–21]. Importantly, 
different brain regions may represent the same “neurobi-
ome,” just as two separated geographical areas may repre-
sent the same ecological biome (e.g., tropical rainforest, 
savanna).

Direct observation of interactions among many diverse 
elements in a brain region is beyond our current technical 
capabilities. However, high-throughput analyses already 
allow us to “phenotype” cellular ecosystems, with no ref-
erence to their functions (real or perceived). This analy-
sis can be based on neurotransmitter receptors, a well 
understood element of brain dynamics. The purpose of 
neurotransmitter receptors, or any sensors in general, is 
to detect a change in time (an always-present entity car-
ries no information and its detection is wasteful). The car-
rier of the change is represented by the general receptor 
class (e.g., receptors detect a concentration difference of 
glutamate but not dopamine). Within a receptor class, a 
receptor subtype (e.g., mGluR1) is likely to be associated 
with a particular dynamic of the change. This aspect of 
neurotransmitter signaling has received surprisingly little 
attention, even though it can be built on a solid theoreti-
cal foundation. Narrow tuning based on expected signal 
patterns increases detection sensitivity, boosts processing 
speed, and reduces energy consumption. This Bayesian 

property has been demonstrated in the spiking of some 
neurons [22], in brain sensory systems [11], and it may 
also operate at the level of single but complex molecules. 
In particular, different receptor subtypes may be sensitive 
to different dynamical patterns of the same physical carri-
ers. This can explain the multitude of receptor subtypes, 
many of which converge onto the same signaling cas-
cades. As a consequence, the expression levels of specific 
receptor subtypes may reflect the (directly unobservable) 
neurotransmitter dynamics in the given brain region. In 
addition, some receptor subtypes can be cell-type specific 
and represent the cellular composition of the region.

These considerations suggest that, if many receptors 
are considered simultaneously, their set can provide a 
reasonable approximation of the structure and natural 
dynamics of a brain region. Importantly, this approxima-
tion is unbiased with respect to the proposed “function” 
of the region. This study sought to hierarchically classify 
169 regions of the human brain, based on their expres-
sion of a large set of G protein-coupled neurotransmitter 
receptors (GPCRs).

Methods
The mRNA expression data (z-scores) of 100 GPCRs 
(Table  1) in 169 brain regions of 6 human brain speci-
mens were downloaded from the Allen Brain Atlas data 
portal (http://human.brain-map.org; April 23, 2016). 
The brain donors were two African-American males 
(24 and 39 years of age), three Caucasian males (31, 55, 
and 57 years of age), and one Hispanic female (49 years 
of age). Technical details about the brain donors, tissue 
preparation, specificity controls, and data normalization 
are described in the Allen Human Brain Atlas Technical 
White Papers (Case Qualification and Donor Profiles, 
Microarray Survey, Microarray Data Normalization).

Expression data were available from four or more 
brains in 86% of the 169 brain regions, and 53% of the 
regions were represented in all six brains. Only four brain 
regions (2%) were represented by a single brain. The 
median number of mRNA probes per gene was 3.

The initial data processing was performed in Math-
ematica 10.4 (Wolfram Research, Inc.). The mean 
expression values of each brain region were obtained by 
averaging across all probes in each of the brains, followed 
by averaging of the obtained means across all brains.

Each brain region was assumed to be a 100-dimen-
sional vector (where each neurotransmitter receptor rep-
resented a dimension), and the standard Euclidean metric 
was used to measure the functional distance between any 
two regions. The hierarchical clustering analysis used the 
“average” agglomerative method and was performed in R 
3.3.1 (The R Foundation for Statistical Computing) using 
the package pvclust [23]. This package uses multiscale 

http://human.brain-map.org
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Table 1  The receptor set

Number Neurotransmitter Receptor Gene

1 Glutamate mGluR1 GRM1

2 Glutamate mGluR2 GRM2

3 Glutamate mGluR3 GRM3

4 Glutamate mGluR4 GRM4

5 Glutamate mGluR5 GRM5

6 Glutamate mGluR6 GRM6

7 Glutamate mGluR7 GRM7

8 Glutamate mGluR8 GRM8

9 GABA GABABR1 GABBR1

10 GABA GABABR2 GABBR2

11 Dopamine D1 DRD1

12 Dopamine D2 DRD2

13 Dopamine D3 DRD3

14 Dopamine D4 DRD4

15 Dopamine D5 DRD5

16 Adrenergic α1A ADRA1A

17 Adrenergic α1B ADRA1B

18 Adrenergic α1D ADRA1D

19 Adrenergic α2A ADRA2A

20 Adrenergic α2B ADRA2B

21 Adrenergic α2C ADRA2C

22 Adrenergic β1 ADRB1

23 Adrenergic β2 ADRB2

24 Adrenergic β3 ADRB3

25 Serotonin 5-HT1A HTR1A

26 Serotonin 5-HT1B HTR1B

27 Serotonin 5-HT1D HTR1D

28 Serotonin 5-HT1E HTR1E

29 Serotonin 5-HT1F HTR1F

30 Serotonin 5-HT2A HTR2A

31 Serotonin 5-HT2B HTR2B

32 Serotonin 5-HT2C HTR2C

33 Serotonin 5-HT4 HTR4

34 Serotonin 5-HT5A HTR5A

35 Serotonin 5-HT6 HTR6

36 Serotonin 5-HT7 HTR7

37 Cholinergic M1 CHRM1

38 Cholinergic M2 CHRM2

39 Cholinergic M3 CHRM3

40 Cholinergic M4 CHRM4

41 Cholinergic M5 CHRM5

42 Histamine H1 HRH1

43 Histamine H2 HRH2

44 Histamine H3 HRH3

45 Histamine H4 HRH4

46 Bradykinin B1 BDKRB1

47 Bradykinin B2 BDKRB2

48 Cholecystokinin CCK1 CCKAR

49 Cholecystokinin CCK2 CCKBR

50 CRH CRF1 CRHR1

Table 1  continued

Number Neurotransmitter Receptor Gene

51 CRH CRF2 CRHR2

52 Galanin Gal1 GALR1

53 Galanin Gal2 GALR2

54 Galanin Gal3 GALR3

55 MCH MCH1 MCHR1

56 MCH MCH2 MCHR2

57 MSH MC1 MC1R

58 MSH MC2 MC2R

59 MSH MC3 MC3R

60 MSH MC4 MC4R

61 MSH MC5 MC5R

62 NPY Y1 NPY1R

63 NPY Y2 NPY2R

64 NPY Y4 PPYR1

65 NPY Y5 NPY5R

66 NPY Y6 NPY6R

67 Neurotensin NT1 NTSR1

68 Neurotensin NT2 NTSR2

69 Opioid μ OPRM1

70 Opioid δ OPRD1

71 Opioid κ OPRK1

72 Nociceptin ORL-1 OPRL1

73 Orexin OX1 HCRTR1

74 Orexin OX2 HCRTR1

75 Oxytocin OT OXTR

76 Somatostatin SST1 SSTR1

77 Somatostatin SST2 SSTR2

78 Somatostatin SST3 SSTR3

79 Somatostatin SST4 SSTR4

80 Somatostatin SST5 SSTR5

81 Tachykinin NK1 TACR1

82 Tachykinin NK2 TACR2

83 Tachykinin NK3 TACR3

84 TRH TRHR TRHR

85 VIP VPAC1 VIPR1

86 VIP VPAC2 VIPR2

87 Vasopressin V1a AVPR1A

88 Vasopressin V1b AVPR1B

89 Vasopressin V2 AVPR2

90 Adenosine A1 ADORA1

91 Adenosine A2A ADORA2A

92 Adenosine A2B ADORA2B

93 Adenosine A3 ADORA3

94 Purine P2Y1 P2RY1

95 Purine P2Y2 P2RY2

96 Purine P2Y4 P2RY4

97 Purine P2Y6 P2RY6

98 Purine P2Y11 P2RY11

99 Cannabinoid CB1 CNR1

100 Cannabinoid CB2 CNR2
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bootstrap resampling [24] to estimate the approximately 
unbiased (AU) probability of detected clusters. It has 
been demonstrated that the AU is superior to the ordi-
nary bootstrap probability (BP), and its high value (e.g., 
>0.95) provides strong evidence that the detected cluster 
exists in the population [25]. The number of bootstrap 
replications was 10,000, and the sample sizes ranged from 
0.5 to 1.4 of the original size (with a step of 0.1). With 
these settings, most of the standard errors of the AU p 
values did not exceed 0.02 (Fig. 1). AU p values were used 
to guide interpretations, but no arbitrary cut-offs were 
used. This general approach has been successfully used in 
a number of applications, including GPCR-based profil-
ing of human tissues [26], classification of tumors based 
on gene expression [25], and analysis of regional gene 
expression patterns in avian brains [27, 28].

Results
The results of the clustering analysis are presented in 
Figs. 2, 3, 4, 5 and 6. All brain regions formed a strong, 
highest-level cluster (#167, AU = 0.96) that excluded only 
one structure, the choroid plexus (Fig.  2). At the next 
level, this cluster split into the dentate gyrus of the hip-
pocampus and the rest of the regions (#166, AU = 0.81). 
Notably, this main cluster included the pineal gland, 
parts of which are likely to operate outside the blood–
brain barrier [29] (Fig. 5).

The main brain cluster (Fig.  2) was composed of two 
big clusters: the exceptionally tight cluster of the cerebel-
lar cortex (#106, AU =  1.0) and the rest of the regions, 
the clustering of which was looser at this hierarchi-
cal level (#165, AU =  0.77). A large, strong sub-cluster 

within the cerebellar cortex (#75, AU =  0.97) excluded 
vermal lobules I-II (also known as the lingula) and VIIAt, 
as well as the entire lobule X (also known as the nodu-
lus and the flocculus in the vermis and the hemispheres, 
respectively).

An unexpectedly strong functional relationship was 
found between the paraventricular nuclei of the thala-
mus and the central glial substance of the myelencepha-
lon (#116, AU  =  1.0). A somewhat looser cluster at a 
higher hierarchical level also included the corpus callo-
sum and the cingulum (#160, AU = 0.88). The functional 
similarity among these diverse structures (representing 
the diencephalon, myelencephalon, and telencephalon) 
may be due to their physical proximity to the ventricu-
lar system. However, this cluster did not include other 
periventricular structures such as the periaqueductal 
gray, raphe nuclei, or the paraventricular nucleus of the 
hypothalamus.

In the remaining brain regions (Fig.  3), the locus 
ceruleus did not form a cluster with any other regions 
and appeared to be a special functional environment. 
This contrasted with the raphe nuclei, another “diffuse” 
neurotransmitter system, which were similar to many 
other mesencephalic and metencephalic structures, 
including the tectum (the superior and inferior colliculi) 
(Fig.  6; cluster #127, AU =  0.98). The analysis also sug-
gested that the habenular nuclei may represent a special 
environment, at a slightly lower hierarchical level with 
respect to the locus ceruleus (Fig. 3).

The striatum formed a strong cluster that included 
the dorsal part (the caudate/putamen) and the ven-
tral part (the nucleus accumbens) (Fig.  3; cluster #120, 
AU = 0.98). At this hierarchical level, it was not associ-
ated with the dorsal pallidum (the globus pallidus), and 
its association with the ventral pallidum (the substantia 
innominata) was weak (cluster #146, AU = 0.66).

The paleocortex (the piriform cortex), the archicortex 
(the hippocampus), and the neocortex formed a cluster 
that also included all subdivisions of the amygdala, the 
septal nuclei, the lateral tuberal nucleus of the hypothala-
mus, and the claustrum (Fig. 3; cluster #151, AU = 0.89). 
Among the hippocampal subdivisions, CA1 and the sub-
iculum were most strongly associated with the neocortex 
(cluster #137, AU =  0.85). Notably, the central nucleus 
of the amygdala (of presumed striatal origin) was associ-
ated not with the striatum but with the amygdalar nuclei 
of presumed lateral pallial origin (the lateral nucleus, the 
basolateral nucleus, the basomedial nucleus, and the cor-
tico-medial nuclei) (cluster #141, AU = 0.92).

Within the neocortical group (Fig. 4), a strong cluster 
was formed by cortical areas that excluded the occipi-
tal pole, the cuneus, the lingual gyrus, and the pos-
terior paracentral lobule (cluster #81, AU  =  0.99). Of 

Fig. 1  The estimated standard errors of the approximately unbiased 
p values (AU)



Page 5 of 11Janušonis ﻿BMC Neurosci  (2017) 18:33 

the excluded regions, the cuneus and the lingual gyrus 
appeared to be nearly identical environments (clus-
ter #5, AU = 1.0). Within the large neocortical cluster, 
the strongest sub-clusters were formed by the supe-
rior, middle, and inferior temporal gyri, with the nota-
ble exception of the transverse/Heschl gyri (cluster #6, 
AU = 0.99), and by the superior and middle frontal gyri 
(cluster #4, AU = 0.99). A functionally interesting clus-
ter was formed by the occipitotemporal gyrus, superior 
parietal lobule, angular gyrus, and precuneus (cluster 
#14, AU = 0.95) which, extended one hierarchical step 
up, also included the postcentral gyrus, the inferior 
occipital gyrus, and the superior occipital gyrus (cluster 
#19, AU = 0.97).

The thalamic nuclei formed a strong cluster (Fig.  5; 
cluster #135, AU  =  0.94), and the association of this 
group with the less tight hypothalamic cluster was no 
stronger than that with the brainstem group. Interest-
ingly, the hypothalamic environment appeared to be 
strongly “mesencephalic,” not “diencephalic” (Fig. 6; clus-
ter #142, AU = 0.99).

The four deep cerebellar nuclei were radically differ-
ent from the cerebellar cortex (consistent with classic 
presentations [30]) and were strongly associated with 
some cranial nuclei (the abducence and cochlear nuclei), 
other related brainstem nuclei (the superior olivary com-
plex and the red nucleus), and brainstem somatosensory 
nuclei (the cuneate and gracile nuclei) (Fig. 5; cluster #123, 

Fig. 2  The hierarchical clustering of brain structures (Group 1). At each cluster, the top two numbers represent the estimated approximately unbi-
ased p value (AU, left, red, %) and bootstrap probability value (BP, right, blue,  %), and the cluster identification number is indicated below (gray). The 
right branch of cluster #165 (Group 2) is expanded in Fig. 3. For compactness, the length of the branches does not represent distances. The “lobules” 
refer to the hemispheric parts of the cerebellar lobules
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AU = 0.97). Extended three hierarchical steps up, the clus-
ter included the subthalamus, the globus pallidus, and the 
substantia nigra with the ventral tegmental area (cluster 
#139; AU = 0.96). Another step up, it included the inter-
stitial nucleus of Cajal (cluster #140, AU = 0.96). This mes-
encephalic nucleus projects directly to the oculomotor 
complex, but it also projects to the inferior olivary nucleus, 
which in turn projects to the cerebellar cortex [31].

Discussion
Generally, the functional similarity among brain struc-
tures was consistent with classic neuroanatomical pres-
entations and the development of the brain vesicles. The 

large traditionally defined groups included the telen-
cephalon with its paleocortical, archicortical, and neo-
cortical (isocortical) subdivisions, the thalamus and the 
hypothalamus, the deep cerebellar nuclei with cranial 
and other brainstem nuclei, the cerebellar cortex, and 
the brainstem. It should be emphasized that the cluster-
ing algorithm was blind to any knowledge about potential 
associations among the brain regions (neuroanatomical, 
developmental, or network-related), and that these divi-
sions were reassembled by the algorithm based solely on 
the regions’ neurotransmitter receptor profiles.

The obtained clusters appeared to be strongly driven 
by the spatial geometry of the brain. The current view of 

Fig. 3  The hierarchical clustering of Group 2. At each cluster, the top two numbers represent the estimated approximately unbiased p value (AU, 
left, red, %) and bootstrap probability value (BP, right, blue, %), and the cluster identification number is indicated below (gray). The right branches of 
cluster #131 (Group 3) and cluster #157 (Group 4) are expanded in Figs. 4 and 5, respectively. For compactness, the length of the branches does not 
represent distances. The term “basal nuclei” is replacing the traditional but anatomically inaccurate term “basal ganglia” [30]
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the brain is strongly functional and emphasizes systems, 
networks, and long-range projections [12, 13, 32, 33]. 
Because the activity of some far-separated brain struc-
tures is correlated [11], their receptor profiles might too 
be similar. The obtained results suggest that, generally, 
physical proximity trumps long-range functional con-
nectivity. This is exemplified by a large midbrain cluster 
(Fig.  6; cluster #127). Its structures participate in vastly 
different systems (e.g., vision, pain modulation, diffuse 
neurotransmission), but they are physically adjacent by 
virtue of being located in the tectum and the tegmentum. 
The simplicity of this result is somewhat unexpected, but 
it may shed new light on some unsettled problems. For 
example, the “amygdala” can be considered to be a highly 
heterogeneous complex, composed of at least a striatal 
(“basal nuclei-like”) part and a lateral-pallial (“piriform 
cortex-like”) part [31, 34, 35]. The present study cannot 
prove or disprove this hypothesis (which has a develop-
mental component), but all amygdalar nuclei in the adult 
brain appear to be similar environments with respect 
to GPCR expression (Fig.  3). Also, the substantia nigra 
plays a key role in the function of the basal nuclei (and is 
sometimes considered a part of them), but it is not clear 
if its cellular environment is more similar to the dorsal 

striatum (the caudate/putamen) or the dorsal pallidum 
(the globus pallidus). The clustering analysis strongly sug-
gests the latter (Fig. 5).

Care should be used in these generalizations. Adjacent 
regions may be difficult to dissect along strict anatomical 
boundaries (which can also vary from individual to indi-
vidual), and some dissected brain regions may contain 
functionally distinct subregions that may not be captured 
at this level of resolution. For example, the substantia 
nigra is composed of the pars compacta and pars retic-
ulata, the latter of which contains GABAergic neurons. 
In their morphology and connectivity, these neurons 
are similar to the neurons of the globus pallidus [36, 37]. 
Likewise, the strong separation of the Edinger–Westphal 
nucleus from the oculomotor nucleus (Fig. 6) may be due 
to the fact that the Edinger–Westphal nucleus, though 
associated with the oculomotor nucleus, also contains 
neurons that project to very different targets [38]. A 
recently published human brain atlas at the cellular reso-
lution is a major improvement in the delineation of brain 
regions in three dimensions [39].

The close association among the precuneus, angular 
gyrus, superior parietal lobule, and occipitotemporal 
gyrus (Fig. 4) is interesting because these structures can 

Fig. 4  The hierarchical clustering of Group 3 (from Fig. 3). At each cluster, the top two numbers represent the estimated approximately unbiased p 
value (AU, left, red, %) and bootstrap probability value (BP, right, blue, %), and the cluster identification number is indicated below (gray). For com-
pactness, the length of the branches does not represent distances. FL frontal lobe, OL occipital lobe, PL parietal lobe, TL temporal lobe
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be viewed as a subset of the default-mode network [11, 
13]. However, the analysis revealed no clear functional 
similarity among different parts of large-scale brain net-
works. For example, the medial prefrontal cortex, an 
essential part of the default-mode network, was not clus-
tered with the parietal structures of the network. Also, 
the analysis separated the anterior (frontal) cingulate cor-
tex from the insula, even though they are thought to form 
a “salience” network [13]. As supported by many experi-
mental findings, the anterior (frontal) cingulate cortex 
was strongly different from the posterior (parietal) cin-
gulate cortex, the former being associated with temporal 

regions and the latter with occipital, parietal, and frontal 
regions just anterior to the central sulcus (Fig. 4).

The general functional continuity of adjacent areas 
does not imply that all traditional brain divisions are 
consistent with the obtained results. For example, the 
hippocampal dentate gyrus appears to be a radically dif-
ferent environment compared to the rest of the brain 
(Fig. 2). One possible explanation for this finding is that 
the dentate gyrus in a special region that continues to 
generate new neurons in adulthood [40–42]. Its unique 
GPCR profile may reflect mammalian brain differentia-
tion because non-mammalian species that do not have a 

Fig. 5  The hierarchical clustering of Group 4 (from Fig. 3). At each cluster, the top two numbers represent the estimated approximately unbiased p 
value (AU, left, red, %) and bootstrap probability value (BP, right, blue, %), and the cluster identification number is indicated below (gray). The right 
branch of cluster #145 (Group 5) is expanded in Fig. 6. For compactness, the length of the branches does not represent distances
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well-defined dentate gyrus also show hippocampal neu-
rogenesis. It has been suggested that the dentate gyrus is 
a relatively “young” substructure in an “old” (archicorti-
cal) brain region [42]. Further support for this association 
could be obtained from other mammalian brain regions 
in which adult neurogenesis has been demonstrated. 
One such region is the ventricular-subventricular zone 
(V-SVZ) of the lateral ventricles that produces the rostral 
migratory stream to the olfactory bulb [41, 43]. Olfactory 
neurogenesis is well established in adult rodents; how-
ever, in the developing human brain it declines after the 

first two years and is virtually absent in adulthood [41, 
43, 44]. A recent study has provided evidence that new 
neurons may be added to the adult human striatum [45], 
but this finding is inconsistent with another report [46] 
and needs further verification [43].

Functionally, the hypothalamus appears to be more 
associated with the midbrain than with the thalamus 
(Fig.  6). This does not interrupt physical continuity and 
requires only a rostro-caudal tilt of the dorso-ventral 
plane. In a different context, a similar tilt is used to 
explain why thalamocortical projections have to pass 

Fig. 6  The hierarchical clustering of Group 5 (from Fig. 5). At each cluster, the top two numbers represent the estimated approximately unbiased p 
value (AU, left, red, %) and bootstrap probability value (BP, right, blue, %), and the cluster identification number is indicated below (gray). For com-
pactness, the length of the branches does not represent distances
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through the ventral thalamus, which in the developing 
brain is shifted rostrally. The thalamic reticular nucleus, 
an essential component of thalamic function, is a major 
derivative of the ventral thalamus [47]. Also, the mid-
brain and the hypothalamus are connected through 
the ventral branch of the ascending reticular activating 
system (ARAS) which controls global brain functions, 
including wakefulness and sleep [48].

The Allen Human Brain Atlas provides fine-grained 
information about the expression of a large set of genes 
in many brain regions. However, the current specimen 
set is small (six brains). The obtained results should be 
interpreted with caution, especially when the statisti-
cal evidence for a cluster is low. An important aspect 
of this study is that it uses a recently developed method 
to assign probabilities to all clusters; this information 
should be included in interpretations of the results. 
Some low probabilities may be due to expression data 
that are noisy or vary considerably across individuals 
[14]. However, they may also reflect meaningful differ-
ences between subject groups. In particular, hierarchical 
clustering can be used to study sex-specific differences 
in receptor expression (in larger samples). A recent DTI 
study, based on an exceptionally large sample, has shown 
considerable differences between the brains of females 
and males with respect to their large-scale network con-
nectivity [49].

The used data set has important limitations, some of 
which are discussed in a study of large-scale GPCR asso-
ciations [14]. Functional GPCRs are proteins, but the 
analysis was based on GPCR mRNA levels. It has been 
estimated that, on average, mRNA levels explain only 
40% of the variability in protein levels, and that protein 
amounts are strongly controlled by translation [50]. How-
ever, protein amounts of a GPCR can still be mislead-
ing because its functional effects may crucially depend 
on its embedding in different membrane domains [51], 
post-translational modifications [52], internalization 
[53], and heteromerization with other GPCRs [54, 55]. 
These processes are essential for understanding the func-
tional strength of a receptor in a given region, but they 
also limit the accuracy of protein detection methods. In 
contrast, mRNA amounts can be measured with high 
accuracy, and these methods can be easily automated to 
achieve high throughput.

It should also be noted that similar receptor levels may 
be present in different cell types (e.g., neurons, microglia, 
endothelial cells) and in different cellular domains (e.g., 
presynaptically or postsynaptically, on proximal or distal 
dendrites). Also, some GPCRs can activate several dif-
ferent signal transduction pathways. This suggests that 
similarity between two mRNA profiles can be meaning-
ful only if interpreted in the context of neuroanatomical 

and neuropharmacological information. In the study, this 
problem was mitigated by the large receptor set and the 
Euclidean distance metric. In this approach, two brain 
regions are “close” only if their mRNA levels are com-
parable for most of the receptors (i.e., similarity among 
a small number of receptors is insufficient). Since many 
receptors tend to be expressed in specific cell types and 
cellular domains, a small Euclidean distance is unlikely 
to be due to a structural or spatial permutation of recep-
tors in the two regions, leading to their radically different 
functional states.

Conclusions
The study presents an unbiased, hierarchical classifica-
tion of human brain regions based on their GPCR expres-
sion. At this point of mammalian brain evolution, spatial 
proximity of brain regions tends to override long-range 
connectivity. However, some brain structures represent 
unique environments, suggesting uneven and ongoing 
differentiation within the central nervous system.
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