
Lundwall and Dannemiller ﻿BMC Neurosci  (2015) 16:66 
DOI 10.1186/s12868-015-0201-3

RESEARCH ARTICLE

Genetic contributions to attentional 
response time slopes across repeated trials
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Abstract 

Background:  Attention provides vital contribution to everyday functioning, and deficits in attention feature in many 
psychological disorders. Improved understanding of attention may eventually be critical to early identification and 
treatment of attentional deficits. One step in that direction is to acquire a better understanding of genetic associa-
tions with performance on a task measuring reflexive (exogenous) visual attention. Reflexive attention is an important 
component of overall attention because (along with voluntary selective attention) it participates in determining 
where attention is allocated and how susceptible to distractors the subject might be. The task that we used involves 
the presentation of a target that is preceded by one of several different types of cues (none, double, or single, either 
ipsilateral or contralateral to where the target subsequently appears). We used several different outcome measures 
depending on the cue presented. We have previously studied the relationship between selected genes and mean 
response time (RT). Here we report on the contributions of genetic markers to RT increases or decreases over the 
course of the task (linear trend in RT slope).

Results:  Specifically, we find that RT slope for a variety of reflexive attention outcome measures is dependent on 
DAT1 genotype. DRD4 was near significant for one outcome measure in the final (best) model. APOE, COMT, and DBH 
were not significant in any models.

Conclusions:  It is especially interesting that genotype predicts linear changes in RT across trials (and not just mean 
differences or moment-to-moment variability). DAT1 is a gene that produces a protein involved in the transport of 
dopamine from the synapse. To our knowledge, this is the first study that has associated neurotransmitter genotypes 
with RT slope on a reflexive attention experiment. The direction of these effects is consistent with genetic risk for 
attention deficit hyperactivity disorder (ADHD). That is, those with two risk alleles for ADHD (6R/6R on the DAT1 intron 
8 VNTR) either got slower as the task progressed or had the least improvement. Those with no risk alleles (5R/5R) had 
the most improvement in RT as the task progressed.
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Background
Attention is a broad concept that has often been divided 
in the literature along various dimensions. One such 
division involves reflexive (exogenous) versus sustained 
attention. Reflexive attention refers to a stimulus-driven 
reorienting of the brain’s resources, often to an exter-
nal object that newly appears, has a relatively salient 
color, or involves motion. The cued-orienting task that 

we used in our first study [1] is an example of a reflex-
ive task and is similar to that used by Posner et al. [2]. 
Stimuli flash briefly on the computer display and sub-
jects automatically move their attention. It is generally 
assumed that attention has been captured reflexively if 
subjects were faster at responding to a target that was 
preceded by the presentation of a brief pre-cue at that 
same location. Attention can be captured in this way 
even though the stimulus presentation is too brief to 
involve eye movements. On the other hand, sustained 
attention is measured with an effortful task designed 
to require vigilance over time. For example, the 
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Continuous Performance Test (CPT) [3] and the Sus-
tained Attention to Response Task (SART) [4] involve 
the presentation of a stream of stimuli, some of which 
require a response while others require that a response 
be withheld. Examining slope in response time (RT) 
over trials (see Fig.  1) on a reflexive attention task 
involves some elements of reflexive attention and some 
elements of sustaining attention to the task over time 
(~20 min). Contributions of reflexive attention to atten-
tional deficits are often overlooked [5–8] but could be 
useful for a more complete understanding of disorders 
that have an attentional component, such as ADHD, 
autism, anxiety, and depression by answering questions 
about biological contributions to attention using exog-
enous versus endogenous cues [9, 10]. For example, one 
question might be whether it is the nature of the task 
itself (i.e., designed to induced effortful attention) that 

induces declining performance over time or if non-
effortful (reflexive) attention tasks can induce the same 
decline in performance in some individuals. There are 
several studies that discuss genetic associations with 
RT changes across the course of a sustained attention 
task [11–14]; however, the literature contains almost no 
genetic-association studies on how RT changes across 
trials during the course of a reflexive task. Such stud-
ies might be helpful in determining if declining perfor-
mance over time shares similar or has distinct genetic 
influences in reflexive attention and sustained attention 
tasks. The genes we selected are related to the avail-
ability of neurotransmitters, such as acetylcholine and 
dopamine (see Table 1). We have previously found some 
of these genes to be associated with mean RT difference 
scores [1]. In this paper, we extend those findings with 
a novel look at the influence of these genes on the slope 

Fig. 1  Hypothetical illustration of two types of variability. The top portion shows three individuals who differ in the spread (moment-to-moment 
variability) around a regression line after slope is covaried out. The bottom portion represents variability of RT slope between individuals. Some 
individuals become faster (or slower) over the 20 presentations of a given trial type. We are primarily interested in RT slope variability in this paper
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of RT over the course of the 20-min reflexive attention 
task. Looking at RT slope is unlike looking at moment-
to-moment RT variability because the former is prob-
ably dependent on alertness or learning [15, 16] while 
the latter is probably related to vigilance and the ability 
to detect a signal beyond neural noise [17, 18].

Candidate gene studies that show associations between 
specific genes and various attentional measures provide 
evidence of genetic influences on attention. Such an asso-
ciation might occur because a given gene influences the 
availability of a neurotransmitter. That is, the biological 
pathway from gene to behavior could include neurotrans-
mitters whose availability impacts those behaviors. For 
example, attention [19, 20] and memory [21] are known 
to be influenced by the availability of the neurotrans-
mitters. The varying availability of these neurotransmit-
ters due to genetic differences could make behaviors like 
attending more or less efficient in some individuals, and 
this, in turn, could be captured by various measures of 
attention.

One component of ADHD is difficulty in maintain-
ing attentional arousal. Individuals with ADHD are fre-
quently identified as having this difficulty [11, 12, 22–29]. 
Usually the connection between maintaining arousal 
and dopamine is made for moment-to-moment variabil-
ity. For example, Johnson et al. [30] make the argument 
that dopamine must be involved in moment-to-moment 
RT variability because methylphenidate (which increases 
dopamine availability) reduces RT variability. Exagger-
ated RT variability could arise because of difficulty in 
sustaining attention such that RTs rise and fall over the 
course of a task independently of the task requirements. 
RT variability may increase with less dopamine availabil-
ity because it becomes harder to distinguish signal from 
noise in the nervous system. That is, reduced availability 
of dopamine could lead to weaker neural signals giving 

random neural noise a larger impact on target detection 
and response [17, 18].

Another form of variability over trials would be mono-
tonic increases or decreases in RT. That is, dopamine 
availability could also be related to RT slope over the 
course of a task. For example, Bioulac et  al. [23] found 
that children with ADHD decline in performance over 
time on a Continuous Performance Test. This finding 
could apply to slight attentional deficits found in nonclin-
ical populations as well. In such populations, there may 
be variations in neurotransmitters that have been associ-
ated with attention generally and these variations could 
contribute to an increase in RT over the course of a task.

This is interesting because our previous analysis of 
the data in the current study showed that individuals 
from the general population differed on their mean RTs 
depending on their neurotransmitter-related genotypes 
[1]. Risk alleles for each genetic marker were identified 
in previous studies as associated with ADHD, greater RT 
costs, and/or reduced cognitive functioning generally. 
Each genetic marker was coded such that zero indicates 
neither parent contributed a risk allele for these cognitive 
outcomes, one indicates one parent contributed a risk 
allele, and two indicates that each parent contributed a 
risk allele. Those findings that used an RT attention task 
generally associated genetic markers with mean RTs or 
RT difference scores. As mentioned previously, we could 
find no studies in the literature on genetic associations 
with RT slope in reflexive attention tasks.

In the current study we asked a simple question: Are 
RT slopes on a reflexive attention task associated with 
specific genes? We have genotyping information for sub-
jects on the dopamine-related genes COMT, DAT1, DBH 
and DRD4. We also have information on APOE, which 
carries risk for Alzheimer’s disease, is related to acetyl-
choline and has been related to cued orienting, even in 

Table 1  Rationale for genetic markers selected

Bellgrove et al. [62] refer to 3R but according to NN Rommelse, ME Altink, A Arias-Vasquez, CJ Buschgens, E Fliers, SV Faraone, JK Buitelaar, JA Sergeant, B Franke and J 
Oosterlaan [64] 3R is now called 6R

Genetic marker Risk allele Biological effect Cognitive associations

COMT rs4680 G G at rs4680 produces valine making the gen product 
more active in catabolizing dopamine [59]

Reduced cognitive function generally [59] and ADHD 
[60]

DAT1 intron 8 VNTR 6R 6R leads to more dopamine transporter, less dopamine 
in the synapse [61] and thus terminates the signal [37]

Increased RT costs for targets in the left hemifield [62] 
and ADHD [63]

DRD4 rs747302 C C leads to fewer dopamine receptors via reduced 
transcription [64]

Association with ADHD [64]

APOE rs429358 + rs7412 ε4 ε4 reduces acetylcholine receptors [65] and may dimin-
ish synthesis of acetylcholine [31]

Reduced spatial cueing in visual tasks for middle aged 
(non-demented) carriers of the ε4 allele [34, 66, 67]

DBH rs1108580 A DβH converts dopamine to norepinephrine, therefore, 
the A allele is associated with lower norepinephrine to 
dopamine ratios [68]

Association with ADHD [69, 70]
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young adults and adolescents [31–33] and with atten-
tion generally [34, 35]. It is useful to examine genes that 
do not fit with the dopamine hypothesis of attentional 
deficits and yet have a logical and historical association 
with attention. Using these data previously on some of 
these genes [1], we found significant mean RT differences 
between individuals with different genotypes. Our goal 
was to determine if there are also genetic associations 
with RT slopes across trials in an reflexive task. Thus, we 
are looking for gene-by-trial interactions by modeling 
logarithm transformed RT as the dependent variable (the 
outcome in the multilevel model). Such results would 
be the first to our knowledge to demonstrate such asso-
ciations. Our interest in RT slope is to give a more com-
plete picture of what is happening in the minds of those 
individuals who struggle with attentional deficits, which 
could potentially lead to better environmental supports 
and treatments.

Results
All markers were in Hardy–Weinberg equilibrium 
(Ps > 0.90). In the following models, we were specifically 
interested in gene-by-trial interactions because they sig-
nal differences in the response time trends across tri-
als depending on genotype (see Table  2 for correlations 
between covariates, genetic markers, and the dependent 
variable.).

Multiple models were tested for each outcome meas-
ure (cue-target condition). We began with a full model 

(including all predictors and covariates) and compared 
subsequent models for improved model fit (as deter-
mined by a reduction in Bayesian Information Criteria; 
BIC). Full models used logarithm transformed RT as the 
dependent variable and included predictors of interest 
(APOE, COMT, DAT1, DBH, DRD4, and trial number), 
covariates (the standard deviation of logarithm trans-
formed RT, error rate, dummy coded ethnicity, side of 
target, sleepiness score, and age), and the interactions of 
interest (the slopes, which are the five gene-by-trial inter-
actions). The final (reduced model) eliminated all covari-
ates except ethnicity. We also tested models removing 
non-significant interactions, but these did not improve 
model fit for any cue-target condition. However, BIC 
did improve and the same gene-by-trial interactions (the 
slopes) were significant or nearly significant when using 
a simpler model without including covariates (the stand-
ard deviation of the log transformed RT, target side, error 
rate, sleepiness, or age). For parsimony, we settled on the 
simpler models which showed substantially the same 
results and had significantly smaller BIC values (as deter-
mined by χ2 deviance statistics). For every cue-target 
condition, these were the best models and the improve-
ments over models with all predictors (the full models) 
were significant at p < 0.001. Reporting Akaike’s Informa-
tion Criterion (AIC) instead of BIC does not change the 
model building results in any instance.

Estimates from tested models are presented in Tables 3, 
4, 5, 6, 7, 8, 9, 10 and 11 (one table per cue-target 

Table 2  Correlations between the dependent variable, genetic markers, and covariates

Note that the highest correlation with log transformed RT is the standard deviation of log transformed RT. This is likely due to the mathematical relationship between 
SD of log RT and log RT

** Significant at p < 0.01

* Significant at p < 0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Log RT 0.36** −0.17 0.11 −0.05 0.01 −0.08 −0.20* 0.07 0.09 0.15 0.10 0.13 0.07

2. SD of Log RT −0.02 0.18* −0.01 0.05 −0.11 −0.23** 0.06 0.10 0.20* 0.07 −0.29** 0.38**

3. APOE −0.10 −0.15 0.00 −0.09 0.00 −0.03 0.11 −0.03 0.04 −0.05 0.02

4. COMT −0.08 −0.03 0.09 −0.25** 0.16 0.15 0.08 0.13 −0.06 0.14

5. DAT1 −0.06 −0.14 0.06 0.08 −0.24** −0.02 0.19* 0.05 −0.03

6. DBH −0.02 −0.19* 0.22** −0.07 0.08 0.05 −0.19* −0.03

7. DRD4 0.21* −0.11 −0.07 −0.13 −0.02 0.13 −0.04

8. Caucasian −0.63** −0.32** −0.53** −0.02 0.29** −0.08

9. Asian −0.10 −0.17* −0.06 −0.21* 0.02

10. Black −0.08 0.01 −0.08 0.07

11. Hispanic 0.10 −0.12 0.05

12. Sleepiness 0.00 0.02

13. Age −0.11

14. Error rate
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condition).1 Note that statistical significance was deter-
mined using log10(RT) as the dependent variable, while 
the parameter estimates in Tables 3, 4, 5, 6, 7, 8, 9, 10 and 
11 have been retransformed to the original RT scale to 
aid in conceptual clarity.2 Additionally, Table  12 shows 
slopes for the different genotypes from a simple regres-
sion of untransformed RT on trial for each genotype to 
aid in conceptual clarity. The net change in RT across 200 
trials can be derived from the slopes in Table 12 by multi-
plying the slope by 200 trials. For example, for the DAT1 
5R/5R genotype for the Single Dim Valid condition: 
mean(RT change)  =  200 trials  ×  (−0.56) ms/
trial = −112 ms across 200 trials (subjects with this gen-
otype responded more than 100 ms faster on trials at the 
end of the experiment than at the beginning). Our pri-
mary interest is in whether different genotypes showed 
non-zero slopes (RT across trial). While an additional 
slope was significant with the full model (DAT1 on Single 
Bright Valid), the reduced models had a lower BIC, and 
so they are described here.

Three of the reduced (final) models had slopes that 
were significant. In these cases it was the DAT1 by trial 
interactions that were significant. The model with slopes 
and without covariates for No Cue3 was significantly bet-
ter than the model with all predictors (the full model) at 
χ2 (5, N = 2559) = 265.32, p < 0.001. The DAT1 × Trial 
interaction (the RT slope) for No Cue was the only signif-
icant slope, F(2, 2137) = 5.15, p = 0.01. There were also 
main effects for DAT1 (F[2, 2137] = 6.93, p = 0.001) and 
DRD4 (F[2, 2137]  =  3.48, p  =  0.03), but not for Trial 
(p = 0.36). The zero risk allele group (who had no DAT1 
intron 8 alleles associated with ADHD) had slopes that 

1  The parameter estimates shown in Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 have 
been retransformed. The statistical models were run on the log(10) trans-
formed RT data. For ease of exposition, we took each of these parameter 
estimates and retransformed them so that their magnitudes would be inter-
pretable in terms of the original, untransformed scale that used RT in msec. 
Note that it is not appropriate simply to antilog(10) these parameter esti-
mates; that is, it is not appropriate to compute the retransformed value 
of the parameter β1 as 10β1. Instead, we used the formula shown below to 
retransform these parameters estimates [58]. Given a parameter, β1, esti-
mated using the log(10) transformed values of RT as the outcome variable, 
the retransformed value of this parameter estimate is:1 

where b1 is the transformed parameter estimate, β1 is the original estimate 
using log(10) transformed RT, ̂log10(RT ) is the mean of the log(10) trans-
formed RT values, and the summation/averaging expression after β1 is the 
mean of the antilogged residuals.

b1 = 10
̂(log10 (RT ))

(

β1
1

N

N
∑

i=1

10ei

)

2  Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 with the original parameter estimates, 
i.e., the estimates before they were retransformed to the original scale, are 
available from the first author upon request.
3  The names for the various conditions are described in the “Methods”.

were significantly steeper (averaging 0.11  ms more of a 
decrease in RT per trial) than the one risk allele group, 
which in turn averaged 0.08 ms more of a decrease in RT 
per trial than the two risk allele group. The two-risk allele 
group had an estimate set to zero in the multilevel model 
(see Table 7). The zero-risk allele group was significantly 
different from a flat slope, (t[2137] = −2.40, p = 0.02), as 
was the one-risk allele group (t[2137] = −2.60, p = 0.01). 
The differences are easier to visualize in Table 12 where 
untransformed RT values show that subjects with zero 
risk alleles (6R/6R) got about 53 ms faster over the course 
of the task, while those with two risk alleles (5R/5R) 
slowed down across the course of the experiment by 
approximately 17 ms.

The final model for Single Dim Valid was signifi-
cantly better than the model with all predictors at χ2 
(5, N =  2559) =  212.48, p  <  0.001. The DAT1 ×  Trial 
interaction was significant at F(2, 2139)  =  3.89, 
p  =  0.02. The main effects were significant for DAT1 
(F[2, 2139] = 4.65, p = 0.01), COMT (F[2, 2139] = 5.35, 
p  =  0.01), and Trial (F[1, 2139]  =  15.91, p  <  0.001). 
The zero risk group had slopes that were significantly 
steeper (averaging 0.07 ms faster per trial; see Table 10) 
than individuals in the one risk allele group (who aver-
aged 0.08  ms faster per trial than those in the two risk 
allele group). Those in the zero risk allele group had 
slopes that were marginally different from a flat slope, 
t(2139) = −1.75, p =  0.08. Those in the one-risk allele 
group had slopes that were significantly different from 
a flat slope, t(2139) = −2.50, p =  0.01. As can be seen 
in Table  12, subjects with zero risk alleles responded 
approximately 112 ms faster over the course of the task, 
while those with two risk alleles (5R/5R) were respond-
ing only 19 ms faster by the end of the task.

The final model for Single Dim Invalid was signifi-
cantly better than the model with all predictors at χ2 (5, 
N = 2513) = 352.66, p < 0.001. The main effects were sig-
nificant for DAT1 (F[2, 2099] =  3.18, p =  0.04), COMT 
(F[2, 2099] = 5.78, p = 0.003), DBH (F[2, 2099] = 4.14, 
p = 0.02), and DRD4 (F[2, 2099] = 5.34, p = 0.01). The 
main effect for Trial was not significant (p =  0.20).The 
DAT1 zero risk allele group has slopes that are signifi-
cantly larger (averaging a decrease of 0.13  ms more per 
trial than individuals in the one risk allele group (who 
have slopes that decrease 0.06  ms per trial faster than 
the two risk allele group). The zero risk allele group 
had slopes that were significantly different from zero 
(t[2099]  =  −2.36, p  =  0.02), but the one risk allele 
group was only marginally different from a flat slope, 
t(2099) = −1.75, p = 0.08. Subjects with zero risk alleles 
got about 87 ms faster over the course of the task, while 
those with two risk alleles (5R/5R) were responding 
slower by about 17 ms by the end of the task.
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Table 3  Estimates from models of the predictors of log-RT for the dual by bright condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 466.98** 1.58 273.63** 17.67 269.35** 14.91 433.08** 13.48

 Level 1 (trial-specific)

  Trial −0.04 0.11 −0.01 0.05 −0.04 0.05

  Side −1.98** 1.59 −1.99** 1.60

 Level 2 (individual)

  Age 0.95** 0.19 0.95** 0.19

  Asian 15.14** 4.90 15.16** 4.90 11.99** 2.22

  Black 22.05** 9.68 22.08** 9.69 24.30** 4.49

  Hispanic 4.94* 5.37 4.94 5.37 9.94** 2.39

  White 0a 0a 0a 0a 0a 0a

  Error rate −299.52** 155.79 −299.90** 155.87

  Sleepiness (centered) 0.29 0.50 0.29 0.50

  Std. Dev. of Log RT 1124.44** 1548.55 1123.96** 170.42

  APOE (0 risk) 5.63 12.82 7.18** 6.42 10.95 5.94

   (1 risk) 8.05* 8.11 9.85** 4.21 5.57 3.76

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −11.05** 10.99 −3.16 5.67 −13.25* 5.06

   (1 risk) 4.12 8.08 8.78** 4.23 1.51 3.70

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 30.71** 17.51 22.85** 8.95 17.87* 8.04

   (1 risk) 3.00 6.94 −1.62 3.53 4.57 3.20

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) 3.06 9.78 3.20 5.05 4.72 4.51

   (1 risk) −7.27* 7.80 −5.83** 3.98 −4.17 3.59

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 11.49** 9.26 10.91** 8.95 11.34** 4.29

   (1 risk) 14.03** 8.03 13.43** 7.77 15.94** 3.72

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial NS NS NS NS

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial −0.09* 0.08 −0.08* 0.08 −0.09* 0.04

   (1 risk) −0.04 0.07 −0.03 0.07 −0.04 0.03

   (2 risk) 0a 0a 0a 0a 0a 0a

Covariance parameters

 Repeated measures 5519.27** 0.16 5525.59** 0.16 6344.33** 0.18

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −6453.45 −5096.70 −5223.97 −4837.26
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Table 4  Estimates from models of the predictors of log-RT for the dual by dim condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 491.83** 1.70 267.25** 18.52 271.83** 15.10 454.62** 14.37

 Level 1 (trial-specific)

  Trial −0.03 0.11 −0.06** 0.03 −0.03 0.05

  Side −1.98** 1.67 −1.98** 1.68

 Level 2 (individual)

  Age 1.24** 0.20 1.24** 0.20

  Asian 9.05** 5.16 9.06** 5.16 5.43* 2.39

   Black 24.40** 10.05 24.37** 10.06 27.33** 4.76

   Hispanic 2.94 5.58 2.95 5.59 8.24** 2.53

   White 0a 0a 0a 0a 0a 0a

   Error rate −306.56** 164.62 −304.52** 164.75

   Sleepiness (centered) 0.21 0.53 0.21 0.53

   Std. Dev. of Log RT 1324.27** 179.17 1322.26** 179.32

   APOE (0 risk) 5.68 13.31 14.62** 6.72 12.73* 6.31

    (1 risk) 8.93* 8.43 9.50** 4.42 6.81 3.99

    (2 risk) 0a 0a 0a 0a 0a 0a

   COMT (0 risk) −0.35 11.47 −2.33 6.00 −2.71 5.40

    (1 risk) 14.00** 8.39 10.79** 4.46 10.62** 3.93

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 33.59** 18.18 20.90** 9.38 17.75* 8.54

   (1 risk) −1.81 7.21 −3.86* 3.71 0.31 3.41

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) 3.72 10.15 4.26 5.31 6.76 4.78

   (1 risk) −10.45** 8.11 −7.13** 4.17 −6.41 3.82

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 6.17 9.59 2.86 4.97 5.39 4.54

   (1 risk) 15.53** 8.36 10.90** 4.27 17.08** 3.96

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial NS NS NS NS

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 5982.33** 0.16 5992.84** 0.16 7201.47** 0.20

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −6286.49 −5057.25 −5216.91 −4705.49
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Table 5  Estimates from models of the predictors of log-RT for the neutral bright condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 477.68** 1.65 263.25** 18.44 268.68** 15.02 433.18** 13.97

 Level 1 (trial-specific)

  Trial 0.02 0.11 −0.02 0.03 0.02 0.05

  Side −0.56 1.68 −0.57 1.67

 Level 2 (individual)

  Age 1.08** 0.20 1.08** 0.19

  Asian 10.84** 5.14 10.84** 5.13 7.81** 2.34

  Black 19.90** 10.10 19.87** 10.09 22.12** 4.70

  Hispanic 3.94 5.63 3.93 5.63 9.24** 2.51

  White 0a 0a 0a 0a 0a 0a

  Error rate −248.00** 164.59 −248.43** 164.46

  Sleepiness (centered) 0.36 0.53 0.36 0.53

  Std. Dev. of Log RT 1200.33** 179.18 1200.84** 179.03

  APOE (0 risk) 11.42** 13.20 13.56** 6.72 16.87** 6.14

   (1 risk) 10.96* 8.36 11.37** 4.42 8.35* 3.88

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −4.90 11.34 −5.18* 5.96 −7.87 5.24

   (1 risk) 10.25** 8.32 9.28** 4.43 6.57 3.82

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 32.17 18.08 24.02** 9.38 17.47* 8.33

   (1 risk) 3.10 7.15 −0.74 3.70 4.91 3.31

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) 0.23 10.09 1.41 5.31 2.57 4.66

   (1 risk) −9.06** 8.04 −7.85** 4.17 −5.61 3.72

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 7.66 9.55 2.06 4.96 7.04 4.44

   (1 risk) 13.79** 8.28 10.17** 4.27 15.39** 3.85

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial NS NS NS NS

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 6076.64** 0.17 6067.27** 0.17 7047.49** 0.20

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −6331.46 −4980.39 −5146.62 −4702.19
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Table 6  Estimates from models of the predictors of log-RT for the neutral dim condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 479.66** 1.61 266.83** 17.92 268.31** 14.68 435.62** 13.60

 Level 1 (trial-specific)

  Trial −0.01 0.11 −0.02 0.03 −0.01 0.05

  Side −1.68* 1.63 −1.69* 1.63

 Level 2 (individual)

  Age 1.02** 0.19 1.02** 0.19

  Asian 13.72** 5.02 13.68** 5.02 10.85** 2.29

  Black 17.15** 9.88 17.13** 9.89 19.42** 4.61

  Hispanic 2.36 5.47 2.36 5.48 7.95** 2.44

  White 0a 0a 0a 0a 0a 0a

  Error rate −273.99** 160.57 −272.92** 160.72

  Sleepiness (centered) 0.31 0.51 0.31 0.51

  Std. Dev. of Log RT 1221.08** 174.93 1218.86** 175.10

  APOE (0 risk) 9.67 12.84 12.43** 6.57 15.10* 5.99

   (1 risk) 8.24* 8.13 9.07** 4.31 5.64 3.79

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −9.68* 11.02 −5.01* 5.81 −12.11* 5.11

   (1 risk) 7.88* 8.06 10.68** 4.32 4.77 3.71

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 40.38** 17.81 28.30** 9.18 24.63** 8.23

   (1 risk) 4.50 6.94 −0.36 3.61 6.13 3.22

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) −0.12 9.80 3.04 5.16 2.16 4.55

   (1 risk) −6.38 7.81 −5.49** 4.07 −2.99 3.63

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 13.79** 9.26 6.25** 4.83 13.32** 4.32

   (1 risk) 13.52** 8.06 11.93** 4.16 15.10** 3.75

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial NS NS NS NS

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial −0.08* 0.08 −0.07 0.04

   (1 risk) −0.02 0.07 −0.01 0.03

   (2 risk) 0a 0a 0a 0a

Covariance parameters

 Repeated measures 5751.24** 0.16 5763.32** 0.16 6703.64** 0.19

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −6475.39 −5104.74 −5263.70 −4816.56



Page 10 of 22Lundwall and Dannemiller ﻿BMC Neurosci  (2015) 16:66 

Table 7  Estimates from models of the predictors of log-RT for the no cue condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 534.95** 1.78 300.44** 20.60 300.99** 16.99 487.29** 15.68

 Level 1 (trial-specific)

  Trial 0.05 0.12 0.05* 0.04 0.05 0.06

  Side −2.94** 1.86 −2.94** 1.86

 Level 2 (individual)

  Age 0.99** 0.22 0.99** 0.22

  Asian 9.34** 5.73 9.34** 5.72 7.12** 2.60

  Black 0.84 11.41 0.81 11.39 2.78 5.30

  Hispanic −1.84 6.23 −1.85 6.23 5.52* 2.77

  White 0a 0a 0a 0a 0a 0a

  Error rate −164.14* 182.85 −164.14* 182.69

  Sleepiness (centered) 0.78** 0.59 0.78** 0.59

  Std. Dev. of Log RT 1333.41** 198.90 1333.80** 198.75

  APOE (0 risk) −2.28 14.85 7.14* 7.47 2.35 6.89

   (1 risk) 8.54* 9.41 8.93** 4.92 5.09 4.37

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −0.99 12.74 −2.60 6.61 −5.46 5.88

   (1 risk) 10.04* 9.33 9.84** 4.92 5.13 4.29

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 39.93** 20.25 39.95** 18.92 22.73* 9.32

   (1 risk) 10.96** 8.04 11.53** 7.95 12.19** 3.72

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) 4.27 11.39 3.09 5.91 4.77 5.26

   (1 risk) −4.79 9.06 −4.42* 4.65 −1.47 4.18

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 6.72 10.73 4.36 5.51 7.22 4.98

   (1 risk) 9.36* 9.31 7.54** 4.74 11.38** 4.32

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial −0.19* 0.17 −0.19** 0.16 −0.19* 0.08

   (1 risk) −0.08** 0.07 −0.09** 0.07 −0.08** 0.03

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 7500.47** 0.19 7488.63** 0.19 8649.11** 0.21

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −6532.05 −4998.91 −5132.96 −4733.59
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Table 8  Estimates from models of the predictors of log-RT for the single bright valid condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 461.40** 1.85 269.02** 21.48 263.75** 17.88 428.23** 15.85

 Level 1 (trial-specific)

  Trial −0.03 0.13 0.01 0.04 −0.03 0.06

  Side −3.23** 1.96 −3.23** 1.96

 Level 2 (individual)

  Age 1.20** 0.23 1.20** 0.23

  Asian 10.27** 6.04 10.24** 6.04 5.68* 2.69

  Black 19.23** 11.84 19.23** 11.83 20.58** 5.38

  Hispanic 3.73 6.58 3.73 6.58 7.84** 2.86

  White 0a 0a 0a 0a 0a 0a

  Error rate −295.29** 191.84 −295.91** 191.74

  Sleepiness (centered) 0.50 0.62 0.50 0.62

  Std. Dev. of Log RT 1017.83** 209.69 1017.63** 209.58

  APOE (0 risk) 5.10 15.26 8.50* 7.89 10.72 6.93

   (1 risk) 7.70 9.65 10.97** 5.18 5.86 4.38

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −9.88 13.09 −7.11* 6.98 −11.93* 5.91

    (1 risk) 13.59** 9.60 11.42** 5.19 10.59* 4.30

    (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 41.25** 20.95 42.17 19.66** 26.69** 9.42

    (1 risk) 5.24 8.27 5.73 8.17 6.49 3.74

    (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) −2.28 11.63 2.24 6.21 1.10 5.25

    (1 risk) −11.52** 9.30 −8.05** 4.89 −7.46 4.20

    (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 1.96 11.02 −0.81 5.81 0.77 5.00

    (1 risk) 10.18* 9.57 11.14** 5.00 10.96* 4.34

    (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial −0.16* 0.18 −0.17** 0.16 −0.16* 0.08

   (1 risk) −0.05 0.07 −0.05 0.07 −0.05 0.03

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 8348.67** 0.24 8340.00** 0.24 9330.38** 0.27

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −5503.84 −4716.22 −4306.30 −3975.20
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Table 9  Estimates from models of the predictors of log-RT for the single bright invalid condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 512.11** 1.87 283.91** 20.41 274.15** 16.76 486.91** 15.61

 Level 1 (trial-specific)

  Trial −0.09 0.12 0.00 0.00 −0.08 0.06

  Side −3.81** 1.87 −3.83** 1.87

 Level 2 (individual)

  Age 1.25** 0.22 1.26** 0.03

  Asian 16.91** 5.74 16.86** 5.73 14.14** 2.64

  Black 20.64** 11.44 20.53** 11.45 23.58** 5.38

  Hispanic 9.13** 6.30 9.34** 6.19 14.65** 2.84

  White 0a 0a 0a 0a 0a 0a

  Error rate −272.10** 184.83 −273.22** 185.21

  Sleepiness (centered) 0.11 0.59 0.12 0.22

  Std. Dev. of Log RT 1415.86** 200.67 1417.82** 200.84

  APOE (0 risk) −1.39 14.60 9.08** 7.45 4.54 6.87

   (1 risk) 3.09 9.28 8.67** 4.93 −0.21 4.36

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −7.05 12.53 −4.18 6.51 −9.05 5.86

   (1 risk) 3.72 9.19 10.57** 4.75 0.85 4.27

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 28.01** 20.01 21.05** 10.35 11.01 9.33

   (1 risk) −0.72 7.92 −6.07** 4.06 1.57 3.71

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) −4.41 11.12 −0.95 5.86 −1.01 5.20

   (1 risk) −10.45** 8.92 −6.89** 4.66 −5.97 4.18

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 9.13* 10.58 5.60* 5.54 8.57 4.97

   (1 risk) 12.12** 9.16 11.21** 4.75 13.52** 4.31

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial 0.03 0.11 0.02 0.05

   (1 risk) 0.07* 0.08 0.07 0.04

   (2 risk) 0a 0a 0a 0a

  DAT1 (0 risk)*Trial NS NS NS NS

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 7308.26** 0.19 7339.45** 0.19 8701.69** 0.23

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −5900.16 −4716.22 −4881.78 −4393.91
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Table 10  Estimates from models of the predictors of log-RT for the single dim valid condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 477.28** 1.91 293.25** 22.29 273.05** 18.43 493.33** 16.64

 Level 1 (trial-specific)

  Trial −0.19** 0.13 −0.04* 0.05 −0.19** 0.06

  Side −0.61 2.02 −0.61 2.02

 Level 2 (individual)

  Age 1.17** 0.24 1.17** 0.24

  Asian 8.72** 6.19 8.71** 6.20 4.84 2.76

  Black 12.48* 12.25 12.45 12.25 14.13* 5.58

  Hispanic 0.68 6.80 0.71 6.80 6.62* 2.97

  White 0a 0a 0a 0a 0a 0a

  Error rate −252.03** 197.47 −251.97** 197.60

  Sleepiness (centered) 0.72** 0.64 0.73** 0.64

  Std. Dev. of Log RT 1223.84** 215.62 1224.63** 215.76

  APOE (0 risk) 6.57 15.98 12.47** 8.11 12.08 7.27

   (1 risk) 1.92 10.10 9.10** 5.33 −0.80 4.59

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −14.77* 13.69 −8.43** 7.19 −18.57** 6.19

   (1 risk) 2.49 10.06 7.65** 5.36 −1.92 4.52

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 37.45** 21.89 46.02** 20.55 20.64* 9.88

   (1 risk) 8.89* 8.65 10.10** 8.57 10.28** 3.92

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) −5.28 12.17 2.22 6.40 −3.16 5.51

   (1 risk) −10.52 9.73 −8.29** 5.04 −6.73 4.41

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 0.23 11.50 1.10 5.99 −0.28 5.23

   (1 risk) 3.37 10.02 8.39** 5.16 4.66 4.55

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial −0.15 0.19 −0.23** 0.17 −0.15 0.09

   (1 risk) −0.08** 0.07 −0.10** 0.07 −0.08* 0.03

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 8836.79** 0.24 8848.44** 0.24 9931.41** 0.27

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −5496.49 −4197.00 −4322.01 −3984.53
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Table 11  Estimates from models of the predictors of log-RT for the single dim invalid condition

Significant values for ethnicities indicate that the ethnic group is different from Caucasians on RT values. Other significant values indicate that the estimate is different 
from zero. We report in the “Results” section tests of fixed effects for gene by trial interactions to determine if slopes differ by genotype

Note that this table shows model parameter estimates when analyzing log transformed RTs. The values have been retransformed. However, to get a rough idea of 
slope differences by genotype group, please see Table 12 for raw RTs (ms)

NS the slopes were not significantly different from zero and so the row has been collapsed

* Significant at p < 0.05

** Significant at p < 0.01
a  This parameter has been set to zero

Parameter Empty model Full model Non-significant interaction 
removed

Covariates removed

Mean SE Mean SE Mean SE Mean SE

Fixed effects

 Intercept 504.98** 1.79 270.49** 19.91 265.01** 16.37 476.80** 15.59

 Level 1 (trial-specific)

  Trial −0.02 0.12 0.03 0.04 −0.01 0.06

  Side −2.11** 1.79 −2.11** 1.79

 Level 2 (individual)

  Age 1.17** 0.21 1.17** 0.21

  Asian 12.63** 5.49 12.62** 5.49 10.09** 2.54

  Black 23.52** 10.78 23.52** 10.78 26.58** 5.11

  Hispanic 7.29** 6.03 7.30** 6.03 13.76** 2.74

  White 0a 0a 0a 0a 0a 0a

  Error rate −295.66** 176.72 −295.90** 176.67

  Sleepiness (centered) 0.09 0.56 0.10 0.56

  Std. Dev. of Log RT 1517.02** 191.91 1516.95** 191.84

  APOE (0 risk) 5.25 14.55 9.34* 7.18 11.91 6.89

   (1 risk) 9.71* 9.19 9.15** 4.73 6.47 4.35

   (2 risk) 0a 0a 0a 0a 0a 0a

  COMT (0 risk) −11.84* 12.37 −6.78** 6.39 −14.87* 5.83

   (1 risk) 6.42 9.06 6.74** 4.73 2.67 4.25

   (2 risk) 0a 0a 0a 0a 0a 0a

  DAT1 (0 risk) 39.22** 19.59 39.02** 18.26 22.48* 9.21

   (1 risk) −2.49 7.83 −2.03 7.73 −0.18 3.70

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk) −3.39 11.02 0.67 5.69 −0.04 5.19

   (1 risk) −14.60** 8.80 −8.20** 4.47 −10.61** 4.15

   (2 risk) 0a 0a 0a 0a 0a 0a

  DRD4 (0 risk) 4.87 10.43 2.29 5.32 5.29 4.94

   (1 risk) 11.66** 9.06 11.82** 4.57 13.75** 4.29

   (2 risk) 0a 0a 0a 0a 0a 0a

  APOE (0 risk)*Trial NS NS NS NS

  COMT (0 risk)*Trial NS NS NS NS

  DAT1 (0 risk)*Trial −0.19** 0.17 −0.19** 0.15 −0.19* 0.08

   (1 risk) −0.06 0.07 −0.06* 0.07 −0.06 0.03

   (2 risk) 0a 0a 0a 0a 0a 0a

  DBH (0 risk)*Trial NS NS NS NS

  DRD4 (0 risk)*Trial NS NS NS NS

Covariance parameters

 Repeated measures 6817.78** 0.18 6814.26** 0.18 8216.45** 0.22

 Number of parameters 2 31 23 26

 Schwarz’s Bayesian criterion (BIC) −6108.62 −4872.73 −5003.79 −4520.07
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Discussion
One can think of variability in RT in an attention task 
across repeated trials in two ways: (1) random variabil-
ity from trial to trial that fluctuates around some mean 
RT, and (2) a systematic RT slope across trials that tends 
to make latter RTs slower (or faster) on average than ear-
lier RTs. Because it is common to study the moment-
to-moment variability of behavioral or physiological 
measures between genotypes, it is especially interesting 
to find that genotype also predicts the latter kind of vari-
ability in RT in a cued orienting task: the linear compo-
nent of changes across trials in RT (slope RT). This was 
true even after covarying sleepiness, age, self-reported 
ethnicity, error rate, and moment-to-moment variabil-
ity, although the statistical analysis led us to settle on 
the simpler models without these covariates. DAT1 was 
the only gene in the simpler models that interacted with 
trial number in predicting RT slopes. DAT1 produces a 
protein involved in the transport of dopamine from the 
synapse. We note that our task produced the typical costs 
and benefits of a reflexive attention task [1, 36]. There-
fore, our finding is intriguing because it implies that 
it is not the nature of the task per se (i.e., whether it is 

designed to involve effortful/sustained attention or not) 
but possibly that there is a task that transpires across an 
extended time period.

For DAT1, the mean slope increased (subjects got 
slower) across genotypes with increasing numbers of 
risk alleles for three outcome measures that were sig-
nificant. The significant outcome measures were condi-
tions in which there was no cue and in which the single 
cues were dim (both valid and invalid). The conditions 
that were not significantly associated with DAT1 are also 
interesting. These include the Dual Asymmetric Bright 
(the target appeared near the brighter of two simultane-
ous cues) and Dual Asymmetric Dim conditions (the tar-
get appeared near the dimmer of two simultaneous cues), 
and the Neutral Both Bright and Neutral Both Dim con-
ditions (the target appeared near either of two identical 
cues). The Single Bright Valid and Invalid cues were also 
not significant. This all suggests that it is not validity that 
distinguishes genotype groups (because subjects with 
two risk alleles do not respond more quickly across tri-
als with either valid or invalid pre-cues). It may be, how-
ever, that cue luminance matters (because those with two 
risk alleles do not respond more quickly across trials with 

Table 12  Slopes from the regression of the untransformed RT (msec) on trial

For ease of interpretation, this table presents slopes of untransformed RT rather than log transformed RT. Italic values indicate significant RT slope differences across 
genotype by primary measure. To calculate the increase or decrease in average RT across 200 trials for individuals with a given genotype, simply multiply the slopes 
in the table by 200 trials. For example, for the DAT1 5R/5R genotype for the Single Dim Valid condition: mean(RT change) = 200 trials × (−0.56) msec/trial = −112 ms 
across 200 trials (subjects with this genotype responded more than 100 ms faster on trials at the end of the experiment than at the beginning)

Dual 
by bright

Dual 
by dim

Neutral 
both bright

Neutral 
both dim

No cue Single bright 
valid

Single bright 
invalid

Single dim 
valid

Single dim 
invalid

APOE rs429358 and rs7412

 ε2/ε3 −0.005 0.091 0.091 0.081 0.242 0.072 0.225 −0.132 0.140

 ε3/ε3 −0.108 −0.168 −0.062 −0.047 −0.011 −0.006 −0.012 −0.161 −0.029

 Any ε4 −0.142 −0.183 −0.083 −0.112 −0.061 −0.099 −0.164 −0.339 −0.069

COMT rs4680

 A/A −0.050 −0.150 −0.059 −0.024 −0.090 −0.022 −0.102 −0.202 0.043

 A/G −0.079 −0.145 −0.044 −0.035 0.021 −0.046 0.040 −0.171 0.007

 G/G −0.177 −0.166 −0.068 −0.110 −0.022 −0.025 −0.159 −0.296 −0.080

DAT1 intron 8 VNTR

 5R/5R −0.192 −0.362 −0.154 −0.277 −0.267 −0.385 −0.409 −0.559 −0.435

 5R/6R −0.192 −0.211 −0.116 −0.153 −0.129 −0.143 −0.123 −0.360 −0.098

 6R/6R −0.031 −0.105 −0.008 0.023 0.083 0.035 0.043 −0.093 0.083

DBH rs1108580

 G/G −0.149 −0.135 −0.074 −0.053 −0.053 0.043 −0.030 −0.131 −0.027

 G/A −0.066 −0.098 −0.022 −0.017 0.025 −0.017 0.008 −0.212 0.064

 A/A −0.139 −0.239 −0.090 −0.107 −0.032 −0.124 −0.122 −0.285 −0.154

DRD4 rs747302

 G/G −0.224 −0.188 −0.115 −0.177 −0.046 −0.107 −0.102 −0.242 −0.054

 G/C −0.113 −0.215 −0.117 −0.054 −0.026 −0.037 −0.048 −0.169 −0.021

 C/C −0.002 −0.042 0.029 0.030 0.057 0.001 0.027 −0.275 0.023
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single, dim cues) and cue number matters (because dual 
cues did not distinguish between subjects in the different 
genotype groups). The risk allele for our genetic marker 
on DAT1 (six repeats of a VNTR) increases production of 
the dopamine transporter so that the dopaminergic sig-
nal is often terminated too soon [37].

One possible conclusion regarding genetic influence 
on the no-cue and single, dim cue conditions is that 
bright cues are too salient to distinguish between geno-
type groups (i.e., all groups performed at ceiling) because 
dopamine variability in the general population is suffi-
cient for this performance. Another possible conclusion 
regarding genetic influence is that the addition of a sec-
ond cue induces subjects to perform more similarly to 
each other across trials than a single cue, again, because 
dopamine is sufficient with two cues. In a followup analy-
sis with DAT1, the number of cues showed a slight statis-
tical trend for association with RT slope (p = 0.15) with 
steeper improvements in RT across trials for the no risk 
allele (5R/5R) group with one cue trials than with two cue 
trials. This finding is worth investigation in a future study 
because it suggests the possibility of an effect in which RT 
slopes across trials are approximately equal between gen-
otype groups when there are more cues (perhaps because 
attention is divided) and if they have any copy of the risk 
allele (6R). Conversely, they respond more quickly across 
trials if there is only one cue and they have no risk alleles. 
In other words, subjects respond more similarly across 
the course of the task when there are two cues, but single 
cues reflexively capture attention and require a disengage 
step, which may become more effortful for some subjects 
over the course of the task.

Why would the DAT1 genotypes be associated with 
systematic differences in the rate of responding across 
trials? There are three possible outcomes when exam-
ining the interaction between gene and trial in predict-
ing logarithm-transformed RT: (1) subjects can respond 
more quickly across trials (negative RT slope as trial 
number increases), (2) subjects can respond equally 
quickly across trials, or (3) subjects can respond more 
slowly across trials (positive RT slope as trial number 
increases). Also keep in mind that a significant difference 
in RT slope across trials between genotype groups does 
not always entail a negative RT slope in one group and a 
positive RT slope in another group. It could simply mean 
that the RT slope was less negative in one group than in 
another, while both groups could show negative slopes. 
In all cases, the significant effects consisted of less nega-
tive or more positive RT slopes across trials associated 
with more risk alleles for the various genes (as defined 
by association with ADHD). Recall that possession of 
more copies of the risk allele on DAT1 would tend to 

result in faster transport of dopamine from the synapses. 
The nature of the behavioral effect is that subjects tend 
to slow down across the course of the experiment, espe-
cially with the 5R/6R and 6R/6R genotypes. One possible 
explanation for this effect, then, is that an optimal level 
of dopamine is required to maintain alertness [22, 28, 
38–42]. This is actually not different from saying that the 
association between DAT1 and RT slope may be related 
to vigilance or sustained attention, even though this is 
a reflexive attention task. There is a large literature for 
genetic effects of dopamine related genes for sustained 
attention [22, 28, 41, 42].

In the case of the current results with the reflexive 
attention task, waning vigilance across the course of the 
experiment would tend to lead to gradually longer target 
detection times and longer RTs on average despite the 
reflexive nature of the cue-target trials. This hypothesis 
would, of course, predict that possession of more DAT1 
risk alleles should have caused a general slowing across 
trials in all conditions. Instead, this effect was observed 
in three of nine conditions. It is possible that issues of 
power prevented detection of the effect in the other con-
ditions. Nevertheless, dopamine availability, cue lumi-
nance and cue number could all be important. We have 
provided evidence that there are genetic influences on 
RT trends over the course of a reflexive attention task 
and not simply on terms of moment-to-moment RT 
variability.

Of course, chance is another possibility that could 
explain our results. In fact, the biggest limitation of this 
study regards sample size which all other things being 
equal tends to make results less replicable. While some 
authors caution against using sample sizes smaller than 
500 to explore interaction effects [43], others have noted 
sufficient power and stability to explore cross-level inter-
actions in multilevel models with sample sizes of 30–50 
level-2 units (individual subjects in this study) [44, 45] 
and at least 30 level-1 units (the trials in this study) per 
level-2 unit. Our study certainly met the latter criterion. 
The best way to handle this question is to replicate this 
study.

Another limitation could be the heterogeneity of our 
sample. While we see advantages to including multiple 
ethnicities and ages, population stratification as an arti-
fact is certainly more likely as the heterogeneity of the 
sample increases. This would argue for a replication with 
a larger overall sample and more balanced ethnic sub-
samples. This could lead to more certainty in the gener-
alizability of the results. It would also be advantageous to 
explore associations with more genetic markers including 
those that are associated with neurotransmitters other 
than dopamine.
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Conclusions
Over the course of a reflexive visual attention experi-
ment with repeated trials of the same conditions, some 
subjects fail to respond more quickly to identical stimuli, 
but others respond more quickly as the task progresses. 
This is interesting because it suggests the possibility of 
similar biological mechanisms for sustaining attention 
to exogenous and endogenous cues [9, 46, 47]. However, 
there are other possibilities. Responding more slowly to 
later presentations of the same stimulus could indicate, 
for example, fatigue, a build-up of trial-to-trial inhibi-
tion, or greater interference from immediately preceding 
trials. Responding more quickly to the same stimulus in 
later presentations could be considered a simple form of 
learning. The subject’s task was simply to make a choice 
response (right versus left) to a particular target that 
appeared across trials either unaccompanied by a tempo-
rally preceding cue, or accompanied by such a cue that 
could appear spatially near the target’s position or con-
tralaterally across the visual field from the location of the 
target.

We asked whether individual differences in these RT 
slopes in response to the cue-target manipulation were 
associated with genetic markers for five genes: COMT, 
DAT1, DBH, DRD4, and APOE. These genes were cho-
sen because they have been shown to be related to vari-
ous aspects of visual attention in previous research, and 
because in some cases, there is a plausible biological 
pathway from the gene to the phenotypes that we used 
to study visual orienting. DAT1 genotype was associated 
with variations in these slopes in three different cue-tar-
get conditions. The mean slope increased with increas-
ing numbers of risk alleles. A larger positive mean slope 
implies that the difference in RT between early trials with 
a given stimulus and later trials with that same stimulus 
was greater (greater RT slowing) for subjects carrying 
more of the DAT1 risk alleles. The risk allele was deter-
mined based primarily on previous research on related 
sustained attention tasks.

Previous work, including our own, has shown associa-
tions between the mean RT in different conditions and 
various genes, but such associations are like snapshots of 
genotype/phenotype relations in the sense that the phe-
notype is not extended in time. It reflects a static aspect 
of visual attention. In contrast, the phenotypes that we 
examined were by definition extended in time because 
they were defined by the slope of RT across repeated 
presentations of the same stimulus. It was primarily 
DAT1 that was associated with these temporally extended 
phenotypes. The phenotypes reflect how speeded atten-
tional choices change over perhaps a 30 min period filled 
with repetitions of multiple trial types. However, this 
temporally extended phenotype could reflect the ability 

to maintain attentional arousal—the ability to learn to 
recognize the spatiotemporal configurations of the vari-
ous trial types in order to respond more discriminatively 
when they appear again—or other processes that system-
atically alter RTs across an extended period of time. Our 
results suggest that the DAT1 gene is a promising candi-
date for understanding the underlying pathways involved 
in these more temporally extended aspects of either 
reflexive or sustained visual attention.

Methods
Subjects and data set
This study was approved by Rice University’s Internal 
Review Board for Human Subjects in Research and con-
ducted in accordance with ethical guidelines established 
by the Office for Human Research Protections at the US 
Department of Health and Human Services. We tested 
subjects between the ages of 18 and 61  years old from 
the general population. Most of the subjects (n =  107) 
were Rice University students, and the remaining sub-
jects (n = 54) were recruited from the surrounding com-
munity by posting to neighborhood email groups (see 
Table 13 for a comparison of these two recruiting sources 
and Table 14 for demographics). Prior to completing the 
visual orienting task, subjects signed a consent form and 
completed an intake questionnaire that included ques-
tions on basic demographics, tobacco use, sleepiness 
(using the Epworth Sleepiness Scale) [48], and attentional 
disorders affecting the subject and their biological rela-
tives. Subjects provided a saliva sample from which we 
extracted DNA to obtain information on genotypes for 
five genetic markers (see Table 1).

A subject’s data were removed from the data set if he 
or she had error rates over 10 % on the behavioral task, 
could not be classified into a single ethnicity, or reported 
a history of a serious neurological disorder. Of the 161 

Table 13  Comparison of these two recruiting sources

The two recruiting sources were Rice University students and subjects recruited 
from a suburb of Houston. As can be seen, the subjects from the two groups 
differed on age (the suburb sample was older) and DRD4 genotype. Multilevel 
modeling accounts for the fact that trials are not independent (certain trials 
come from certain individuals) and so these differences are less of a concern 
than they might be with other statistical analyses

T df Sig. (2-tailed) Mean differ-
ence

Std. error dif-
ference

Age −9.89 54.95 0.00 −14.89 1.51

Gender −0.34 145 0.73 −0.03 0.09

APOE 0.78 133 0.44 0.08 0.10

COMT 0.31 143 0.76 0.03 0.11

DAT1 −0.30 138 0.77 −0.03 0.10

DBH 1.50 142 0.14 0.19 0.12

DRD4 −2.31 132 0.02 −0.32 0.14



Page 18 of 22Lundwall and Dannemiller ﻿BMC Neurosci  (2015) 16:66 

subjects, eight were excluded for having an error rate 
over 10  %. This decision was based on the distribution 
of error rates (including catch trial errors). High error-
rates could indicate that subjects might not be motivated 
or understand the task. The error rate for the remain-
ing subjects averaged 2 % (SD = 0.02). One subject was 
excluded for not being classifiable to a single ethnicity. 
However, eleven individuals with dual ethnicity were 
classifiable based on the pattern of their genes. We cal-
culated the proportion of each single ethnic group having 
each genotype. Then we looked at the genotypes of those 
individuals reporting two ethnicities. If there was a pat-
tern (e.g., if a person’s genotype matched the most com-
mon genotype for Hispanics on 4 out of 5 genes) and one 
of the two ethnicities they reported was Hispanic, then 
they were coded as Hispanic. We compared the results 
to the best distinguishing genotype for each ethnicity 
(e.g., if a person had 5R/5R on DAT1, then he/she was 
83  % likely to be Black). No individuals reported more 
than two ethnicities. Three individuals were excluded for 
reporting prior strokes or seizures. In addition, four sub-
jects were excluded for experimenter error. The final data 
set contained data from 146 individuals who had com-
plete behavioral data.

Subjects reporting ADHD were not automatically 
excluded because attention symptoms exist in a con-
tinuum across the general population [49–51]. However, 
models including and excluding these subjects were com-
pared to verify that these subjects were not driving the 
results. We determined that the same statistical decisions 
would have been reached except for slight differences in 
p values obtained, so we retained the subjects report-
ing ADHD. Eight subjects in the final data set reported a 
diagnosis of ADHD, four of whom were medicated (one 
additional subject reporting ADHD was excluded for 
having fewer than 200 trials). However, fewer than half 
of these eight subjects had the high risk genotype on any 
given genetic marker so we reasoned that these subjects 

could not drive any results consistent with an analysis by 
risk allele. Ninety-four of 107 subjects in the Rice Univer-
sity sample had data that met inclusion criteria (45.74 % 
male) as did 51 of the 54 community subjects (41.18  % 
male). Overall, 90.06 % of the subjects had data that was 
not excluded. The mean age for the university sample was 
20.22 years (range 18–38 years), and for the community 
sample the mean age was 35.45 years (range 18–61 years).

For behavioral data collection, subjects completed a 
choice response task (responding with a button press to 
indicate either a left or right target). Subjects viewed a 
1024 × 768 pixel CRT monitor with a background lumi-
nance of 0.08  cd/m2. A fixation cross, centered on the 
monitor, was always visible. Subjects were instructed to 
fixate the central cross and to maintain fixation through-
out data collection. Before beginning data collection 
trials, subjects were dark adapted and completed 20 prac-
tice trials.

One or two pre-cues were flashed for 67  ms. On all 
except “catch” trials (for which no target appeared), there 
was an 83 ms gap after the offset of the cue(s) and prior 
to the onset of the target. The target remained on display 
for 1000  ms or until the subject made a key press (see 
Fig. 2). Subjects were asked to respond as quickly as pos-
sible while maintaining accuracy by making a key press 
to indicate a target either to the left (pressing ‘A’ on the 
left side of the keyboard) or to the right (pressing ‘L’ on 
the right side of the keyboard) of fixation. On catch trials, 
no target appeared, and subjects were instructed to with-
hold responding. After the subject responded (or the trial 
timed-out), there was a variable delay (1.3–1.8 s), and the 
next trial began. The task did not provide feedback.

In a traditional Posner-like reflexive orienting task, 
there are only single pre-cues (except for a neutral con-
dition used as a baseline, which uses two equiluminant 
cues). To these we added unequal-luminance (“asymmet-
ric”), dual-cue trials [52] in order to examine the ability 
to benefit from either of two simultaneous pre-cues with 

Table 14  Covariates by recruiting source

As can be seen, the primary demographic differences between the two recruiting sources are greater age and less ethnic diversity in the community sample. The 
community sample was recruited to increase age range. Reduced ethnic diversity is a common byproduct of recruiting in American suburban areas

SD of log RT Log RT Age Sleepiness Error rate Ethnicity

Mean Mean Mean Mean Mean Asian
Count

Black
Count

Hispanic
Count

Caucasian
Count

Rice

 Male 2.69 0.07 20 8 0.02 12 2 7 22

 Female 2.68 0.07 20 9 0.02 12 4 10 26

Community

 Male 2.67 0.06 36 9 0.02 0 1 1 20

 Female 2.69 0.06 35 9 0.02 0 0 0 30
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possibly different saliences. As in a traditional Posner-like 
task, the cues could be valid (i.e., the target would subse-
quently appear ipsilateral to the cue location) or invalid 
(i.e., contralateral). For dual cues, the target could appear 
either near the brighter of the two cues or near the dim-
mer. Never more than one target was presented and we 
averaged the RTs for left and right target presentations. 
Having, therefore, two luminances, we used a total of 
nine different pre-cue conditions on the display prior to 
the appearance of the target. These nine conditions var-
ied on cue number (0, 1, or 2) and luminance (bright or 
dim). In addition, dual cues could be equiluminant or 
asymmetric. In this task the pre-cues were uninforma-
tive because the probability of the target appearing near 
where the pre-cue (or brighter cue) had appeared was 
50 %.

To refer to these various cue-target conditions, we 
provided unique names. Single Dim Valid indicated a 
single cue of the dimmer luminance preceding an ipsi-
lateral target. Conversely, Single Dim Invalid indicated 
a dim cue followed by a contralateral target. There were 
corresponding valid and invalid configurations for the 
Single Bright cues. We also included Neutral Bright and 
Neutral Dim cues. On these trials, identical bright or 
dim cues were presented simultaneously on both sides 
of the fixation cross. As mentioned previously, these spa-
tially neutral cues provided baseline measures and were 
used to calculate alerting effects (that is, reduced RT due 
to the temporal appearance of the cue). When the dual 

asymmetric cues are presented, the target can appear 
either near the brighter (Dual Asymmetric Bright) or 
dimmer cue (Dual Asymmetric Dim). Targets can also 
appear uncued (the No Cue condition). RT was measured 
from the onset of the target. Finally, there was a tenth 
condition for which we do not have RT data because 
no target appeared (Catch trials) and subjects were 
instructed to withhold responding. Each of the 10 con-
ditions (nine target-present plus one target-absent) was 
presented 20 times (10 times with a left target and 10 
times with a right target), yielding 200 trials.

Subjects were told (1) that the cues did not predict the 
target’s location and (2) to ignore the cues as much as 
possible. Subjects completed all trials within one session 
with pauses as necessary.

The brighter and dimmer cue luminances were 11.7 and 
2.0  cd/m2, respectively. The target (a square) always had 
a luminance of 15.5  cd/m2. The centermost edge of the 
target appeared 5.5° to either side of the fixation cross. 
The cues were shaped like the letter X, measured 0.8 
(width) × 1.0 (height) degrees, and appeared 7.3° (inner-
most edges) to the left and right of the display’s center.

Genetic methods
Saliva was collected using Oragene-250 kits (DNA Ora-
gene, Kanata, Ontario, Canada). Genetic assays were 
performed to identify genotypes at known SNPs (see 
Table 15) using polymerase chain reaction (PCR) ampli-
fication. Purification was carried out on products by 
loading them onto an Applied Biosystems 3730xl DNA 
analyzer and reading the results using Mutation Surveyor 
software (SoftGenetics, PA, USA). For more details, 
please see our earlier paper [1].

Fig. 2  Representation of stimuli. The pre-cue stimulus flashed on for 
67 ms and then off for 83 ms. Targets were on the same side as the 
single cue 50 % of the time. The target remained on display until a 
response was made but for no longer than 1000 ms. Dual cues were 
identical except that two cues appeared simultaneously in the same 
locations in which the single cues appeared

Table 15  The nucleotide sequences (“primers”) used 
to isolate the polymorphisms analyzed

Polymorphism Strand Primer sequence

rs429358 (APOE) Sense 5′-GAACTGGAGGAACAACTGAC

Antisense 5′-CGCTCGCGGATGGCGCTGA

rs7412 (APOE) Sense 5′-GAACTGGAGGAACAACTGAC

Antisense 5′-CGCTCGCGGATGGCGCTGA

rs4680 (COMT) Sense 5′-GCTACTCAGCTGTGCGCATG

Antisense 5′-ACGTGGTGTGAACACCTGGT

SL6A3 repeat (DAT1) Sense 5′-TGTGTGCGTGCATGTGG

Antisense 5′-GCTTGGGGAAGGAAGGG

rs1108580 (DBH) Sense 5′-ACGCCTGGAGTGACCAGAAG

Antisense 5′-CCATCCTCCTTGGCTTTCTC

rs747302 (DRD4) Sense 5′-CGGAGGGAATGGAGGAGGGA

Antisense 5′-AGACCTGAGCTCAGGCTCTG
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Genetic analysis of the VNTR (DAT1 exon 8) was per-
formed using fluorescently labeled PCR products (see 
Table  13). Similar to the SNPs, the amplified VNTR 
products were analyzed on an Applied Biosystems 3730xl 
DNA analyzer. Genemapper 4.0 software was used to 
assign the allele distribution (Applied Biosystems).

The potential for spurious associations in genet-
ics studies, termed population stratification, is a com-
monly discussed problem [53]. Stratification in this case 
is an artifact that occurs when there are systematic dif-
ferences in a phenotype that have nothing to do with a 
genetic marker under study, yet the association appears 
statistically significant. Spurious relationships are pos-
sible because ethnicity is related to genetic ancestry. 
Studies are more at risk for these stratification artifacts 
when subjects from various ethnic groups are (1) com-
bined in the same analysis, (2) differ on a phenotype, and 
(3) simultaneously differ for unrelated reasons on the 
frequencies of target genotypes. In a particular study it 
is often impossible to determine if ethnic group pheno-
typic differences are due to genetic differences. However, 
population stratification is often suspected if a study fails 
to replicate. To address potential stratification, we used a 
strategy similar to that recommended by Hutchison et al. 
[54]. That is, we used self-reported ethnicity as a proxy 
for genetic subpopulation entered as a covariate in the 
statistical model.

We examined markers on five genes, COMT, DAT1, 
DBH, DRD4, and APOE. The first four each have three 
genotypes based on two alleles (one inherited from each 
parent, such as AA, AG and GG for COMT). All genes 
except APOE were coded ordinally so that “0” represents 
no risk alleles, “1” represents one risk allele, and “2” rep-
resents two risk alleles. APOE was coded so that “0” indi-
cates possession of a protective allele, “1” represents the 
most common “normal” variant, and “2” represents pos-
session of either one or two risk alleles.

The coding for APOE has a slightly different interpre-
tation because it consists of two different markers (a 
haplotype) in contrast to the other genes that each had 
only one marker. However, the risk for cognitive defi-
cits appears to be additive and can still be tested for lin-
ear effects using similar coding. APOE is based on two 
SNPs from which we have created three groups (ε2/ε3, 
ε3/ε3, and any ε4) based on the literature. For example, 
Hubacek et al. [55] did not consider individuals with the 
ε2/ε4 genotype since one allele carries risk for cognitive 
deficits (even in middle-aged adults without Alzheimer’s) 
[31] and the other provides protection against cognitive 
deficits [56]. In our data set two individuals had the ε2/
ε4 genotype and were therefore excluded from analysis 
on this gene. Other genotypes, such as ε2/ε2, are rare 
and do not occur in our data set. The first group (ε2/

ε3) represents those with a protective allele; the sec-
ond group represents those with typical risks, and the 
third group represents those with at least one risk allele 
(that is, either one or two ε4 alleles) since even one risk 
allele carries risk for cognitive deficits. These five genes 
(COMT, DAT1, DBH, DRD4, and APOE) were entered as 
potential predictors of RT variability for each cue-target 
condition in turn.

Statistical analysis
Prior to the main analyses, we determined that assump-
tions of normality were not met (the RT variables had sig-
nificant positive skew). Raw RT values were transformed 
using a base ten logarithm. We did not use incorrect 
(wrong side) or RT out of range trials, and this reduced 
the impact of attentional lapses on slope.

Recall that 16 subjects had their data removed for rea-
sons described under Subjects and Data Set. In addition 
to these exclusions, some subjects had missing genetic 
information due to the inability to obtain genotypic infor-
mation from their saliva sample on a particular marker. 
For APOE, 12 subjects had missing genetic information. 
For COMT, two subjects had missing genetic informa-
tion. For DAT1, seven subjects had missing genetic infor-
mation. For DBH, three subjects had missing genetic 
information. Finally, for DRD4 the number of subjects 
with missing genetic information was 13. If subjects were 
missing genotyping data for a particular marker, they 
were excluded from that analysis.

We used a multilevel modeling approach in SPSS (IBM, 
2012) using the MIXED command. We used a back-
wards design similar to backwards regression. There 
were nine final models (one for each cue-target condi-
tion). Final models were determined by comparison to 
an empty model with no predictors and to simpler mod-
els. Essentially, the multi-level model is fitting a line for 
each person through the log transformed RTs of each 
cue-target condition and then the interaction between 
trial and genotype indicates if the slope changes by geno-
type. Epworth sleepiness scores, age, and ethnicity were 
entered as covariates.

We examined slope using mixed (multilevel) mod-
eling. Multilevel modeling accounts for the nested 
nature of the data (i.e., that trials can be attributed to 
individuals). We used this method primarily to account 
for the cross-level interaction that we were interested in 
between trial and genotype (i.e., the slope) [57]. In addi-
tion, the intraclass correlation indicated that 4.39  % of 
the variance came from the individual-level data (level-
2). Although this is relatively small, using multilevel 
modeling addresses the nested nature of the data. We 
entered all five genetic markers, sleepiness, age, side of 
target (right or left), trial number, standard deviation of 
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base10 logarithm-transformed RT, error rate, and eth-
nicity (dummy coded). We also entered the interaction 
between trial number and genetic marker as predictors 
of RT. These were all fixed effects. Trial was entered as 
a repeated effect. The output of interest when examin-
ing RT slopes over the course of a task is the interaction 
between the genetic marker and trial number.
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