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Abstract 

Background: It is well documented that the nitric oxide (NO) might be directly involved in brain response to hypo‑
baric hypoxia, and could contribute to memory deficiencies. Recent studies have shown that melatonin could attenu‑
ate hypoxia or ischemia‑induced nerve injuries by decreasing the production of free radicals. The present study, using 
immunohistochemical and immunoblot methods, aimed to explore whether melatonin treatment may affect the 
expression of nitric oxide system and protein nitration, and provide neuroprotection in the rat hippocampus injured 
by hypobaric hypoxia. Prior to hypoxic treatment, adult rats were pretreated with melatonin (100 mg/kg, i.p.) before 
they were exposed to the altitude chamber with 48 Torr of the partial oxygen concentration (pO2) for 7 h to mimic the 
ambience of being at 9000 m in height. They were then sacrificed after 0 h, 1, and 3 days of reoxygenation.

Results: The results obtained from the immunohistochemical and immunoblotting analyses showed that the 
expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), inducible nitric oxide 
synthase (iNOS), nitrotyrosine (Ntyr) and Caspase 3 in the hypoxic hippocampus were increased from 0 h to 3 days of 
reoxygenation. Interestingly, the hypoxia‑induced increase of nNOS, eNOS, iNOS, Ntyr and Caspase 3 protein expres‑
sion was significantly depressed in the hypoxic rats treated with melatonin.

Conclusions: Activation of the nitric oxide system and protein nitration constitutes a hippocampal response to 
hypobaric hypoxia and administration of melatonin could provide new therapeutic avenues to prevent and/or treat 
the symptoms produced by hypobaric hypoxia.
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Background
Sudden exposure to high altitude (HA) (i.e., rapid ascent 
without acclimatization, as in mountain climbing) results 
in the development of hypobaric hypoxia (HBH). Hypo-
baric hypoxia leads to appearance of neuropsychological 
disorders and mental dysfunctions such as insomnia, diz-
ziness, and memory deficiencies which are consequences 

of the decreased partial pressure of oxygen (pO2) availa-
ble to the central nervous system (CNS) [1, 2]. It has been 
established that CNS is highly sensitive to hypoxia and 
that some areas, such as the hippocampus, are especially 
vulnerable to hypoxic damage [3]. Several studies have 
determined that hypobaric hypoxia in the CA1 region of 
the hippocampus provokes metabolic, electrophysiologi-
cal, and morphological modifications related to neuronal 
death [4–7]. The obvious cell damage in the hippocam-
pus and learning/memory deficits were evidenced after 
exposure to HBH [8]. The exact mechanisms of neuronal 
damage in hypobaric hypoxia remain to be elucidated. 
Growing evidence showed that nitric oxide (NO) system 
involved in certain neuronal modifications and could 
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contribute to memory deficiencies related to ischemic 
hypoxia, normobaric and hypobaric hypoxia [9–11]. NO 
is a short-lived bioactive molecule that participates in 
the physiology and pathophysiology of various systems 
in mammals. NO is produced by nitric oxide synthases 
(NOS) that constitute a family of enzymes that catalyze 
the oxidation of l-arginine and nicotinamide adenine 
dinucleotide phosphate by oxygen to yield L-citrulline 
and NO [12, 13]. Three distinct NOS isoforms have been 
identified: neuronal NOS (nNOS), endothelial NOS 
(eNOS), and inducible NOS (iNOS). It has been sug-
gested that the formation of NO is directly linked to the 
glutamate, which can cause post-synaptic calcium influx 
and trigger a cascade of events leading to cell damage fol-
lowing N-methyl-d-aspartate (NMDA) receptors activa-
tion during hypoxia insults [14–16]. Part of the released 
NO after hypoxic injury can rapidly react with superox-
ide produced in excess during reoxygenation, forming 
peroxynitrite, a potent oxidizing agent with neurotoxic 
actions [17, 18]. Peroxynitrite can act on tyrosine resi-
dues in proteins to form the stable end product 3-nitro-
l-tyrosine (nitrotyrosine; Ntyr). This compound can thus 
be used as a marker for the potentially cytotoxic effect of 
NO production in the presence of superoxide [18, 19].

Pharmacological agents can reduce NO production or 
prevent its biological effects by a variety of mechanisms, 
including the inhibition of l-arginine uptake into the cell, 
the reduction of cellular availability of necessary cofac-
tors by preventing their formation or promoting their 
breakdown, or inhibition of the cellular mechanisms 
leading to induction of different NOS isoforms [12]. Of 
the many substances indentified, recent studies suggest 
that the melatonin and its metabolites are highly effective 
physiological antioxidants and free radical scavengers 
[20, 21]. Many biochemical and histopathological find-
ings have revealed that melatonin exerts neuroprotec-
tive effects in suppressing NO production and enhancing 
superoxide dismutase (SOD) activity following numer-
ous experimental and clinical oxidative injury [22–24]. 
Lowering circulating levels of melatonin also exagger-
ates the oxidative damage to tissues that are subjected to 
increased oxidative stress [25]. Thus, melatonin serving 
as a powerful agent in the treatment of various neuro-
toxicities is anticipated. To our knowledge, the potential 
effects of melatonin on nitric oxide system and protein 
nitration following hypobaric hypoxic insults in the hip-
pocampus have not yet been explored. Therefore, this 
study was using immunohistochemical and immunoblot 
methods, aimed to explore the time course alteration of 
NOS and nitrotyrosine expression in the hippocampus 
of HBH rats. We also sought to elucidate whether mel-
atonin treatment would have any beneficial effects to 

prevent and/or treat the symptoms associated with hypo-
baric disease.

Methods
Experimental animals
Healthy adult male Wistar rats weighing 150–250  g 
obtained from the Laboratory Animal Center of the 
National Taiwan University were used in this study. 
These animals were housed in conditions with con-
trolled temperature (22 °C) and exposed to an automati-
cally regulated light/dark cycle of 12:12  h (light on at 
07:00–19:00 h), with ad libitum access to food and water 
throughout the study period. For the care and handling 
of all experimental animals, the guidelines as stated in 
the Guide for the Care and Use of Laboratory Animals 
(1985) as stated in the United States NIH guidelines (NIH 
publication No. 86-23), were followed. All the experi-
ments were approved by our Laboratory Animal Center, 
China Medical University, Taiwan (No. 96-181-B). All 
efforts were made to minimize animal suffering and the 
smallest numbers of animal were used for the experi-
ments presented. The experimental animals were carried 
out to evaluate the post-treatment effect of melatonin in 
hypoxic exposure. The animals (n =  180) were divided 
into four groups (I–IV) with 45 rats each. Groups I and 
II served as controls, the rats were subjected to normoxic 
breathing by receiving intraperitoneal administrations of 
vehicle (normal saline) and melatonin (100  mg/kg body 
weight in saline), respectively. Rats of groups III and IV 
were pretreated with intraperitoneal injections of nor-
mal saline and melatonin, respectively, 30 min before the 
hypobaric hypoxic insult. Melatonin (Sigma, St Louis, 
MO, USA) was dissolved freshly in pure absolute etha-
nol and later liquidized with isotonic sodium chloride 
(0.9  % NaCl) amounting to final concentration of 1:10 
in a freshly prepared solution form, under sterile condi-
tions. Pretreatment of both melatonin and normal saline 
was carried out at 10 am. Hypoxia was achieved by keep-
ing the rats in an altitude chamber at 9000  m with the 
partial pressure of oxygen set at the level of 0.303  atm 
(pO2  =  48  Torr) for 7  h. Following hypobaric hypoxic 
exposure, each of the experimental groups was further 
divided into three subgroups (n = 15 each) sacrificed at 
0 h, 1, and 3 days, respectively.

Perfusion and tissue preparation
At each of the respective time points, both the hypoxic 
treated and control rats were deeply anesthetized with 
an intramuscular injection of mixtures of zoletil (30 mg/
kg) and xylazine (10 mg/kg) and perfused transcardially 
with 100 ml of normal saline followed by 300 ml of 4 % 
paraformaldehyde in 0.1  M phosphate buffer (PB), pH 
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7.4. After perfusion, the hippocampus were removed and 
postfixed in the same fixative for 2 h. Tissue samples were 
then rinsed in 0.1 M PB and placed overnight in sucrose 
buffer (10–30 %) for cryoprotection at 4 °C. Serial 30 μm 
thick sections of the hippocampus were cut transversely 
with a cryostat (Bright 5040, Bright Instrument Com-
pany, Huntingdon, UK) on the following day and were 
alternatively placed into six wells of a cell culture plate, 
such that each well ultimately contained a group of sec-
tions, with each spaced a distance of 180 μm apart from 
the others. Sections collected in the first, second, and 
third wells were processed for nNOS, eNOS, and Ntyr 
immunohistochemistry.

Immunohistochemistry
Following fixation and incubations as described above, 
sections collected in the wells were rinsed in 0.05  M 
Tris-buffer saline (TBS, pH 7.4), and then were treated in 
TBS containing 10 % methanol and 3 % hydrogen perox-
ide for 1  h to abolish the endogenous peroxidase activ-
ity. For blocking nonspecific binding, sections were first 
rinsed three times in TBS and then were reacted in an 
incubation medium containing 10 % normal goat serum 
or horse serum and 0.1 % Triton X-100 (all from Sigma) 
for 1  h. After several washes in TBS, the sections were 
then incubated separately in the primary monoclonal 
antibodies: nNOS (1:100; Santa cruz), Ntyr (1:3000; Santa 
cruz), and polyclonal antibodies: eNOS (1:1000; Santa 
cruz) overnight at 4 °C, respectively. After that they were 
treated separately with biotinylated horse anti-mouse and 
goat anti-rabbit antibodies (1:200; Vector) for 1 h at room 
temperature. After incubation in secondary antibody, 
the sections were processed by the standard Strepatavi-
din/HRP (DAKO) procedure with diaminobenzidine as a 
substrate of peroxidase.

Western blot analysis
At a designated time point following experimental pro-
tocols rats from groups I–IV were deeply anesthetized 
and then the hippocampus were rapidly removed and 
kept in liquid nitrogen. After that, they were rinse with 
PBS and then were homogenized with 100 ml lysis buffer 
using a grinder on ice. For the tissue processing and west-
ern blot analysis, we followed the methods as described 
previously [26]. Briefly, 100  mg of solubilized proteins 
were separated by electrophoresis in a 10  % polyacryla-
mide gel, transferred to nitrocellulose membranes, and 
they were stained with Ponceau Red to confirm equal 
protein loading. The membranes were blocked with 5 % 
nonfat dry milk for 1 h, then immunoreacted with mouse 
monoclonal antibodies: nNOS (1:10,000; Santa cruz), 
Ntyr (1:500; Santa cruz), iNOS (1:1000; Santa cruz) and 
rabbit polyclonal antibodies: eNOS (1:1000; Santa cruz), 

Caspase 3 (1:1000; Millipore) overnight at 4  °C, respec-
tively. The nitrocellulose sheet was further processed for 
chemiluminescence detection (Santa Cruz) using horse-
radish peroxidase (HRP)-conjugated anti-mouse, anti-
rabbit and anti-sheep secondary antibodies (Santa Cruz) 
for 1 h at room temperature. Equal protein loading was 
confirmed by stripping the membranes, then immunore-
acted with Beta-actin (1:1000; Sigma). Optical densities 
were quantified with a computer-assisted program (Gel-
Pro Analyzer software).

Nitrite assay
NO production was measured by the accumulation 
of nitrites (NO2

−) in supernatant from different brain 
regions. The total amount of NO in hippocampus was 
assessed by the Griess reagent: 0.1  % N-(1-naphthyl) 
ethylene diamine dihydrochloride (Acros Organics), 1 % 
sulfanilamide (Cica) and 2.5 % H3PO4 (Cica) that detects 
nitrite, a stable reaction product of NO. Homogenates as 
described above for Western blotting were prepared and 
centrifuged at 15,000×g for 15 min and the supernatant 
was collected. The reagent was added to an equal volume 
of tissue supernatant (50 μl) and incubated for 10 min at 
room temperature. The optical density of each group was 
measured at 550 nm. Sodium nitrite dissolved in the lysis 
buffer was used as the standard.

Quantitative study and image analysis
The nNOS, eNOS, and Ntyr staining was assessed in sec-
tions collected from the wells, and was quantified with 
a computer-based image analysis system (MGDS) along 
with the Image-Pro Plus software (Media Cybernetics, 
Silver Spring, MD, USA). A digital camera mounted on 
the Zeiss microscope imaged sections at 100× magni-
fications in bright field and displayed them on a higher 
resolution monitor. At this magnification the optical den-
sity (OD), which was used as an index to indicate labeling 
intensity, of reaction product in the cytoplasm of posi-
tive neurons, was measured by using a mouse to draw a 
line encircling the labeled soma on the digitized image. 
The OD of the background of each section was meas-
ured by averaging five random polygons (area of poly-
gon =  150 μm2) with equal area of the neuropil of the 
hippocampus. The mean OD is the pixels that comprise 
the soma reading by densitometer. The actual amounts 
of staining intensity in a tissue section reflex the enzyme 
activity which is under the influence of multi-factors. 
Thus, all the parameters used in the present study were 
followed by Smolen’s method to ensure to gain a consist-
ent result for gray level adjustment, histogram stretch 
and minimal optical density [27]. To avoid introducing 
bias two observers were blinded to examine the immu-
nohistochemical sections for the image analysis for 
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hippocampus. The OD of positive neurons at various 
time points in hypoxic animals, with or without mela-
tonin pretreatment was subjected to a two-way ANOVA 
test. The data collected between the normoxic versus 
hypoxic groups at each time point were individually fur-
ther analyzed using Student’s t test. Statistical difference 
was considered significant if P < 0.05.

Control experiments
Some negative controls have been made to ensure the 
accuracy of nNOS, eNOS and Ntyr immunohistochemi-
cal results obtained from the present study. Thus, omis-
sion of nNOS, eNOS and Ntyr immunohistochemistry 
the primary and secondary antibodies in incubated reac-
tion medium was carried out.

Results
Neuronal NOS immunoreactivity
In normoxic rats that received normal saline or mela-
tonin administration and sacrificed at various time 
points, the pattern of nNOS positive neurons detected 
in the hippocampal CA1 region was consistent; those 
nNOS positive neurons were weakly stained and pre-
dominantly distributed in the pyramidal cell layer of CA1 
(Fig.  1a). At the same region of rats subjected to 7  h of 
HBH, an significantly increased of packing density and 
immunoreactive intensity of nNOS positive neurons was 
noticed (Fig. 1a). The majority of the nNOS positive neu-
rons were heavily stained and the staining intensity was 
drastically enhanced to reach the peak level of 144 % after 
1  day of reoxygenation following HBH (Fig.  1b). In rats 
with longer survival after hypoxic insult, nNOS immu-
noreactivity was decreased progressively. In the group 
of animals treated with the melatonin, the pattern and 
intensity of nNOS immunoreactivity were markedly 
reduced when compared with that of non-treated rats 
subjected to HBH. The increased immunoreactivity of 
nNOS positive neurons induced with HBH significantly 
was downregulated at 0 h and 1 day of reoxygenation and 
the prominent downregulation was sustained until 3 days 
of reoxygenation when the animals were treated with 
melatonin (Fig. 1b).

Western blot analysis of the hippocampus also revealed 
a marked increase of nNOS that reached the peak level 
of 178  % after 1  day of reoxygenation following HBH; 
these levels were declined to 121  % for those animals 
having longer survival times (at 3 days of reoxygenation 
following HBH) (Fig.  1c). In rats receiving melatonin 
pretreatment, the total nNOS protein levels were dras-
tically decreased in rats surveyed at various time points 
when compared with those of the rats subjected to HBH 
but without melatonin pretreatment (P  <  0.05; Fig.  1c). 

Results of nNOS immunoblots confirmed those of nNOS 
immunohistochemistry examination.

Endothelial NOS immunoreactivity
In the hippocampus from normoxic rats, eNOS immu-
noreactivity was observed occasionally in the pyramidal 
cells of CA1 and blood vessels that were lightly stained 
(Fig.  2a). After 7  h of HBH, an markedly augmented of 
cell density and immunoreactive intensity of eNOS posi-
tive neurons was noticed in the structures abovemen-
tioned. The staining intensity was drastically enhanced to 
reach the peak level of 145 % after 1 day of reoxygenation 
following HBH. After 3 days of reoxygenation following 
HBH, the distribution and intensity of eNOS immuno-
reactivity was decreased progressively (Fig.  2b). In rats 
receiving melatonin pretreatment prior to hypoxic insult, 
eNOS expression was markedly reduced when compared 
with that of rats with saline pretreatment. Melatonin 
pretreatment significantly downregulated HBH-induced 
increase in the immunoreactive intensity of eNOS posi-
tive neurons at 1  day of reoxygenation and the down-
regulation was sustained until 3  days of reoxygenation 
(Fig. 2b).

Western blot analysis of eNOS confirmed the results 
obtained from eNOS immunohistochemistry. Total 
eNOS protein levels in whole hippocampus were sig-
nificantly increased to reach the peak level of 148 % after 
1  day of reoxygenation following HBH and declined to 
115  % for those animals at 3  days of reoxygenation fol-
lowing HBH (Fig.  2c). Melatonin pretreatment induced 
similar effect on the expression of eNOS protein that 
was drastically decreased in rats surveyed at various time 
points when compared with those of saline-pretreated 
rats subjected to HBH (P < 0.05; Fig. 2c).

Inducible NOS immunoreactivity
Total iNOS protein levels in whole hippocampus were 
significantly increased to reach the peak level of approxi-
mately 200 % after 1 day of reoxygenation following HBH 
and declined to 151 % for those animals at 3 days of reox-
ygenation following HBH (Fig. 3). Similar trend was evi-
denced in melatonin pretreatment on the expression of 
iNOS protein that was drastically decreased in rats sur-
veyed at various time points when compared with those 
of saline-pretreated rats subjected to HBH (P  <  0.05; 
Fig. 3).

Nitrotyrosine immunoreactivity
The rats hippocampus contained Ntyr immunoreac-
tive neurons that were few in number and distributed 
in the pyramidal layer of CA1. In the normoxic condi-
tion, Ntyr immunopostive pyramidal neurons contained 
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less amount of the protein (Fig. 4a). In rats subjected to 
7  h of HBH, pyramidal neurons drastically augmented 
in number and immunoreactivity. The latter reached 
the peak level of 162 % after 1 day of reoxygenation fol-
lowing HBH. In rats with longer survival after hypoxic 
insult, Ntyr immunoreactivity was declined gradually 
(Fig.  4b). After 3  days of reoxygenation following HBH, 
the distribution and intensity of the Ntyr immunoreac-
tivity declined as found in normoxic condition. The pre-
treatment of melatonin again showed similar effect on 

the downregulation of HBH-induced Ntyr expression to 
those of nNOS and eNOS (Figs. 1b, 2b, 4b).

The findings of Ntyr immunohistochemistry were then 
confirmed by Western blot analysis that also showed a 
significant increase of Ntyr after early reoxygenation and 
a decline in those animals having longer survival times 
(Fig.  4c). The blot analysis of Ntyr also revealed a simi-
lar trend of the changes of Ntyr expression in rats receiv-
ing melatonin pretreatment and was parallel to those of 
nNOS, eNOS and iNOS (Figs. 1c, 2c, 3, 4c).

a

b

c

Fig. 1 Hippocampal nNOS immunoreactivity in normoxic and hypobaric hypoxic rats pretreated with normal saline or melatonin, and sacrificed at 
0 h, 1 and 3 days of reoxygenation. Light photomicrographs (a) show that light‑stained nNOS immunoreactivity (arrows) is mainly found in pyrami‑
dal cells scattered throughout the CA1 region in normoxic rats (A, B). nNOS immunoreactivities are drastically increased at 0 h, 1 and 3 days after 
hypoxic exposure (C, E, G). In rats receiving melatonin pretreatment and subjected to 0 h‑ (D), 1‑ (F) and 3‑ (H) days hypoxic exposure, hippocampal 
nNOS immunoreactivity is significantly reduced. The inserts indicate nNOS(+) neurons of higher magnified in each representative figure. Scale bar 
50 μm for all figures, insert 100 μm. Histograms showing the mean optical density of nNOS(+) neurons (b) and expression of total nNOS protein 
(c) quantified by immunoblots in the hippocampus of rats treated with hypoxia alone (black column) and melatonin pretreated (white column) and 
sacrificed at 0 h, 1 and 3 days of reoxygenation. Note that in hypoxic rats, the staining intensity and the levels of total protein of nNOS are drastically 
increased. In rats received melatonin, the nNOS staining and protein levels are successfully decreased in the hippocampus at the beginning and 
1 day of reoxygenation. Dashed line shows the baseline controls are set as 100 % (saline or melatonin treatment under normoxic condition). The 
levels of β‑actin are as a loading control (c). *P < 0.05 (Student’s t test) when compared with values (expressed as mean ± SEM) of rats treated only 
with hypoxia at the same survival time point
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Nitrite assay
In normoxic rats that received normal saline or melatonin 
administration, the whole hippocampus possessed few 
amount of NO (Fig. 5). In rats subjected to 7 h of HBH, 
a significant increase of NO production was noticed, 
reached the peak level of 43 μM after 1 day of reoxygena-
tion following HBH and decreased gradually in rats with 
longer survival after hypoxic insult (Fig. 5). Downregula-
tion of HBH-induced NO production was significantly 

observed in animals pre-treated with melatonin and per-
sistent until 3 days of reoxygenation (P < 0.05; Fig. 5).

Caspase 3 immunoreactivity
As Caspase 3 is known to play a central role in the exe-
cution-phase of cell apoptosis pathway, the levels of Cas-
pase 3 were measured. Our results showed that HBH 
increased the levels of Caspase 3 in rat hippocampus 
following HBH (Fig.  6). The HBH-induced elevation of 

a

b

c

Fig. 2 Hippocampal eNOS immunoreactivity in normoxic and hypobaric hypoxic rats pretreated with normal saline or melatonin and sacrificed 
at 0 h, 1 and 3 days of reoxygenation. In a, light photomicrographs show almost all pyramidal cells in the CA1 region exhibit weak eNOS immuno‑
reactivity in the hippocampus of normoxic rats (A, B, arrows), the latter is drastically increased at 0 h (C), 1 (E) and 3 (G) days after hypoxic exposure. 
The augment of eNOS immunoreactivity at 0 h, 1 and 3 days post exposure is significantly declined in rats receiving melatonin pretreatment (D, 
F, H). eNOS(+) neurons of higher magnified in each representative figure are shown in the inserts. Scale bar 50 μm for all figures, insert 100 μm. 
Quantitative analyses showing the mean optical density of eNOS(+) neurons (b) and the level of total eNOS protein (c) quantified by immunoblots 
in the hippocampus of rats treated with hypoxia alone (black column) and melatonin pretreated (white column) and sacrificed at 0 h, 1 and 3 days of 
reoxygenation. The staining intensity and the levels of total protein of eNOS in the hippocamus are drastically enhanced in the rats sacrificed at 0 h, 
1 and 3 days after hypoxic insult. In rats treated with hypoxia and pretreated melatonin, the increased intensity of eNOS stain and protein levels are 
markedly reduced as compared with those of hypoxic along. The staining intensity (b) or protein levels (c) of saline or melatonin treatment under 
normoxic condition rats are designed as controls (set as 100 %, indicated by dashed line). The levels of β‑actin are as a loading control. *P < 0.05 
(Student’s t test) when compared with values (expressed as mean ± SEM) of rats merely treated with hypoxia at the same survival time point
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Caspase 3 levels were also reduced by pretreatment of 
melatonin (P < 0.05; Fig. 6).

Discussion
The current study provides the information concerning 
the melatonin may attenuate HBH induced expression of 
the nitric oxide system and protein nitration in the hip-
pocampus. We selected the hippocampus as a target for 
our study considering that the hippocampal susceptibility 
to hypoxic damage is well established [7, 28]. However, 
the relationship between exposure to HBH and modifi-
cations of the nitric oxide system following melatonin 
treatment in the hippocampus has rarely been studied, 
although some reports suggest that NO may be involved 
in physiological and pathological responses after climbing 
and air travel as well as in migration to higher altitudes 
[11]. We report here that HBH boosts NO production 
and upregulates nNOS, eNOS and iNOS. There is also 
a modulation of Ntyr and Caspase 3 immunoreactivity 
that parallels to nNOS, eNOS and iNOS expression after 
HBH. In addition, our previous and other studies have 
shown that some antioxidants such as melatonin, green 
tea and hypoxic strategies may play roles to enhance 
endogenous antioxidative defense systems to prevent bio-
logical organisms from oxidative injuries [29–37]. Inter-
estingly, melatonin selected as an antioxidant for this 

study showed that melatonin markedly dampened HBH-
induced increases in the expressions of nNOS, eNOS and 
iNOS, NO production and Ntyr formation. Melatonin 
also effectively protects neurons against HBH-induced 
neuronal damage in the hippocampus. This protection is 
supported by a decrease of Caspase 3 levels. The present 
immunohistochemical results in control and experimen-
tal rats subjected to HBH were corroborated by Western 
blot analysis and NO production measurements.

It is known that in the hippocampus, NO is involved in 
several physiologic events as neural plasticity, acting as a 
retrograde messenger in the case of long-term potentia-
tion and participating in the creation of memory [38–40]. 
In addition, NO is also involved in physiopathology, play-
ing a role in neuronal damage. Previous evidences that 
supported a neurotoxic role after hypoxic-ischemic injury 
in the brain, cerebral cortex, cerebellum, hippocampus 
and nodose ganglion due to the over-expression of NOS 
[11, 31, 33–36, 41–43]. hypoxic-ischemic injury causes 
cell damage in the hippocampus has been associated with 
memory loss, functional and behavioral deficits [44, 45]. 
Constitutive NOS expression increased after hypoxic-
ischemic damage [11, 33, 34, 42] was also detected in our 
present study. This increase probably constitutes part 
of the cascade occurring after hypoxic injury, including 
glutamate release, calcium influx, activation of NOS, 
NO synthesis, and reaction with resulted oxygen radi-
cals [46–48]. The over-production of NO or peroxynitrite 
(ONOO−) could readily trigger a series of biochemical 
reactions to modulate enzyme activities and subsequently 
lead to lipid peroxidation or DNA damage [48, 49]. Thus 
the fact that NO is protective or destructive depends on 
its amount in the organisms; small amounts might have 
beneficial effects to protect against neuronal damage, and 
large amounts, which may produce by enhanced activa-
tion of NOS, might have detrimental effects to cause cell 
damage or cell death. The present results showed that 
HBH induced a significantly increased in nNOS, eNOS 
and iNOS immunoreactivity and in protein expression in 
the hippocampus following 0 h and 1 days of reoxygena-
tion. This elevation decreased progressively after 3  days 
of reoxygenation. The increase in NO production, Ntyr 
formation and Caspase 3 level followed the same pattern. 
These results are in agreement with those of Encinas et al. 
(2003) who found an increase in NOS expression and 
NO production in the hippocampus immediately after 
acute hypoxia applied in a hypobaric chamber at 8325 m 
(260  mmHg) and our previous findings that chronic 
treadmill running protects hippocampal neurons from 
hypobaric hypoxia-induced neruonal injury in rats [50]. 
Although nNOS was reported to be mainly responsible 
for brain cNOS activity and play the neurotoxic role after 
hypoxic-ischemic injury in the brain, cerebral cortex, 

Fig. 3 Expression of total iNOS proteins quantified by immunoblots 
in whole hippocampus homogenates of rats treated with hypoxia 
alone (black column) and melatonin pretreated (white column) and 
sacrificed at 0 h, 1 and 3 days of reoxygenation. The levels of total 
iNOS protein in the hippocamus are drastically increased in the rats 
sacrificed at 0 h, 1 and 3 days after hypoxic insult. In rats treated with 
hypoxia and pretreated melatonin, the increased protein levels are 
markedly reduced as compared with those of hypoxic along. The 
protein expression of saline or melatonin treatment under normoxic 
condition rats are designed as controls (set as 100 %, indicated by 
dashed line), which are normalize with the levels of β‑actin as a load‑
ing control. *P < 0.05 (Student’s t test) when compared with values 
(expressed as mean ± SEM) of rats merely treated with hypoxia at the 
same survival time point
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hippocampus and nodose ganglion [11, 31, 33, 34, 41, 42], 
however, our major finding showed that eNOS immu-
noreactivity detected in hippocampal pyramidal cells 
of CA1 was also augmented and peaked after 1  day of 
reoxygenation following 7 h of HBH. The eNOS expres-
sion in hippocampal pyramidal cells of CA1 is coherent 
with other studies [51, 52]. The eNOS-derived NO has 
been suggested as a retrograde messenger of long-term 
potentiation and implicated in synaptic plasticity [51]. It 
may also be involved in mitochondrial dysfunction and 
subsequent pathological changes of prion diseases [52]. 

Based on the present findings, it is therefore likely that 
upregulation of eNOS contributes to the incremented 
cNOS activity and provides a neurotoxic role for NO. 
Furthermore, the Western blot analysis showed the HBH 
induced iNOS protein expression in the hippocampus 
at 0 h, 1 and 3 days post hypoxia. Treatment with mela-
tonin resulted in down-rgulation of the iNOS expression 
and attenuation of the surge of NO in hippocampus due 
to HBH. The NO burst as a result of iNOS upregulation 
during acute hypobaric hypoxia interrupts the memory 
consolidation had been reported [53]. The present study 

a

b

c

Fig. 4 Hippocampal Ntyr immunoreactivity in normoxic and hypobaric hypoxic rats pretreated with normal saline or melatonin, and sacrificed at 
0 h, 1 and 3 days of reoxygenation. Light photomicrographs (a) show that majority of pyramidal cells in the CA1 region of normoxic rats are weak 
Ntyr immunoreactive (A, B, arrows) but significantly increased in immunoreactivity following hypoxic exposure for 0 h (C), 1 (E) and 3 (G) days. Mela‑
tonin pretreatment appreciably decreases Ntyr immunoreactivity boosted at 0 h (D), 1 (F) and 3 (H) days after hypoxic exposure. Ntyr(+) neurons are 
magnified in each representative figure and shown in the inserts. Scale bar 50 μm for all figures, insert 100 μm. Quantitative results are shown the 
mean optical density of Ntyr(+) neurons (b) and the level of total Ntyr protein (c) quantified by immunoblots in the hippocampus of rats treated 
with hypoxia alone (black column) and melatonin pretreated (white column) and sacrificed at 0 h, 1 and 3 days of reoxygenation. The staining inten‑
sity and the levels of total protein of Ntyr in the hippocamus are drastically increased in the rats sacrificed at 0 h, 1 and 3 days after hypoxic insult. 
The enhanced intensity of Ntyr stain and protein levels are markedly reduced in rats treated with hypoxia and pretreated melatonin as compared 
with those of hypoxic along. Controls (set as 100 %, indicated by dashed line) are the staining intensity (b) or protein levels (c) of saline or melatonin 
treatment under normoxic condition rats. Loading control is the levels of β‑actin. *P < 0.05 (Student’s t test) when compared with values (expressed 
as mean ± SEM) of rats merely treated with hypoxia at the same survival time point
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provided further evidences on the sources of NO surge 
that are multiply derived from nNOS, eNOS and iNOS.

Another consequence of NO production is the genera-
tion of nitrotyrosine. NO reacts with superoxide radicals 
producing peroxynitrite, a new and powerful oxidant with 
the capacity of nitrating tyrosine residues, thus forming 
nitrotyrosine, a direct marker of NO synthesis and per-
oxynitrite formation [48]. In the present model of HBH, 
coincident with the peaks of NO production and the 
expressions of nNOS and eNOS is an increase in nitroty-
rosine formation. Overproduction of oxygen free radicals 
including superoxide has been shown in neurons after 
hypoxia and ischemia [54, 55], which in addition to the 
overproduction of NO, results in a situation to produce 
peroxynitrite of cytotoxic concentration. Peroxynitrite has 
been shown to nitrate tyrosine residues in proteins [18], 
causing consequent protein-structure changes and altera-
tions of enzymatic activities [19, 56]. Furthermore, mito-
chondrial proteins have been shown to be a selective target 
for peroxynitrite, an event directly related to neuronal 
damage [18]. Our previous studies have shown that inap-
propriate or excessive NOS expression and NO production 
are coincident with the death of affected neurons following 
hypoxia and peripheral nerve injury [33–36]. In this con-
nection, the amount of NOS reactivity and NO levels may 
be set as an index for the severity of neuronal damage. By 
reducing the parameters of NOS activity, NO production 
and Caspase 3 levels could decrease neurological signs and 
neuronal damage. This detrimental role can be inhibited 
by the application of melatonin in the nervous tissue. The 
antioxidative properties of melatonin and its metabolites 
have been extensively studied and the use of this molecule 
as a novel neural protector has been widely reported [25, 
31, 57–61]. In the present study, coherent with our previ-
ous studies [30–32], we further demonstrated the effective 
high dosage of melatonin (100 mg/kg) to achieve protec-
tion against HBH-induced increase in NO production, 
expressions of nNOS, eNOS and iNOS, and Ntyr forma-
tion in the hippocampus. The neuroprotective functions of 
melatonin are directly attributed to its antioxidant proper-
ties and free radical scavenging ability [59, 62]. Intracellu-
lar melatonin can bind to calmodulin, which conceivably 
would suppress the calmodulin-dependent nitric oxide 
synthase activity [63]. Besides reducing NO formation by 
restricting the activation of NOS and thereby limiting the 
subsequent cytotoxicity caused by this free radical, mela-
tonin was recently shown to directly scavenge the highly 
toxic NO and ONOO− anion as well [64]. Thus, with the 
reduction in NO synthesis, melatonin can also protect 
neurons by its ability to scavenge NO as well as ONOO− 
and associated oxidants.

Fig. 5 NO production levels in the hippocamus of rats treated 
with hypoxia alone (black column) and melatonin pretreated (white 
column) and sacrificed at 0 h, 1, and 3 days of reoxygenation. After 
hypoxic insult, the NO levels in rat hippocampus are significantly 
increased. In hypoxic rats pretreated with melatonin, the levels of NO 
production are markedly reduced as compared with those of rats 
treated only with hypoxia. The NO levels of saline or melatonin treat‑
ment under normoxic condition rats are designed as controls (100 %, 
indicated by dashed line). *P < 0.05 (Student’s t test) when compared 
with values (expressed as mean ± SEM) of rats simply treated with 
hypoxia at the same survival time point

Fig. 6 Expression of total Caspase 3 proteins quantified by immu‑
noblots in whole hippocampus homogenates of rats treated with 
hypoxia alone (black column) and melatonin pretreated (white 
column) and sacrificed at 0 h, 1 and 3 days of reoxygenation. Note 
that at 0 h, 1 and 3 days after hypoxic insult, the rats show drasti‑
cally increased levels of total Caspase 3 protein in the hippocamus. 
In those rats treated with hypoxia and pretreated melatonin, the 
increased protein levels are markedly reduced as compared with 
those of hypoxic along. The protein expression of saline or melatonin 
treatment under normoxic condition rats are designed as controls 
(set as 100 %, indicated by dashed line), which are normalize with the 
levels of β‑actin as a loading control. *P < 0.05 (Student’s t test) when 
compared with values (expressed as mean ± SEM) of rats merely 
treated with hypoxia at the same survival time point
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Conclusion
In summary, this study has demonstrated that hypoxia-
induced increases of NO production, nNOS, eNOS and 
iNOS expressions as well Ntyr formation and Caspase 3 
levels in the hippocampus is effectively prevented by mel-
atonin treatment. This novel finding has not only helped 
to achieve a better understanding of the functional roles 
of NO involved in the processes of neuronal damage, 
but also offered the possibilities of potential therapeutic 
use of melatonin for the preventing and/or treating the 
symptoms associated with hypobaric exposure.
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