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Abstract
Background  Orthokeratology (OK) lens wear increases the risk of bacterial infection, but little is known about the 
microbiota of the conjunctival sac in myopic children wearing OK lenses. This study aimed to investigate the changes 
of conjunctival microbiota in children after treatment with OK lenses using 16 S rDNA sequencing.

Methods  Twenty-eight myopic children who had been continuously wearing OK lenses for 12 to 13 months were 
enrolled in this prospective study. Twenty-two gender- and age-matched myopic children who had not worn OK 
lenses or discontinued OK lens wear at least 1 year ago were recruited as controls. Conjunctival swabs from each 
participant were collected for exploration of the microbiota profiles, targeting the V3–V4 regions of the 16 S rRNA 
gene by MiSeq sequencing. The differences in the microbial community structure and diversity were also compared 
between groups.

Results  The bacterial alpha diversity indices in the OK lens group were not different from those in the non-wearer 
group (P > 0.05, Wilcoxon test), while beta diversity examined using principle coordinate analysis of unweighted 
UniFrac divided the two groups into different clusters. Proteobacteria, Bacteroidetes, and Firmicutes were the 
abundant phyla in the conjunctival sac microbiota in both groups (P < 0.05, Mann–Whitney U test). Among children 
in the OK lens group, the Linear discriminant analysis Effect Size identified the compositional changes in OK lens-
associated bacteria. Key functional genera such as Blautia, Parasutterella, and Muribaculum were enriched, whereas 
Brevundimonas, Acinetobacter, Proteus, and Agathobacter decreased significantly (P < 0.05, Mann–Whitney U test). 
Phylogenetic investigation of communities by reconstruction of unobserved states also showed altered bacterial 
metabolic pathways in OK lens-associated microbiota. Moreover, using receiver operating characteristic curves, 
Brevundimonas, Acinetobacter, Proteus, and Agathobacter alone (the area under the curve was all > 0.7500) or in 
combination (the area under the curve was 0.9058) were revealed to discriminate OK lens wearers from controls.
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Background
Myopia is predicted to affect half of the world’s popula-
tion and become one of the leading causes of irreversible 
blindness by 2050 [1]. Orthokeratology (OK) is the use of 
rigid gas-permeable contact lenses with an inverse geo-
metric design which can temporarily flatten the central 
corneal curvature to reduce the degree of myopia and 
improve uncorrected visual acuity (UCVA) in children 
and adolescents [2–5]. The growing incidence of myo-
pia in the young population enables OK lenses increas-
ingly used nowadays [6–8]. The sale volume of OK lenses 
in China was about 3  million pairs in 2020. However, 
OK lens wear enhances the risk of bacterial infection 
because lenses directly touch the surface of the cornea 
and are worn overnight [9]. Moreover, wearing contact 
lenses changes the microbiota of the conjunctival sac, 
which has been identified as a risk factor of ocular infec-
tions, like keratitis and macropapillary conjunctivitis, 
and corneal infiltrative events [10–12]. Recent studies 
have shown that the incidence of bacterial keratitis, one 
of the vision-threatening complications, [13–16]. was 
13.9/10,000 in adolescents wearing OK lenses [17, 18]. 
Daily and extended contact lens wear has been found to 
cause an increase of Staphylococci, mainly S. epidermidis 
[19] and S. aureus [20]. Contact lens wearers might have 
more variable and skin-like bacterial community struc-
tures, with higher abundance of Methylobacterium, Lac-
tobacillus, Acinetobacter, and Pseudomonas [10]. Zhang 
et al. [21] found that the abundance of Bacillus, Tatu-
mella, and Lactobacillus was less in OK lens wearers than 
in non-wearers. These changes in the ocular microbiome 
have been suggested to affect the infection development 
in individuals wearing contact lenses. Nonetheless, the 
effect of contact lens wear on ocular microbiota has been 
inconclusive. It is necessary to further elucidate the inter-
play between microbiome and contact lens usage for bet-
ter control of the complications [22, 23]

Although previous studies using the conventional 
culture technique have proved that applications of soft 
contact lenses can cause bacterial contamination, [19, 
24] little is known about the impact of OK lenses on the 
structure and function of the microbiota on the surface 
of eyes, especially the microbiota of the conjunctival sac 
in children wearing OK lenses. In this study, 16 S rDNA 
gene high-throughput sequencing-based bacterial detec-
tion and identification [25] were performed, aiming to 
explore the true diversity of conjunctival microbiota in 

pediatric OK lens wearers and thus to guide clinical man-
agement of associated ocular surface inflammation.

Subjects and methods
Subjects
Myopic patients who had been wearing OK lenses for 
12–13 months and myopic patients who had not worn 
OK lenses or discontinued OK lens wear at least 1 year 
ago, aged 8–15 years, were prospectively enrolled at the 
Eye Hospital of Shandong First Medical University from 
September 2020 to December 2020. Among the partici-
pants, there were 14 males and 14 females in the OK lens 
group (L group), averaged 12.5 ± 2.6 years old, and 11 
males and 11 females in the non-wearer group (N group), 
averaged 10.0 ± 2.2 years old. No significant differences in 
gender (P > 0.05, Chi-square test) and age (P > 0.05, Stu-
dent’s T-test) existed between the two groups. Patients 
who had a history of eye surgery or trauma, other ocu-
lar or systemic diseases, antibiotic, anti-inflammatory or 
immunosuppressive medications within 6 months were 
excluded from the study.

This study was approved by the Ethics Committee of 
the Eye Hospital of Shandong First Medical University 
(SDSYKYY20200713) and registered on the Chinese 
Clinical Trial Registry (ChiCTR2000037230, 27/08/2020). 
All the procedures adhered to the tenets of Declaration 
of Helsinki. Written informed consent was obtained from 
legal guardians of each participant. A schematic diagram 
of the research procedure is shown in Fig. 1.

Conjunctival swab collection
Conjunctival swab samples were taken from the right 
eye of each patient by the same clinician to ensure con-
sistency. To eliminate the influence of anesthetics on 
the conjunctival sac microbiota, anesthetic eye drops 
were not used in the sample collection process [10]. The 
lower palpebral and fornix conjunctiva was swabbed 
three times using a sterile cotton swab (CLASSIQSwabs; 
Copan, Brescia, Italy), which avoided any contact with 
the eyelid margin and was rotated toward the opposite 
direction of the conjunctiva to maximize effective collec-
tion. Then the samples were immediately placed in a ster-
ile, RNase-free cryopreservation tube, frozen with liquid 
nitrogen, and preserved in a refrigerator at minus 80 ℃. 
16  S rDNA gene high-throughput sequencing was per-
formed within 1 month after sample collection.

Conclusions  The relative abundance of the microbial community in the conjunctival sac of myopic children can 
alter after OK lens wear. Brevundimonas, Acinetobacter, Proteus, and Agathobacter may be candidate biomarkers to 
distinguish between OK lens wearers and non-wearers.

Keywords  Orthokeratology lenses, Conjunctiva sac, Microbiome, Brevundimonas, Acinetobacter, Proteus, Genomics, 
16S rDNA gene sequencing
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DNA extraction
According to the instructions of the PowerMax® Soil 
DNA Isolation Kit, the DNA extraction of all the samples 
was completed in a biosafety cabinet. The DNA purity 
and concentration were checked by ultraviolet spectro-
photometer reading. The quality of the extracted DNA 
was verified using agarose gel electrophoresis, and the 
quantification of DNA was achieved by ultraviolet spec-
trophotometry. Throughout the DNA extraction process, 
ultrapure water instead of a sample solution was used to 
exclude the possibility of false-positive polymerase chain 
reaction (PCR) results.

PCR amplification and 16 S rDNA sequencing
The primers were designed according to the conserved 
regions in the ribosomal RNA of microorganisms as 341F 
(5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-GAC-
TACHVGGGTATCTAATCC-3’), and universal adapters 
and barcode sequences were added for PCR amplifica-
tion of the V3-V4 variable regions [26]. The 5’ ends of the 
primers were tagged with specific barcodes per sample 
and sequencing universal primers. PCR amplification 
was performed in a 25-µL reaction mixture containing 
25 ng of template DNA, 12.5 µL of PCR premix, 2.5 µL 
of each primer, and PCR-grade water to adjust the vol-
ume. The PCR conditions to amplify the prokaryotic 16 S 
fragments consisted of an initial denaturation at 98 ℃ for 
30 s, 32 cycles of denaturation at 98 ℃ for 10 s, annealing 
at 54 ℃ for 30 s, an extension at 72 ℃ for 45 s, and a final 
extension at 72 ℃ for 10  min [27]. The PCR products 

were purified using AMPure XT beads (Beckman Coulter 
Genomics, Danvers, MA, USA) and quantified using the 
Qubit fluorometer (Invitrogen, Carlsbad, CA, USA). The 
amplicon pools were prepared for sequencing, and the 
size and quantity of the amplicon library were assessed 
on the Agilent 2100 Bioanalyzer (Agilent, CA, USA) and 
with the Library Quantification Kit for Illumina (Kapa 
Biosciences, Woburn, MA, USA), respectively. The librar-
ies were sequenced on the NovaSeq PE250 platform.

Bioinformatics analysis
Samples were sequenced on an Illumina NovaSeq plat-
form according to the manufacturer’s recommendations 
at the LC-Bio (Hangzhou, China). After dereplication 
using Divisive Amplicon Denoising Algorithm 2, [28] we 
obtained the feature tables and feature sequences. Alpha 
diversity and beta diversity were calculated by random 
normalization to the same sequences. Alpha diversity 
was applied in analyzing complexity of species diversity 
for each sample with indices of Chao1, Observed species, 
Goods coverage, Shannon, and Simpson calculated using 
quantitative insights into microbial ecology 2 [29]. Beta 
diversity calculated using principle coordinate analysis 
derived from unweighted UniFrac distances was used 
to indicate the difference in the overall composition and 
distribution of the microbial community between groups 
[30]. Blast was used for sequence alignment, and the fea-
ture sequences were annotated with the SILVA database 
for each representative sequence.

Statistical analysis
All data were statistically analyzed by SPSS20.0 software. 
The t-test and Mann-Whitney U test were applied for 
continuous variables. The Chi-square was used for cat-
egorical variables between groups. The R package (v3.5.2) 
was used for preparation of graphs. All tests of signifi-
cance were two sided, and P < 0.05 or corrected P < 0.05 
was considered statistically significant. The sample size 
was determined from G*Power [31].

Accession number
The sequence data from this study are deposited in the 
GenBank Sequence Read Archive with the accession 
number PRJNA819236.

Results
Changed overall structure of conjunctival microbiota in 
children wearing OK lenses
In total, 3,920,380 high-quality reads (2,187,649 for the 
OK lens group and 1,732,731 for the non-wearer group), 
with an average of 78,407 reads per sample, were obtained 
for the subsequent microbiota analysis. The value of 
Good’s coverage was 99.83%, indicating that a major-
ity of bacterial phylotypes [7,177 operational taxonomic 

Fig. 1  A schematic diagram of the research procedure beginning from 
conjunctival swab collection, followed by DNA extractions, PCR amplifica-
tion, construction of 16s rDNA clone library, sequencing of clones, and 
bioinformatics analysis
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units (OTUs)] in the conjunctival microbiota were identi-
fied. It was observed that bacterial alpha diversity indices 
of Shannon, Simpson, Chao1, and observed OTUs were 
not significantly different between groups (Wilcoxon test, 
P > 0.05; Fig.  2A-D). The rarefaction curve of each sam-
ple tended to be flat, indicating that most of the bacte-
ria were detected (supplementary 1). Beta diversity also 
divided the two groups into different clusters (ANOSIM 
test, P < 0.05; Fig. 2E and F). The Venn diagram illustrates 
the overlap of OTUs in the conjunctival microbiota of the 
two microhabitats (Fig. 2G).

Altered conjunctival microbiota composition in children 
wearing OK lenses
The compositions of conjunctival microbiota in the OK 
lens wearers and the controls were assessed at different 
taxonomic levels. Using the Ribosomal Database Proj-
ect (RDP) classifier, the sequences were classified into 
37 phyla, 304 families, and 778 genera. At the phylum 
level, the abundance of Actinobacteria was significantly 
reduced in the OK lens group (1.47% vs. 2.95%, P = 0.00, 
Wilcoxon test). The abundant bacterial genera in both 
groups were Pseudomonas (61.18% vs. 64.26%, P = 0.56, 
Wilcoxon test), Ralstonia (10.48% vs. 12.04%, P = 0.92, 
Wilcoxon test), and Muribaculaceae-unclassified (6.18% 
vs. 0.03%, P = 0.00, Wilcoxon test). The abundance of 
Muribaculaceae-unclassified was significantly increased 
in the OK lens group (Fig. 3). In terms of bacterial pheno-
types, the abundance of facultative anaerobe decreased 
significantly in the OK lens group (5.07% vs. 8.23%, 
P = 0.009, Wilcoxon test; supplementary 2). The Linear 
discriminant analysis (LDA) Effect Size (LEfSe) identi-
fied the differential bacteria at different taxonomic levels 
between the two groups (LDA score > 3, P < 0.05, Mann-
Whitney U test). Among the key functional bacteria 
identified in the conjunctival microbiota, Muribacula-
ceae-unclassified, Blautia, parasutterella, and Muribacu-
lum had higher abundance at the genus level in the OK 
lens group, while the abundance of Brevundimonas, Aci-
netobacter, Proteus, and Agathobacter was higher in the 
non-wearer group (Figs. 4 and 5). These differential gen-
era were candidate biomarkers to discriminate the two 
groups of patients.

Discrimination with conjunctival microbiota-based 
signatures
We used each single differential bacterial genus as pre-
dictor to generate the area under the receiver-operating 
characteristic (ROC) curves (AUC) and observed the 
values of four abundant genera as biomarkers: Proteus 
(AUC = 0.8490), Brevundimonas (AUC = 0.8157), Acineto-
bacter (AUC = 0.7532), and Agathobacter (AUC = 0.7500). 
We also applied multivariable stepwise logistic regres-
sion analysis to further distinguish the OK lens wearers 

from the non-wearers, using the four abundant genera. 
The predictive performance was significantly improved 
(AUC = 0.9058) (Fig. 6).

Microbial functional dysbiosis in OK lens wearers
To identify the metabolic and functional disparities in 
the conjunctival microbiota between the OK lens wearers 
and the non-wearers, PiCRUSt was used to analyze the 
functional potential of the microbiota based on closed-
reference OTU picking. We compared 64 KEGG path-
ways and identified several KEGG categories with clearly 
differential abundance between the two groups, finding 
that carbohydrate metabolism, xenobiotics’ biodegra-
dation and metabolism, and transport and catabolism 
significantly increased after OK lens wear, while tran-
scription, immune system, and environmental adaptation 
significantly decreased (P < 0.05, t- test; Fig. 7).

Discussion
Contact lens wear is a known risk factor that may cause 
microbial keratitis and other ocular inflammation [10, 
32–37]. Previous studies have disclosed that the micro-
biota of the conjunctival sac has a protective effect 
against foreign bacterial invasion [38]. However, wear-
ing contact lenses can alter the microbiome of the ocu-
lar surface, which may reduce the restoration of the 
conjunctival microenvironment [10, 39, 40]. Moreover, 
the positive detection rate of the conventional bacterial 
culture method was reported to be only 34-65% [41–44]. 
Such culture results are not efficient to reflect the micro-
environment status of the bacterial community in the 
conjunctival sac [11, 45]. In this study, we comprehen-
sively examined changes in the microbial community 
structure of the conjunctival sac in children wearing OK 
lenses. Using 16 S rDNA gene sequencing can accurately 
detect and identify slowly growing, non-culturable or 
culture-resistant bacteria and those with special growth 
requirements, such as Pseudomonas, Acinetobacter, Bre-
vundomonas, Sphingomonas, and Streptococcus, [10, 25] 
besides bacteria which have been detectable using the 
conventional bacterial culture, like coagulase-negative 
Staphylococcus, Propionibacterium, and Corynebacte-
rium [46].

Graham et al. [25] measured the conjunctival sac 
microbiome of healthy people by 16  S rDNA sequenc-
ing, finding the high abundance of bacteria belonged to 
S. epidermidis, Coagulase-negative Staphylococcus, Cory-
nebacterium sp., and P. acnes. Dong et al. [39] identified 
the most abundant bacterial genera in the conjunctival 
microbiota, namely Pseudomonas, Bradyrhizobium, Pro-
pionibacterium, Acinetobacter, and Corynebacterium. In 
our series study, the top five bacterial genera with high 
abundance in the conjunctival sac of children, no matter 
with or without OK lens wear, included Pseudomonas, 
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Fig. 2  The bacterial diversity and richness of the conjunctival sac microbiota in two groups. A-D: Violin plots representing alpha diversity of different 
individuals in the two groups (P > 0.05, Mann-Whitney U test). E-F: Principal coordinates analysis plots. Each point represents a sample, and the points of 
the same color are from the same group. The closer the distance between two points, the smaller the difference in community composition between 
the two groups (P<0.05, ANOSIM test). G: The Venn diagram illustrates the overlap of OTUs in the conjunctival microbiota among the two microhabitats. 
L: the OK lens group, N: the non-wearer group
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Ralstonia, Muribaculaceae-unclassified, Methylobac-
terium, and Bacteroides. The inconsistency in the pre-
dominant species, except Pseudomonas, might be due 
to the age and region differences of the subjects [47–49]. 
In addition, the possibility that the location and depth 
of sampling may affect the result cannot be entirely 
excluded [50, 51]. The current study supports that Pseu-
domonas might be one of the colonizing bacteria in the 
conjunctival sac, [52] which is different from the tradi-
tional culture results [53]. However, once the epithelial 
barrier of the OK lens wearers is destroyed, [54]Pseudo-
monas can rapidly pass through the barrier, bind to the 
surface, and cause bacterial aggregates and membrane 
remodeling. The process may evade the immune surveil-
lance and result in ocular infections [55]. This is consis-
tent with the rapid and violent course of Pseudomonas 
aeruginosa infection in OK lens wearers.

In our study, the number of bacterial species in the 
OK lens group was reduced compared with that in the 
non-wearer group, which may be attributed to the fol-
lowing reasons. On one hand, the bacterial residues due 
to inadequate contact lens care may lead to changes and 
establish the indigenous microbiome in the conjunctival 
sac. On the other hand, the increase in the abundance of 
certain pathogenic bacteria may inhibit other bacteria. 

Regarding the abundance distribution of some bacte-
ria, the relative abundance of Brevundimonas, Acineto-
bacter, Proteus, and Agathobacter in the OK lens group 
decreased, while that of Muribaculaceae-unclassified, 
Blautia, Parasutterella, and Muribaculum increased, 
breaking the balance of the indigenous microbial envi-
ronment. Accumulating evidence disclosed that the 
opportunistic pathogens, such as Brevundimonas, Pro-
teus, and Acinetobacter, increased the potential risk of 
ocular surface infection [56–58]. Wang et al. [59] dis-
covered that Blautia producta was positively correlated 
with the disease course of lens-associated Acanthamoeba 
keratitis. Acanthamoeba is one of the most common 
etiological agents of infectious keratitis in association 
with OK lens wear [14]. The intervention of Blautia 
flora seems to be promising for the treatment of lens-
associated Acanthamoeba keratitis. Yun et al. [60] found 
that Actinobacteria populations at the phylum level and 
Muribaculaceae at the family level of gut bacteria were 
clearly related to the secretion of tears. We believe that 
the decreased tear secretion at night after wearing OK 
lenses may reduce the washing effect of the tear film on 
bacteria and increase the risk of infection. Meanwhile, it 
was revealed that the abundance of facultative anaerobe 
in the OK lens group was significantly lower than that in 

Fig. 3  Histogram of bacterial taxa distribution at the phylum, family, and genus levels in the two groups. The top 30 species with the highest relative 
abundance in the two groups. The vertical axis represents the relative abundance of each species, whereas the horizontal axis is the group name. The 
columns of different colors correspond to different bacteria, and the length of the columns represents the proportion of the bacterial taxa. L: the OK lens 
group, N: the non-wearer group
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the non-wearer group. Wearing OK lenses at night may 
lead to different degrees of hypoxia in the conjunctival 
sac, [61] and facultative anaerobes are capable of switch-
ing to fermentation or anaerobic respiration but do not 
reproduce. Therefore, there was a decrease of abundance, 
which was also an influencing factor of the microbial 
abundance in the conjunctival sac.

This study demonstrated that the abundance of some 
bacterial populations changed obviously after OK lens 
wear at the levels of phylum and genus. For example, 
at the genus level, Proteus, Agathobacter, Brevundimo-
nas, and Acinetobacter reduced markedly, so they were 
selected alone or together for the ROC analysis as non-
invasive biomarkers to distinguish the OK lens wearers 
from the non-wearers. This provides a new target for 
early warning and intervention of OK lens-related flora 
alterations and possible risks.

Ozkan et al. [53] analyzed the microbial community in 
the conjunctival sac of healthy people by culture, disclos-
ing that Gram-positive microorganisms accounted for 
the majority of the isolated microorganisms (94%), and 

the most frequently isolated genus was Staphylococcus 
(46.5%), which was not very abundant in gene sequenc-
ing in our study. On the contrary, Pseudomonas had high 
gene sequencing abundance, but its positive rate in the 
traditional culture was low. It seems that a reasonable 
combination of the two detection methods can better 
serve clinical needs.

Considering when people put contact lenses into eyes 
with their fingers, they may touch the eyelashes and 
eyelids, Costello et al. [62] regarded contact lenses as 
a medium that can transmit bacteria from the skin of 
hands or eyelids into the eyes and result in microbial 
imbalance. Therefore, the factor of daily care should also 
be involved in the changes of conjunctival sac floras after 
wearing OK lenses. Thorough and careful hand washing 
before each insertion and removal of the contact lenses 
and less contact with the skin are highly recommended.

Further studies are required to overcome the limita-
tions in this research. First, the host response related to 
the floras should be investigated to better reflect the asso-
ciation with the disease. Second, more samples collected 

Fig. 4  Linear Discriminant Analysis (LDA) Effect Size (LEfSe) multilevel discriminant analysis of the species differences (LDA > 3, P < 0.05, Mann–Whitney U-
tests). A: Cladogram. The circle radiating from inside to outside represents the classification level from the kingdom to the genus (or species). Species with 
no significant differences are uniformly colored in yellow, the red nodes represent the microbial group that plays an important role in the OK group, and 
the green nodes represent the non-wearer group. B: Histogram of LDA value distribution shows the biomarkers with statistical difference. The LDA value 
represents the influence of bacterial species, and the longer the length, the higher the degree of influence. L: the OK lens group, N: the non-wearer group
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Fig. 6  The differential microbiota as diagnostic markers of the OK lens group. Receiver operating characteristic (ROC) curves for the differential microbio-
ta alone or in combination are used to discriminate the OK lens wearers from the non-wearers. AUC, the area under the receiver-operating characteristic 
curve. L: the OK lens group, N: the non-wearer group

 

Fig. 5  Comparisons of the relative abundance of the bacterial taxa at the phylum, family, and genus levels. The data are presented as the mean ± standard 
error. The Mann–Whitney U test is used to analyze variation between the OK lens wearers and the non-wearers. *P < 0.05 compared with the non-wearer 
group. L: the OK lens group, N: the non-wearer group

 



Page 9 of 11Zhang et al. BMC Microbiology          (2023) 23:397 

from a wider range of subjects at different time points 
are necessary. Third, since a large number of sequences 
remain unknown, it is difficult to identify strains to the 
species level using 16  S rDNA sequencing, which is 
needed to be improved. [63].

Conclusion
In conclusion, using 16  S rDNA gene sequencing, this 
study confirms that the relative abundance of bacterial 
taxa can change after OK lens wear in myopic children, 
affecting the physiological and immune status of the ocu-
lar surface. Brevundimonas, Acinetobacter, Proteus, and 
Agathobacter may be candidate biomarkers to distinguish 
between OK lens wearers and non-wearers. The findings 
are conducive to understanding the role of ocular surface 
microbiota in the ocular surface inflammation in pediat-
ric OK lens wearers.
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