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Abstract 

Background  Infection with extensive-drug-resistant (XDR) carbapenem-resistant (CR) Gram-negative bacteria (GNB) 
are viewed as a serious threat to human health because of the limited therapeutic options. This imposes the urgent 
need to find agents that could be used as adjuvants or combined with carbapenems to enhance or restore the sus-
ceptibility of XDR CR- GNB. Therefore, this study aimed to examine the effect of propranolol (PR) in combination 
with Meropenem (MEM) on the susceptibility profile of XDR CR-GNB recovered from severely infected patients as well 
as to evaluate combining MEM with either tigecycline (TGC) or amikacin (AK).

Methods  A total of 59 non-duplicate CR- GNB were investigated for carbapenemase production by the major 
phenotypic methods. Molecular identification of five major carbapenemase-coding genes was carried out using 
polymerase chain reactions (PCR). Antimicrobial susceptibility tests were carried out using standard methods. 
Phenotypic and genotypic relatedness was carried out using the heatmap and ERIC PCR analysis. PR, 0.5 -1 mg/
mL against the resulting non-clonal XDR CR-GNB pathogens were evaluated by calculating the MIC decrease factor 
(MDF). A combination of MEM with either AK or TGC was performed using the checkerboard assay.

Results  A total of 21 (35.6%) and 38 (64.4%) CR-GNB isolates were identified as enterobacterial isolates (includ-
ing 16 (27.1%) Klebsiella Pneumoniae and 5 (8.5%) Escherichia coli) and non-fermentative bacilli (including, 23 (39%), 
Acinetobacter baumannii, and 15 (25.4%) Pseudomonas aeruginosa). The heatmap and ERIC PCR analysis resulted 
in non-clonal 28 XDR CR isolates. PR, at a concentration of 0.5 mg /ml, decreased MICs values of the tested XDR CR 
isolates (28; 100%) and restored susceptibility of only 4 (14.3%) isolates. However, PR (1 mg/mL) when combined 
with MEM has completely (28; 100%) restored the susceptibility of the tested XDR CR- GNB to MEM. The MEM + AK 
and MEM + TGC combination showed mostly additive effects (92.8% and 71.4%, respectively).

Conclusion  PR at a concentration of 1 mg/mL restored the susceptibility of XDR CR- GNB to MEM which is consid-
ered a promising result that should be clinically investigated to reveal its suitability for clinical use in patients suffering 
from these life-threatening pathogens.
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Background
Globally, the emergence and spread of extensive-drug 
resistant (XDR) carbapenem-resistant (CR) Gram-neg-
ative bacteria (GNB) are regarded as a grave threat to 
human health [1, 2]. The development of CR is currently 
gaining a great deal of attention since carbapenem anti-
biotics are considered the last line of defense in the face 
of serious XDR infections [1, 2]. The CR may result from 
reduced permeability of the outer membrane accom-
panied by overproduction of AmpC – beta-lactamases, 
development of extended-spectrum beta-lactamases 
[ESBLs), and excessive expression of class A, B, and D 
carbapenemase enzymes including Klebsiella pneumo-
niae carbapenemase (blaKPC), New Delhi metallo-β-
lactamase (blaNDM), imipenemase (blaIMP), Verona 
integron encoded metallo-β- lactamase (blaVIM) and 
oxacillinases (blaOXA-48). This continues to be the most 
pathologically significant mechanism driving the evolu-
tion of resistance among the GNB globally and is respon-
sible for the majority of nosocomial outbreaks in recent 
years [3, 4].

The high rates of morbidity and mortality, as well as 
the likelihood of widespread transmission of CR, par-
ticularly through transmissible genetic elements, make it 
imperative to quickly identify carbapenemase producers 
(CPs) in order to contain this serious public health cri-
sis [5, 6]. Also, there is now a major concern on a global 
scale due to the explosive growth of XDR GNB, espe-
cially those that are CPs. Additionally, treatment options 
for pyogenic infections caused by XDR GNB pathogens 
have become extremely scarce and constrained [5, 6]. As 
a result, researchers have been concentrating on develop-
ing new treatments to deal with this health issue [7–9].

A number of recent reports proved propranolol (PR), 
a non-selective beta blocker, to have powerful nega-
tive effects on cell growth viability and progression and 
were evidenced to lessen cancer types [10, 11]. Recently, 
PR was analyzed to recover susceptibility of extensively 
drug-resistant (XDR) bacterial isolates to fluoroquinolo-
nes [12]. Moreover, combinations of MEM plus AK and 
MEM plus TGC have recently been widely used in clini-
cal settings in Egypt after they have been tested as syner-
gistic combinations[13, 14]. However, the pattern of XDR 
GNB particularly those which are CR are changeable by 
time which leads to an urgent demand to test the suscep-
tibility of the circulating XDR pathogens [13, 14].

Although the respective antibiotic combinations have 
been widely used by clinicians, various septic infections 
caused by multidrug-resistant (MDR) or XDR CR- GNB 
have been documented recently causing high levels of 
morbidity and mortality worldwide [15–18]. Moreover, 
the effect of MEM in combination with PR on XDR CR- 
GNB isolates has not yet been explored. Accordingly, this 

study focused on investigating the effect of PR in com-
bination with MEM on the susceptibility profile of XDR 
CR- GNB recovered from severely infected patients from 
two major Tertiary Care Hospitals in Egypt. This study 
also aimed to evaluate the efficacy of combining MEM 
with either TGC or AK on the respective life-threating 
pathogens.

Materials and methods
Identification and collection of clinical bacterial isolates
According to Bergey’s manual of determinative bacteriol-
ogy [19], the microscopic, morphologic, and biochemi-
cal characteristics were the basis of identification of the 
isolates. Additionally, the VITEK2 automated system 
(bioMérieux, Marcy L’Etoile, France) was used to further 
verify the bacterial identification [20]. All isolates were 
collected on typical workdays without the use of any spe-
cific exclusion criteria.

A total of 59 non-duplicate CR- GNB isolates (includ-
ing 52 isolates were recovered from our previously 
conducted study in our lab [18], in addition to 7 iso-
lates recently recovered in this study). All isolates were 
obtained from the discharged clinical specimens of uni-
dentified patients from the microbiology laboratory of El 
Demerdash Tertiary Care Hospitals, Cairo, Egypt after 
the study approval by the Faculty of Pharmacy Ain Shams 
University Ethics Committee Number, ACUC-FP-ASU 
RHDIRB2020110301 REC# 41 in September 2021.

The antimicrobial susceptibility testing of the collected 
bacterial isolates
The collected isolates were tested for antibiotic suscep-
tibility using the Kirby-Bauer method, against thirteen 
different antibiotic discs (Thermo Scientific™ Oxoid™, 
Loughborough, UK); including amoxicillin/clavu-
lanic acid (20 mg/10 mg), amikacin (30 mg), aztreonam 
(30  mg), cefoxitin (30  mg), ceftriaxone (30  mg), cipro-
floxacin (5 mg), levofloxacin (5 mg), imipenem (10 mg), 
meropenem (10  mg), ertapenem (10  mg), sulphameth-
oxazole/trimethoprim (25  μg), doxycycline (30  μg) and 
tigecycline (30  μg). For each of the tested isolates, the 
Kirby-Bauer test was performed on Mueller–Hinton agar 
plates thrice, then, the inhibition zone diameters were 
measured. As previously reported, XDR isolates were 
determined using the international standard criteria of 
the CLSI guidelines, 2021 [21].

Minimum inhibitory concentrations of the tested 
antibiotics
The XDR isolates demonstrating a pattern of resistance 
to any of the tested carbapenems were subsequently 
chosen to determine their MIC for MEM, AK, and TGC 
using the broth microdilution method according to CLSI 
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guidelines, 2021 [22]. The broth microdilution test was 
performed in triplicates. According to CLSI, 2021, CR 
isolates with a high potential for carbapenemase pro-
duction included Enterobacteriaceae isolates with MIC 
4  g/mL and non-fermentative bacilli isolates with MIC 
8 g/mL for MEM [22]. Reference strain of E. coli ATCC 
25922™ was used for quality control monitoring.

CPs phenotypic detection
Modified carbapenem inactivation method (mCIM)
The CLSI guidelines in 2021 recommended using mCIM 
for CPs detection using easily accessible laboratory rea-
gents. Duplicate testing was done on XDR GNB isolates 
that were possibly CPs. A MEM disc was quickly sub-
merged in a suspension prepared by suspending 1 µL 
loopful of the tested bacterial colonies in 2 mL TSB and 
then incubated for at least 4 h. The disc was then placed 
in an inoculated plate containing E. coli ATCC 25922™. 
The plate was incubated overnight and tested isolates 
with a zone of inhibition between 6 and 15 mm or col-
onies within 16–18  mm were classified as CPs. While 
isolates giving inhibition zones greater than or equal to 
19 mm, were not classified as CPs [22].

Combined disk test
Combined disc test was carried out to identify the pro-
duction of metallo-beta lactamases (MBLs) as previously 
reported [23]. The test was carried in duplicates to guar-
antee the reproducibility of results [23].

Blue‑carba test
The Blue-carba test has a 100% sensitivity and specificity 
for direct detection of all CPs from bacterial culture. This 
test was carried out in the same manner as previously 
described by Pires et al. [24]. Duplicate testing was per-
formed on potential CPs isolates to provide more repro-
ducible results.

Identification of carbapenemase‑coding genes
Following the manufacturer’s instructions, DNA of phe-
notypically confirmed XDR CP isolates were extracted 
using the Genomic DNA Purification Kit (Thermo 
Fisher Scientific, Waltham, MA, USA) and were used 
as templates for PCR using proper primers created by 
Macrogen® (Macrogen®, Madrid, Spain). The PCR ampli-
fication of the blaIMP, blaKPC, blaNDM, blaOXA-48, 
and blaVIM genes was performed using the annealing 
temperatures (Ta) and suitable primers as previously 
mentioned [18, 25]. The amplified PCR results were 
examined using agarose gel electrophoresis, and using a 
1000 bp DNA ladder (GeneRuler 1 kb, ThermoFisher Sci-
entific, Waltham, MA, USA).

Phenotypic analysis using heatmap analysis
Antimicrobial resistance profiles, MIC to meropenem 
and carbapenemase production results were used to 
create a dendrogram showing heatmap signature of the 
isolates to illustrate their phenotypic relatedness. This 
was created by Morpheus online software (https://​softw​
are.​broad​insti​tute.​org/​morph​eus/ accessed on 12 Feb-
ruary 2023). using Euclidean distances as previously 
reported [26].

Enterobacterial repetitive intergenic consensus‑PCR 
(ERIC‑PCR) for some selected clinical isolates
The ERIC-PCR sequence analysis tool is employed in 
epidemiological analysis to ascertain the genetic relat-
edness of bacterial isolates. The isolates’ DNA template 
preparation was carried out in an accordance with 
Doyle et al. [27] and used as PCR templates. The prim-
ers (Table 1) and conditions utilized for the ERIC-PCR 
were explained by Codjoe et al..The following were the 
temperature and time conditions during ERIC-PCR: 
35 cycles of primary denaturation at 94  °C for 5  min, 
secondary denaturation at 94  °C for 30  s, and anneal-
ing at 52  °C for 1  min, extension at 72  °C for 1  min, 
and final extension at 72 °C for 12 min [28]. The ERIC 
fingerprinting data was converted into a binary code 
based on the presence or absence of each band. Den-
drograms were constructed using the unweighted pair 
group technique with arithmetic average (UPGMA) 
and Ward’s hierarchical clustering routine using IBM® 
SPSS® version 23 of the Statistical Package for the 
Social Sciences software [29, 30]. Similarity index (Jac-
card/Tanimoto Coefficient and number of intersecting 
elements) between all samples was computed using the 
online tool (https://​plane​tcalc.​com/​1664/) (accessed 
on 20 January 2023). Agarose gel electrophoreses were 
carried out in accordance with Sambrook et  al. with 
minor modifications [31].

Evaluation of MEM‑ PR combinations
MEM combinations with PR, 25  μg-1  mg/mL (Sigma, 
Aldrich, UK), against the resulted non-clonal XDR CR- 
GNB pathogens were evaluated by determining the MIC 
decrease factor (MDF). The MDF of the tested isolates 
were estimated using the following equation:

MDF = MIC without non-antibiotic / MIC with non-antibiotic.
An MDF value of 4 is regarded as a significant effect [34].

Evaluation of MEM combinations with either AK or TGC​
MEM was combined with additional antibiotics (AK 
and TGC) using the checkerboard assay to investigate 
the effect of such combinations on the in  vitro MEM 
activity against the tested XDR GNB isolates [35, 36]. 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
https://planetcalc.com/1664/
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The fractional inhibitory concentration index (FIC 
index) was then estimated using the following equa-
tion and the results were interpreted as previously 
determined [35, 36].

Statistical analysis
Statistical analysis, including descriptive statistics, 
frequency tables, cross-tabulations, dendrogram con-
struction, and similarity index calculations were car-
ried out using IBM® SPSS® version 23 of the Statistical 
Package for the Social Sciences software (SPSS Inc., 
Chicago, IL, USA). The Chi-square test was used to 
analyze categorical variables to assess statistical sig-
nificance. A value of P < 0.05 was deemed statistically 
significant, and significance was two-sided.

Results
Identification of the recovered CR‑ GNB clinical isolates
Out of the collected 59 CR- GNB clinical isolates, 21 
(35.6%) were recognized as enterobacterial isolates, 
including 16 (27.1%) K. Pneumoniae and 5 (8.5%) E. 
coli. Furthermore, a total of 38 (64.4%) were non-fer-
mentative bacilli of which, 23 (39%) were A. bauman-
nii, and 15 (25.4%) were P. aeruginosa.

FICindex = FIC(A)+ FIC(B) =
MICofAincombination

MICofAalone
+

MICofBincombination

MICofBalone

Antimicrobial susceptibility of the collected isolates
All of the 59 GNB isolates (100%) were proved to be 
resistant to one or more of the tested carbapenems and 
were categorized as CR-GNB isolates. The results of anti-

microbial susceptibility testing showed that all the tested 
CR-GNB isolates were XDR, with the highest resistance 
rates to imipenem, meropenem, ertapenem, amoxicillin/
clavulanic, aztreonam, cefoxitin, ceftriaxone, ciprofloxa-
cin, and levofloxacin (100%). The lowest resistance rates 
were for TGC (80.9%), followed by AK (86.4%). The per-
centage of antimicrobial resistance of the 59 CR-GNB 
isolates are shown in Fig. 1, and their resistance patterns 
relative to identity are demonstrated in Table 1.

Minimum inhibitory concentrations of the tested 
antibiotics
The MIC of MEM was determined against the 59 CR-
GNB isolates. The MEM resistance was observed in all 
isolates, while the MICs of both the AK and TGC was 
tested against the selected non clonal 28 CR-GNB iso-
lates according to the results obtained by the heatmap 
analysis. The AK resistance was observed in 23 out of 
28 (82.1%) isolates, however, the 4 (14.3%) P. aeruginosa 

Table 1  Resistance patterns to various antimicrobial agents among different tested carbapenem-resistant Gram-negative bacterial 
isolates (n = 59)

Abbreviations ND not determined because they are not included in the reference guidelines (CLSI and EUCAST guidelines [32, 33]

Antimicrobial class Antimicrobial agent Percentage of resistance (%)

K. 
pneumoniae 
(n = 16)

P. aeruginosa 
(n = 15)

A. baumannii (n = 23) E. coli (n = 5)

Carbapenems Imipenem (10 µg) 100 100 100 100

Meropenem (10 µg) 100 100 100 100

Ertapenem (10 µg) 100 ND ND 100

β-lactam combination agents Amoxicillin/clavulanic acid (20 μg/10 μg) 100 ND ND 100

Monobactam Aztreonam (30 µg) 100 100 ND 100

Cephalosporins Cefoxitin (30 µg) 100 ND ND 100

Ceftriaxone (30 µg) 100 ND 100 100

Aminoglycosides Amikacin (30 µg) 93.75 100 91.3 0

Fluoroquinolones Ciprofloxacin (5 µg) 100 100 100 100

Levofloxacin (5 µg) 100 100 100 100

Folate pathway inhibitors Trimethoprim/sulfamethoxazole (25 µg) 93.75 ND 100 100

Tetracycline Doxycycline (30 µg) 93.75 ND 95.7 60

Glycylcyclines Tigecycline (30 µg) 93.75 ND ND 40
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isolates tested in this assay were found to be resistant to 
TGC. Only 4 (14.3%) of the tested isolates were resist-
ant to all three antibiotics in the assay; however, 19 
(67.9%) isolates exhibited co-resistance to two antibiot-
ics; 5 (17.9%) isolates exhibited MEM resistance only. 
The MICs of antimicrobial agents against the tested 
isolates are listed in Tables 2 and 3.

Phenotypic detection of XDR CR‑ GNB
As shown in Table  2, the carbapenemase produc-
ing XDR GNB (n = 59) isolates were phenotypically 
assessed using the combined disk test, modified car-
bapenem inactivation method (m CIM), and blue-carba 
test.

Molecular detection of Carbapenemase Producers (CPs)
Multiplex PCR results revealed that blaKPC was ampli-
fied in 40 (67.8%) isolates (16 A. baumannii, 12  K. 
pneumoniae, 7 P. aeruginosa and 5 E. coli), followed by 
blaOXA-48 that was detected in 30 (50.8%) isolates (14 
A. baumannii, 7 K. pneumoniae and 9 P. aeruginosa), fol-
lowed by blaVIM that was observed in 16 (27.1%) isolates 
(8 A. baumannii and 6  K. pneumoniae and 2 P. aerugi-
nosa). However, none of the tested XDR isolates had any 
blaIMP or blaNDM. Data summary of MICs, phenotypic 
and genotypic findings of the XDR GNB (n = 59) is tabu-
lated in Table 2.

Heatmap analysis of XDR GNB isolates
The 23, 17, 16, 5 XDR A. baumannii, K. pneumoniae, P. 
aeruginosa and E. coli isolates were clustered into 14, 10, 
9 and 4 clusters, respectively (Figs. 2, 3, 4 and 5).

ERIC‑PCR analysis of some selected CR‑ GNB Isolates
Based on the heat map analysis, a total of 14, 10, 9 and 
4 nonclonal clusters of A. baumannii, K. pneumoniae, 
P. aeruginosa and E. coli, 13, 8, 4 and 3 isolates were 
selected for genotypic relatedness analysis using ERIC-
PCR. The ERIC-PCR was performed to the selected 
28 CR- GNB isolates based on heatmap analysis to find 
out their genetic relatedness. Agarose gel electrophore-
sis of ERIC-PCR analysis of some selected carbapenem-
resistant Gram-negative bacterial isolates is shown in 
Figure S1 (Supplementary data). The ERIC-PCR analysis 
confirmed non-clonal relatedness of most of the tested 
isolates (Supplementary data, Figures S2-S5). However, 
the dendrogram generated according to the calculated 
Jaccard similarity index showed genetic similarities of 
the following couples of: i) A. baumannii, isolates (AB4, 
AB13); (AB10, AB11); (AB2, AB6); (AB1, AB8), (AB7, 
AB9), (AB3,AB5) (Figure S2); ii) P. aeruginosa isolates 
(PA2, PA3) (Figure S3); iii) E. coli isolates (EC1, EC3) 
(Figure S4). For K. pneumoniae isolates results showed 
genetic identities of the five isolates namely, KP1, KP2, 
KP3, KP7 and KP8 (Figure S5). Although the genetically 
similar isolates were all collected from different patients, 

Fig. 1  Prevalence of antimicrobial resistance of 59 carbapenem-resistant Gram-negative bacterial isolates to various tested antimicrobial agents. 
Prevalence was expressed as percent of resistant isolates relative to the total tested bacterial species for each antimicrobial agent
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Table 2  The MICs of the tested antimicrobial agents, phenotypic and molecular analysis of Carbapenemase-encoding genes of the 
tested isolates (n = 28)

Isolate Code Species MIC of MEM 
(µg/ml)

Combined Disk 
Test

Modified Carbapenem 
Inactivation Test

Blue- Carba 
Test

Carbapenemase Genes

AB-9G A. baumannii 256/R - -  +  blaOXA-48

AB-109A A. baumannii 256/R -  +   +  blaOXA-48

AB-63 M A. baumannii 1024/R -  +   +  blaOXA-48, blaKPC

AB-30G A. baumannii 512/R -  +   +  blaKPC, blaVIM

AB-100 M A. baumannii 1024/R - -  +  blaKPC

AB-55 M A. baumannii 1024/R -  +   +  blaOXA-48

AB-20G A. baumannii 256/R  +   +   +  blaVIM

AB-3 M A. baumannii 512/R  +   +   +  blaOXA-48, blaKPC

AB-14 M A. baumannii 128/R -  +   +  blaOXA-48, blaKPC, blaVIM

AB-37 M A. baumannii 1024/R  +   +   +  blaVIM

AB-34 M A. baumannii 128/R -  +   +  blaKPC

AB-13 M A. baumannii 512/R  +   +  - blaVIM

AB-7G A. baumannii 512/R  +  -  +  blaKPC

AB-6 M A. baumannii 512/R -  +   +  blaOXA-48, blaKPC

AB-36 M A. baumannii 128/R  +   +   +  blaVIM

AB-28 M A. baumannii 512/R  +   +   +  blaOXA-48, blaKPC

AB-42 M A. baumannii 64/R  +   +   +  blaOXA-48, blaKPC

AB-74 M A. baumannii 128/R  +   +   +  blaOXA-48, blaKPC

AB-13G A. baumannii 1024/R  +  -  +  blaOXA-48, blaKPC, blaVIM

AB-64 M A. baumannii 128/R  +   +   +  blaOXA-48, blaKPC

AB-30 M A. baumannii 128/R  +   +   +  blaOXA-48, blaKPC

AB-15 M A. baumannii 64/R  +   +   +  blaOXA-48, blaKPC

AB-31G A. baumannii 128/R -  +   +  blaKPC, blaVIM

KP-84S K. pneumoniae 64/R -  +   +  blaOXA-48, blaKPC

KP-25S K. pneumoniae 1024/R -  +   +  blaKPC

KP-89S K. pneumoniae 128/R -  +   +  blaOXA-48, blaKPC

KP-92A K. pneumoniae 1024/R  +   +   +  blaOXA-48, blaKPC, blaVIM

KP-114S K. pneumoniae 1024/R  +   +   +  blaOXA-48, blaKPC

KP-106S K. pneumoniae 512/R -  +   +  blaKPC

KP-79A K. pneumoniae 512/R  +   +   +  blaKPC

KP-113S K. pneumoniae 512/R -  +   +  blaOXA-48, blaKPC

KP-81S K. pneumoniae 256/R -  +   +  blaVIM

KP-11 K K. pneumoniae 128/R  +   +   +  blaVIM

KP-7 K K. pneumoniae 512/R  +   +   +  blaOXA-48, blaKPC

KP-4 K K. pneumoniae 512/R  +   +   +  blaVIM

KP-9* K. pneumoniae 1024/R  +   +   +  blaKPC

KP-112S K. pneumoniae 1024/R  +  -  +  blaVIM

KP-78A K. pneumoniae 64/R  +   +   +  blaKPC

KP-93A K. pneumoniae 128/R  +   +   +  blaOXA-48, blaKPC, blaVIM

PA-33 K P. aeruginosa 1024/R -  +   +  blaKPC

PA-59S P. aeruginosa 128/R -  +   +  blaOXA-48

PA-51S P. aeruginosa 1024/R -  +   +  blaOXA-48, blaKPC

PA-19S P. aeruginosa 64/R -  +   +  blaOXA-48

PA-100S P. aeruginosa 1024/R -  +   +  blaOXA-48

PA-78S P. aeruginosa 128/R -  +   +  blaOXA-48

PA-54S P. aeruginosa 1024/R -  +  - blaKPC

PA-99S P. aeruginosa 1024/R - -  +  blaKPC

PA-50S P. aeruginosa 256/R  +   +   +  blaOXA-48
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Abbreviations MIC Minimum inhibitory concentration, MEM Meropenem, AK amikacin, TGC​ Tigecycline; R Resistant, I Intermediate sensitivity, S Susceptible, AB A. 
baumannii, KP K. pneumoniae, PA P. aeruginosa, EC E. coli

Table 2  (continued)

Isolate Code Species MIC of MEM 
(µg/ml)

Combined Disk 
Test

Modified Carbapenem 
Inactivation Test

Blue- Carba 
Test

Carbapenemase Genes

PA-83S P. aeruginosa 128/R -  +   +  blaOXA-48, blaKPC

PA-18S P. aeruginosa 128/R  +   +   +  blaVIM

PA-77Y P. aeruginosa 64/R  +   +   +  blaOXA-48, blaVIM

PA-111S P. aeruginosa 1024/R  +   +   +  blaKPC

PA-98S P. aeruginosa 64/R - -  +  blaKPC

PA-79S P. aeruginosa 1024/R -  +   +  blaOXA-48

EC-53A E. coli 512/R -  +   +  blaKPC

EC-55A E. coli 512/R -  +   +  blaKPC

EC-99A E. coli 256/R -  +   +  blaKPC

EC-34R E. coli 64/R -  +   +  blaKPC

EC-98A E. coli 64/R -  +   +  blaKPC

Table 3  Effects of PR on the MIC of Meropenem

Abbreviations: MICs minimum inhibitory concentrations, MDF MIC decrease factor, MEM Meropenem, PR Propranolol, AB A. baumannii, KP K. pneumoniae, PA P. 
aeruginosa, EC E. coli

Isolate code MICs (μg/ml) MEM alone PR 0.5 mg /ml PR 1 mg /ml

MICs (μg/ml) MEM + PR 
0.5 mg /ml

MDF MICs (μg/ml) MEM + PR 1 mg 
/ml

MDF

AB-9G 256 32 8 2 128

AB-109A 256 16 16 1 256

AB-63 M 1024 32 32 2 512

AB-30G 512 256 2 1 512

AB-100 M 1024 32 32 2 512

AB-55 M 1024 512 2 1 1024

AB-20G 256 8 32 2 128

AB-3 M 512 8 64 1 512

AB-37 M 1024 32 32 2 512

AB-34 M 128 64 2 0.5 256

AB-14 M 128 8 16 2 64

AB-13 M 512 256 2 2 256

AB-7G 512 8 64 0.5 1024

KP-84S 64 2 8 2 128

KP-89S 128 2 64 0.5 256

KP-114S 1024 64 16 1 1024

KP-25S 1024 128 8 4 256

KP-92A 1024 32 32 4 256

KP-106S 512 32 16 1 512

KP-79A 512 32 16 1 512

KP-113S 512 64 8 2 256

PA-50S 256 4 64 1 256

PA-99S 1024 64 16 4 256

PA-54S 1024 32 32 2 512

PA-78S 128 4 32 0.5 256

EC-55A 512 64 8 4 128

EC-34R 64 8 8 0.5 128

EC-99A 256 16 16 1 256
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this suggests that these isolates shared a common source 
of infection. Aside from the respective isolates, all the 
other 28 tested CR-GNB isolates in this study were 
genetically dissimilar.

MEM‑PR combinations
The results of MEM in combination with PR is displayed 
in Table  3. Results showed that PR, in a concentration 
of 0.5 mg /ml, decreased MICs values of all of the tested 
XDR CR isolates (n = 28) and restored the susceptibility 
(MIC values were changed from resistance to sensitive 
values) of only 4 (14.3%) isolates (coded 84 s, 89 s, 50 s, 
78  s). Interestingly, PR (1 mg/mL) when combined with 
MEM has completely (100%) restored the susceptibility 
of the tested isolates to MEM (Table 3).

Effect of MEM + AK and MEP + TGC combinations
To reduce or eliminate CR in some CR-GNB isolates, the 
effects of different combinations of MEM with AK, and 
TGC were examined on 28 selected CR-GNB pathogens. 
The MEM + AK and MEM + TGC combinations revealed 
additive or indifferent effects against the tested CR-GNB 
isolates. The additive effects of MEM/AK and MEM/
TGC were 92.8% and 71.4%, respectively, the indiffer-
ent effects of MEM/AK and MEM/TGC were 7.2% and 
28.6%, respectively. While neither AK nor TGC showed 
synergism when combined with MEM, the calculated 
FIC index values are shown in Table 4.

Discussion
The CR is considered as one of the most significant 
concerns to the public health worldwide [38, 39]. It has 
become a serious global threat, which limits the available 
therapeutic and treatment options. In this light, given 
that carbapenem is effective against almost all XDR GNB, 
it has gained clinical value as a last-resort treatment for 
serious bacterial infections. However, over the past few 
years, the prevalence of CR has steadily increased [40], 
and hence, our study aimed to find a new approach for 
combating the antibiotic resistance of XDR CR- GNB, 
the clinical relevant life-threatening pathogens. The 
clinical isolates were discharged from different clinical 
specimens of infected patients attending El Demerdash 
Tertiary Care Hospitals in Egypt. A total of 59 CR- GNB 
bacteria were recovered from 59 clinical specimens 
throughout the period of our study. where 21 (35.6%) 

were enterobacterial isolates and 38 (64.4%) were non- 
fermentative bacilli.

In our study, 23 (39%) A. baumannii isolates were 
recovered which may account for the pathogen’s pre-
dominance within the recovered GNB isolates in our 
study. Furthermore, this data is of tremendous medical 
importance and a challenge from a medical standpoint as 
A. baumannii is one of the hard-to-treat organisms that 
cause nosocomial infections, this might be caused by its 
limitless ability to develop antimicrobial resistance due 
to the plasticity of its genome [41]. Our microbiological 
findings were consistent with some recent studies that 
found Enterobacteriaceae, especially, K. pneumoniae and 
E. coli together along with A. baumannii, and P. aerugi-
nosa to be among the highest hazards within the GNB 
recovered from respiratory tract infections [42].

The antibiogram analysis demonstrated that all the 59 
isolates [100%) had a high resistance level to various anti-
microbials including carbapenems, this is beside the fact 
that the MIC of all isolates revealed that they are all CR 
and as a result, they are all classified as CR-XDR isolates 
[21], which was consistent with earlier studies that high-
light the significant resistance of many CPs [18, 43]. CPs 
were initially screened for identifying MBLs utilizing a 
combined disk test. In our current study, 45.8% (27 out of 
59) of the tested isolates were positive for class B carbap-
enemase. This showed that the carbapenem-resistance 
pattern may include other carbapenemase types, such as 
class A and class D oxacilinase (that were not inhibited 
by EDTA), This was almost near to a study carried out by 
Rakhi et al. that had reported 50% in the combined disk 
test for MBLs production [44].

To ensure the compliance with the most recent guide-
lines for carbapenemase production, the mCIM and 
blue- carba tests were additionally carried out on the 
59 CP isolates. Our findings revealed that, mCIM test 
detected 52 (88.1%), while the blue- carba test detected 
57 (96.6%) of CP isolates. This was comparable to the 
study conducted by Mabrouk et al. that had reported the 
lowest ratios 50% in the combined disk test for MBLs 
production followed by 92.3% for mCIM and the highest 
ratio of and 98.1% was recorded for blue-carba test [18]. 
Additionally, the blue- carba test results matched those 
of another study performed recently by Cordeiro-Moura 
et al. [45]. In the light of these reports, we can state that 
the blue-carba test demonstrated a high sensitivity and 

(See figure on next page.)
Fig. 2  Heatmap of carbapenem-resistant A. baumnnii isolates (n=23) in this study based on their antimicrobial resistance patterns, MIC 
to meropenem and phenotypic tests for carbapenemase enzyme production (Combined disk test, Modified carbapenem inactivation method 
and Blue-Carba test results). This heatmap was generated by using Morpheus online software using Euclidean distances (https://​softw​are.​broad​
insti​tute.​org/​morph​eus/). Blue color indicates Positive or resistant; Red color indicates negative or sensitive, White color indicates Intermediate 
resistance. AK, Amikacin; CTR, Ceftriaxone; CIP, Ciprofloxacin; LEV, Levofloxacin; IMI, Imipenem; MEM, Meropenem; DOX, Doxycycline; SXT, 
Trimethoprim-Sulfamethoxazole

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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Fig. 2  (See legend on previous page.)
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specificity for the detection of carbapenemase produc-
tion and is thus regarded as a favorable tool for the quick 
detection of CPs in clinical settings [45]. We then tackled 

the determination of the prevalence of the carbapen-
emase genes, an essential character for the suppression of 
XDR-CR strains within clinical healthcare settings. After 

Fig. 3  Heatmap of carbapenem-resistant K. pneumoniae isolates (n=16) in this study based on their antimicrobial resistance patterns, MIC 
to meropenem and phenotypic tests for carbapenemase enzyme production (Combined disk test, Modified carbapenem inactivation method 
and Blue-Carba test results). This heatmap was generated by using Morpheus online software using Euclidean distances (https://​softw​are.​broad​
insti​tute.​org/​morph​eus/). Blue color indicates Positive or resistant; Red color indicates negative or sensitive, White color indicates Intermediate 
resistance. AK, Amikacin; AT, Aztreonam; CIP, Ciprofloxacin; LEV, Levofloxacin; IMI, Imipenem; MEM, Meropenem; AMC, Amoxicillin-clavulanic acid; 
CTR, Ceftriaxone; CX, Cefoxitin; ERT, Ertapenem; DOX, Doxycycline; TGC, Tigecycline; SXT, Trimethoprim-Sulfamethoxazole

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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the phenotypic screening of XDR CR- GNB isolates, PCR 
was carried out utilizing the genomic DNA of each isolate 
and the specific primers for each CR gene. The choice of 
the five carbapenemase genes screened in this study was 
according to their prevalence among GNB and as they 
represent the three major classes of carbapenemases, 
counting, class A serine carbapenemases (blaKPC), class 
B metallo-β-lactamases (blaIMP, blaNDM and blaVIM) 

and class D serine carbapenemases (blaOXA-48) [1]. 
blaKPC was the most predominant CR gene in our find-
ings (67.8%) that was equivalent to the results of a recent 
study conducted by Li and his colleagues [46], next was 
blaOXA-48 (50.8%), then blaVIM that was noticed 
in (27.1%) of the isolates. However, neither blaIMP, 
blaVIM or blaNDM was found in any isolate which was 
in accordance with the results of a study performed by 

Fig. 4  Heatmap of carbapenem-resistant P. aeruginosa isolates (n=15) in this study based on their antimicrobial resistance patterns, MIC 
to meropenem and phenotypic tests for carbapenemase enzyme production (Combined disk test, Modified carbapenem inactivation method 
and Blue-Carba test results). This heatmap was generated by using Morpheus online software using Euclidean distances (https://​softw​are.​broad​
insti​tute.​org/​morph​eus/). Blue color indicates Positive or resistant; Red color indicates negative or sensitive, White color indicates Intermediate 
resistance. AK, Amikacin; AT, Aztreonam; CIP, Ciprofloxacin; LEV, Levofloxacin; IMI, Imipenem; MEM, Meropenem

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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Mabrouk et al. who reported high frequency of blaKPC 
(63.5%) [18]. On the contrary, our results differed from 
those from a study performed in Zagazig hospital in 
Egypt, which indicated the clonal spread of blaOXA-23 
to be (90%), next was blaNDM (66.7%) and last was 
blaGES (50%) in CR A. baumannii [47]. The discrepancy 
between the relevant study and ours might be related to 
other variables including geographical and patient fac-
tors. Strikingly, the presence of two carbapenemase genes 
was observed in 19 (32.2%) of the 59 carbapenemase-
positive isolates, and their distribution was as follows: 16 
isolates co- harbored blaKPC and blaOXA-48, 2 isolates 
co-harbored blaKPC and blaVIM, and 2 isolates co-har-
bored blaOXA-48 and blaVIM. Furthermore the 3 car-
bapenemase genes that were blaKPC, blaOXA-48 and 

blaVIM were co-harbored in 4 (6.78%) isolates, this was 
in an accordance to a recent study by Mabrouk et al. [18].

A dendrogram that showed heatmap signature of the 
CR-GNB isolates was generated in an effort to shed more 
light on the phenotypic relatedness of the isolates based 
on their antimicrobial resistance patterns and their capac-
ity to produce carbapenemase enzymes. Isolates showing 
similar heatmap signatures were mostly A. baumannii 
followed by P. aeruginosa, indicating that they might be 
nosocomially transmitted as has been previously reported 
[43, 48]. The ability of ERIC-PCR as a genotyping tool to 
investigate epidemics of hospital-acquired infections rely 
on its capability to epidemiologically relate the isolates 
obtained during a nosocomial outbreak and to determine 
whether the involved isolates are genetically related or 

Fig. 5  Heatmap of carbapenem-resistant E. coli isolates (n=5) in this study based on their antimicrobial resistance patterns, MIC to meropenem 
and phenotypic tests for carbapenemase enzyme production (Combined disk test, Modified carbapenem inactivation method and Blue-Carba test 
results). This heatmap was generated by using Morpheus online software using Euclidean distances (https://​softw​are.​broad​insti​tute.​org/​morph​
eus/). Blue color indicates Positive or resistant; Red color indicates negative or sensitive, White color indicates Intermediate resistance. AK, Amikacin; 
AT, Aztreonam; CIP, Ciprofloxacin; LEV, Levofloxacin; IMI, Imipenem; MEM, Meropenem; AMC, Amoxicillin-clavulanic acid; CTR, Ceftriaxone; CX, 
Cefoxitin; ERT, Ertapenem; DOX, Doxycycline; TGC, Tigecycline

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/


Page 13 of 17Mabrouk et al. BMC Microbiology          (2023) 23:195 	

descended from different strains [49]. Both phenotypic 
and genotypic relatedness have been performed in our 
study by using heatmap and ERIC PCR analysis, respec-
tively to evaluate clonal diversity and to select the diverse 
isolates for the next experiments. Using strain typing in 
infectious disease control decisions in our hospitals is 
based on several hypotheses, including whether the iso-
lates linked to the outbreak are descendants of a single 
clone, whether such isolates will have the same genotype, 
and whether the isolates from unrelated epidemiologi-
cal cases will have different genotypes [50]. The dendro-
gram obtained from the genomic DNA products of the 
ERIC-PCR revealed that the majority of the tested iso-
lates were not clonal. However, some isolates showing 

genetic relatedness giving the possibility of their common 
etiology of our clinical setting. It is abundantly clear that 
one cannot rely solely on the results of phenotypic data 
for epidemiologic studies and genotypic analysis must be 
carried out in order to obtain more precise results. This 
finding might point to clonal expansion and microbial 
colonization from various sources [48] and therefore, 
extensive prevention and decontamination control meas-
ures should be undertaken in the respective clinical set-
ting to avoid clonal expansion of these clinically-relevant 
pathogens.

Addituonally, the achieved results highlighted the criti-
cal demand for a new drug combination scenario in addi-
tion to speeding up the development of new infection 

Table 4  The calculated FIC index values of the MEM + AK and MEM + TGC combinations against 28 XDR CR pathogens

Abbreviations: FIC index fractional inhibitory concentration index, MEM meropenem, AK amikacin, TGC​ tigecycline, AB A. baumannii, KP K. pneumoniae, PA P. aeruginosa, 
EC E. coli
a  FIC index was calculated using the lowest concentration of the respective antimicrobial agents at which the lowest value of FIC was achieved. Synergism ≤ 0.5, 
additive > 0.5—≤ 1, indifference > 1—≤ 4, antagonism > 4 [37]

Isolate code MIC of antimicrobial agents (µg/ml)/
Susceptibility

MEM + AK MEM + TGC​

MEM AK TGC​ FIC index Interpretation a FIC index Interpretation a

AB-9G 256/R 1024/R 2/S 0.531 Additive 1.063 Indifferent

AB-109A 256/R 1024/R 0.5/S 0.531 Additive 1 Indifferent

AB-63 M 1024/R 64/R 0.5/S 0.516 Additive 1 Additive

AB-30G 512/R 16/S 2/S 1 Additive 0.75 Additive

AB-100 M 1024/R 512/R 2/S 0.75 Additive 0.75 Additive

AB-55 M 1024/R 512/R 1/S 0.625 Additive 1 Additive

AB-20G 256/R 64/R 1/S 1.5 Indifferent 0.75 Additive

AB-3 M 512/R 512/R 4/I 0.625 Additive 0.531 Additive

AB-14 M 128/R 256/R 0.5/S 1 Additive 1 Additive

AB-37 M 1024/R 128/R 2/S 0.516 Additive 0.75 Additive

AB-34 M 128/R 64/R 1/S 1 Additive 1 Additive

AB-13 M 512/R 64/R 2/S 0.531 Additive 1.031 Indifferent

AB-7G 512/R 64/R 2/S 0.531 Additive 0.75 Additive

KP-84S 64/R 256/R 4/I 0.625 Additive 0.75 Additive

KP-25S 1024/R 1024/R 4/I 0.75 Additive 0.531 Additive

KP-89S 128/R 256/R 4/I 1 Additive 0.75 Additive

KP-106S 512/R 512/R 2/S 0.625 Additive 1.031 Indifferent

KP-114S 1024/R 16/S 0.5/S 0.625 Additive 1 Additive

KP-92A 1024/R 64/R 4/I 0.516 Additive 0.531 Additive

KP-79A 512/R 64/R 4/I 0.531 Additive 0.531 Additive

KP-113S 512/R 512/R 1/S 0.625 Additive 1.063 Indifferent

PA-78S 128/R 64/R 256/R 1.5 Indifferent 1 Additive

PA-99S 1024/R 128/R 512/R 0.516 Additive 0.625 Additive

PA-50S 256/R 1024/R 1024/R 0.531 Additive 0.75 Additive

PA-54S 1024/R 512/R 128/R 0.625 Additive 0.516 Additive

EC-55A 512/R 16/S 1/S 1 Additive 1.031 Indifferent

EC-99A 256/R 16/S 0.5/S 0.625 Additive 1.25 Indifferent

EC-34R 64/R 1/S 0.5/S 0.625 Additive 1.063 Indifferent
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control approaches against XDR- CR clinically relevant 
GNB pathogens. In the current study, a new scenario has 
been performed for reaching new alternative treatment 
options for the control of infections caused by XDR CR- 
GNB isolates, the most life-threatening pathogens. This 
was achieved by evaluating the use of MEM, the most 
commonly used antimicrobial agent for the treatment of 
CR-GNB infections together with either TGC or AK or 
non- antibiotics such as PR. Several studies highlighted 
the fact that the combination of a carbapenem with 
either TGC or aminoglycoside or colistin seems to have 
a privilege over monotherapy with either TGC or colistin 
or aminoglycosides alone for combating CR- GNB patho-
gens [51–53]. The justification for combining two or more 
antibiotics against CR- GNB is to increase bacterial erad-
ication rates while lowering the emergence of resistance 
[54]. In our study, combination of MEM with either AK 
or TGC was tested on 28 XDR CR- GNB showed either 
additive or indifference effects, while none of the tested 
combinations showed synergistic effect against the tested 
clinically relevant isolates. However, our results were dif-
ferent from previously conducted studies that recorded a 
high synergistic effect with either combination of MEM/
AK or MEM/TGC against CR- GNB pathogens [55–59]. 
Our findings were similar to another study conducted by 
Antonelli et  al. which revealed the synergistic/additive 
effects among only 16.1% of the tested strains [60]. Also, 
our findings were in an accordance with a previous study 
that has revealed the scarcity of synergism when using 
MEM-TGC combination in carbapenemase-producing 
Enterobacteriaceae (CPE) strains by time-kill curve anal-
ysis [61]. Another recent study revealed the antagonism 
between TGC and MEM tested against KPC-producing 
K. pneumoniae  infections [62]. Based on our findings 
along with recently published records, MEM combina-
tion together with AK or TGC should be used with cau-
tion due to their lack of synergism.

On the other hand, several successful combinations of 
MEM with non-antibiotics against CR-GNB were previ-
ously reported [63–65]. However, there have been few 
investigations on using non-selective beta-blockers, 
including PR, in combination with antimicrobial agents [7] 
or carvedilol alone [66]. In our current study, combination 
of MEM with PR showed promising results and success-
fully overcame bacterial resistance of XDR CR clinical iso-
lates. MEM combination with PR at concentration 0.5 mg/
mL significantly increase the susceptibility of the tested 
XDR CR- GNB pathogens isolates to MEM (MDF ranged 
from 8–64]. While the MIC of only four isolates 14.3% was 
declined from 64 and 128 µg/ml (e.g., resistant phenotype) 
to 2 µg/ml (e.g., sensitive phenotype), respectively.

However, MEM combination with PR at concentra-
tion 1  mg/mL significantly increase the susceptibility of 
the tested XDR CR- GNB isolates by 100% (MDF ranged 
from 64–1024), while 85.7% of the tested isolates was 
changed from resistant phenotype to sensitive pheno-
type e.g., PR restored their susceptibility. These results 
could be attributed to the efflux pump inhibitory action 
of PR or its antibacterial action that has been previously 
investigated [67, 68]. Our results were in agreement with 
another study previously reported, where it has been 
found that combination of CIP or LEV with PR effectively 
conquered bacterial resistance of XDR- and PDR-A. bau-
mannii clinical isolates [12].

Conclusion
This research highlighted the high prevalence of XDR 
CR- GNB clinically relevant pathogens. MEM combina-
tion together with AK or TGC should be used with cau-
tion due to their lack of synergism. Our results revealed 
that PR at a concentration of 1 mg/mL restored suscep-
tibility of all selected XDR-CR clinical isolates. Moreo-
ver, our findings support the use of high-quality in vitro 
research to investigate potentially effective combination 
regimens for use in clinical practice and to guide the 
choice of antibiotic treatments to strengthen the arma-
mentarium against CR- GNB. In addition, further phar-
macokinetic/pharmacodynamics studies are required to 
direct the utilization of these new promising combina-
tions in the face of these deadly clinical pathogens.
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Additional file 1: Figure S1. Agarose gel electrophoresis of ERIC-PCR 
analysis of some selected carbapenem-resistant Gram-negative bacte-
rial isolates; lanes A1-A13 were ERIC PCR analysis of 13 Acinetobacter 
baumannii clinical isolates (coded AB1-AB13); lanes P1-P4 were ERIC PCR 
analysis of 4 Pseudomonas aeruginosa clinical isolates (coded PA1-PA-4); 
lanes K1-K8 were ERIC PCR analysis of 8 Klebsiella pneumoniae clinical 
isolates (coded KP1-KP8); lanes E1-E3 were ERIC PCR analysis of 3 E. coli 
clinical isolates (coded EC1-EC3). lane L, a gene Ruler 1 kb ladder (Thermo 
Scientific™ Oxoid™, Loughborough, UK). Figure S2. Dendrogram gener-
ated from ERIC-PCR genomic DNA products of 13 carbapenem-resistant A. 
baumnnii bacterial isolates (AB1-AB13). Figure S3. Dendrogram generated 
from ERIC-PCR genomic DNA products of 8 carbapenem-resistant K. 
pneumoniae bacterial isolates (KP1-KP8). Figure S4. Dendrogram gener-
ated from ERIC-PCR genomic DNA products of 8 carbapenem-resistant P. 
aeruginosa bacterial isolates (PA1-PA4). Figure S5. Dendrogram generated 
from ERIC-PCR genomic DNA products of 8 carbapenem-resistant E. coli 
bacterial isolates (EC1-EC3).
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