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Abstract 

Mounting evidence has linked changes in human gut microbiota to proton pump inhibitor (PPI) use. Accordingly, 
multiple studies have analyzed the gut microbiomes of PPI users, but PPI–microbe interactions are still understud-
ied. Here, we performed a meta-analysis of four studies with available 16S rRNA gene amplicon sequencing data to 
uncover the potential changes in human gut microbes among PPI users. Despite some differences, we found com-
mon features of the PPI-specific microbiota, including a decrease in the Shannon diversity index and the depletion of 
bacteria from the Ruminococcaceae and Lachnospiraceae families, which are crucial short-chain fatty acid-producers. 
Through training based on multiple studies, using a random forest classification model, we further verified the 
representativeness of the six screened gut microbial genera and 20 functional genes as PPI-related biomarkers, with 
AUC values of 0.748 and 0.879, respectively. Functional analysis of the PPI-associated 16S rRNA microbiome revealed 
enriched carbohydrate- and energy-associated genes, mostly encoding fructose-1,6-bisphosphatase and pyruvate 
dehydrogenase, among others. In this study, we have demonstrated alterations in bacterial abundance and functional 
metabolic potential related to PPI use, as a basis for future studies on PPI-induced adverse effects.
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Introduction
Many studies are being conducted recently on the 
interaction between drug use and the gut microbial 
ecosystem. Exploring the associations between com-
monly used drugs, such as antibiotics and metformin, 
and the gut microbe composition are conducive to 
understanding mechanisms underlying the effects 

of drugs including their potential side effects [1, 2]. 
Proton pump inhibitors (PPIs), which have long been 
used globally [3, 4], comprise one of the most com-
mon types of prescription drugs, known to efficiently 
inhibit gastric acid secretion. The clinical efficacy of 
PPIs, including omeprazole, lansoprazole, and panto-
prazole, have been established against many diseases, 
including peptic ulcer disease, gastroesophageal reflux, 
non-steroidal-induced gastrointestinal lesions, Heli-
cobacter pylori infection, and eosinophilic esophagitis 
[5]. These drugs covalently bind to H + /K + -ATPase 
antiporter pumps of gastric parietal cells, preventing 
hydrogen ions from being released into the stomach 
cavity and increasing the gastric ph [6]. The effects 
of PPIs on the gut microbiome reportedly can be 
explained by a combination of two mechanisms, spe-
cifically the direct inhibition of some commensal gut 
bacteria, such as Ruminococcus and Dorea species and 
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the indirect stimulation of the growth of some typical 
oral bacteria, which is mediated by the increase in the 
gastrointestinal pH [7–9].

However, long-term PPI use impacts the survival 
and induces migration of multiple bacteria along the 
gastrointestinal tract [10], consequently increasing the 
risk of gut dysbiosis [9, 11, 12]. Imhann et  al. (2016) 
studied the gut microbiome composition of 1815 vol-
unteers, and the results showed that 20% of bacterial 
taxa including the genera Rothia, Enterococcus, Strepto-
coccus, and Staphylococcus were changed predisposing 
the individual to Clostridium difficile infections (CDI). 
Llorente et al. (2017) also found that PPI-induced over-
growth of Enterococcus will in turn exacerbate etha-
nol-induced liver disease in mice and humans [13]. 
Furthermore, the overutilization of PPIs can cause bac-
terial overgrowth in the small intestine and increase 
the risk of enteric infections, such as those caused by 
Campylobacter, Shigella, and Salmonella [14–16]. 
A systematic review incorporating 12 observational 
cohorts and 11 interventional cohorts revealed that 
PPIs can change the microbiota of the upper and end 
of the intestine to some extent (e.g., Pasteurellaceae, 
Enterobacteriaceae, Ruminococcaceae, and Lachno-
spiraceae) [17].

Gut dysbiosis [18] caused by PPIs is closely related to 
multiple adverse effects including vitamin and mineral 
deficiency, fractures and osteoporosis, chronic liver dis-
eases, and other extraintestinal complications [19–21], 
which will affect the health of the users to some extent. 
PPI use may promote infections in patients with decom-
pensated liver cirrhosis due to chronic Hepatitis C Virus 
infection, either directly or indirectly through changes 
in the microbial community structure [22]. However, a 
meta-analysis focusing on the associations between PPIs 
and the human gut microbiome has not been performed 
to date. This research presents a meta-analysis based on 
four clinical studies. Through univariate analysis and a 
supervised classification model, we analyzed the gut 
microbiota changes related to PPI use and pinpointed 
some common characteristics of altered bacterial taxa 
and functional pathways.

Methods
Study selection and data acquisition
Google Scholar was searched for publications that con-
tained all the words “gut”, “PPI”, the exact phrase “proton 
pump inhibitor”, at least one of the words “microbiota” 
[OR] “microbiome” [OR] “gut” [OR] “intestinal” any-
where in the article. As on the 12th of July 2022, 10,700 
entries were obtained after the search. Titles and 
abstracts were then manually screened and if they con-
tained the words “microbiome” or “microbiota” and “pro-
ton pump inhibitor” the paper was further checked. At 
last, a number of 158 papers were accepted for the next 
step screening.

For a study to be included in the meta-analysis, we 
accepted any type of cohorts from any countries, any 
method to acquire and analyze samples, and any type 
of study design, including cohort studies, case control 
studies, or cross-sectional studies [23]. We eliminated 
all unavailable studies including the cases in which the 
raw reads were either from animals or were restricted. 
Therefore, we considered 21 papers (Table S1) and only 
four studies, all using 16S rRNA gene sequencing, were 
finally included in our meta-analysis. The country codes 
used for the different studies were AT1, AT2, CN, US 
(Table 1). Except for one study in which metadata were 
provided by the author [11], sequencing data of the other 
three studies were retrieved from the NCBI short read 
archive (SRA). The SRA identifiers were: SRP119055 by 
Castellani et al. [24], PRJNA648014 by Lin et al. [25], and 
SRP132827 for Horvath et al. [26].

Data reprocessing and reanalysis
Sequencing data from each selected study were repro-
cessed separately [23]. We use QIIME2 [27] and the 
Silva database [28] to perform sequence quality control 
and build the ASV (amplicon sequence variant) feature 
table [29]. Specifically, to remove low-quality sequences 
and obtain representative sequences, raw reads were 
filtered based on quality using the QIIME2 DADA2 
plugin. Owing to the different sequencing regions asso-
ciated with by different studies, the selected representa-
tive sequences were next classified and annotated using 

Table 1  Technical information of the four incorporated studies

NA means relevant information was not reported in the included studies

Reference Country code Design No. of cases No. of 
controls

Medication DNA extraction 16S
Region

Sequencing 
platform

Horvath et al. Austria 1 Case–control 62 64 NA MagNA Pure LCDNA Isolation Kit v1–v2 MiSeq

Castellani et al. Austria 2 Self-control 12 / 8 weeks PSP-Spin Stool DNA Kit v1–v2 MiSeq

Lin et al. China Case–control 58 60 At least 1 month QIAamp DNA Stool Mini Kit v3–v4 MiSeq

Freedberg et al. USA Self-control 12 / 8 weeks PowerFecal DNA Isolation Kit v4 MiSeq
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the trained Silva database feature classifier (https://​data.​
qiime2.​org/​2020.8/​common/​silva-​138-​99-​nb-​class​ifier.​
qza). To this end, the ASV feature tables were down-
loaded from the QIIME2 viewer (https://​view.​qiime2.​
cn/​visua​lizat​ion/) and converted into relative abundance 
data for subsequent diversity analysis. The samples were 
grouped into PPI and CTRL groups to perform fur-
ther downstream analyses. Among them, samples from 
healthy controls and non-PPI patients were defined as 
the CTRL group, and samples from PPI patients were 
defined as the PPI group. The baseline samples were 
regarded as the CTRL group, whereas the last samples 
provided after medication administration were regarded 
as the PPI group in the two self-control studies.

Composition and diversity analysis
Taxonomic relative abundances at the genus level were 
then used to compute microbial diversities and dis-
similarities. Bray–Curtis distance and principal coor-
dinates analysis were performed using the functions 
vegdist (method = “bray”) and cmdscale in the R pack-
age vegan. The Shannon index was calculated using 
the function diversity (index = “shannon”). Following 
the protocol of Ho et  al. [30], we employed the fixed 
effect meta-analysis model to pool the adjusted esti-
mates and standard errors of diversity indexes from all 
included studies via inverse variance weighting of the 
between-study variances. For the fixed effects model, 
we referred to Zhang et al. [31].

Differential abundance analysis
To identify the differentially present bacteria, differential 
abundance analysis was carried out. We first chose 77 
genera with a relative abundance greater than 0.1%, all of 
which were highly detectable in the included studies. The 
significance of differential abundance in all four studies 
separately and in the meta-analysis was tested using the 
Wilcoxon test function in R. Significance levels were then 
corrected using the Benjamini–Hochberg method [32]. 
Furthermore, generalized fold-change values were used 
to summarize the significance of differentially abundant 
genera, aiming to provide better resolution for sparse 
microbiome maps. The generalized fold-change for each 
sample was calculated by taking the logarithm of the 
P-values of all samples of each included study and divid-
ing it by the median value [33].

Functional properties predicted using PICRUSt
Function prediction of 16S rRNA amplicon data were 
further investigated in the three studies with source data. 
The study with the country code “US” [11] was excluded 
from the functional analysis owing to the lack of an 
input file. Using the ASV feature table as an input file, 

functional compositions of gut microbiomes based on 
16S rRNA sequencing data were inferred using Phyloge-
netic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) (https://​github.​com/​picru​
st/​picru​st2) [34] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database (https://​www.​genome.​jp/​
kegg/​ko.​html). The feature table of 16S rRNA sequencing 
data was first converted into a BIOM file for processing 
using PICRUSt2, along with representative sequences. 
Then, the scripts picrust2_pipeline.py and add_descrip-
tions.py were used to add annotations. Finally, the val-
ues for the relative abundance of functional genes were 
obtained. Differential abundance analysis of functional 
genes was performed analogous to the steps of differ-
ential genera identification (see 2.4). KEGG pathway 
enrichment analysis was then conducted utilizing the 
screened differential genes. Using the Omicshare tool 
(https://​www.​omics​hare.​com/​tools/​home/​report/​koenr​
ich.​html), the KEGG metabolic pathways were retrieved 
from the KO (KEGG ORTHOLOGY) Database [35–37] 
(https://​www.​genome.​jp/​kegg/​ko.​html), which were 
mapped with KOs.

Random forest classifiers
A random forest classification model was used to iden-
tify biomarkers in relation to the gut microbiota after PPI 
use. Samples were randomly separated into a testing and 
training set. Eighty percent of the data were grouped as 
the training dataset to train the random forest model, 
and 20% were used as the test dataset to validate PPI use 
in research subjects. The randomForest package in R was 
used to build the random forest model, the parameters of 
which were then tuned using the confusionMatrix func-
tion in the R package caret [38]. Based on the receiver 
operating characteristic (ROC) curve and the area under 
the ROC curve (AUC) (pROC package), the accuracy of 
the model with respect to its ability to classify samples 
of the test and validation set was evaluated [39]. To iden-
tify the most discriminatory samples between the PPI 
and CTRL groups, predictor variables were determined 
based on the ranked MeanDecreaseAccuracy. Finally, dif-
ferential genera and functional genes were screened from 
the predictor variables based on differential P-values 
between the PPI and CTRL group.

Statistical analysis
All Wilcoxon tests were performed using the Wilcoxon 
test function in R. P-values < 0.05 and false discovery 
rate (FDR)-adjusted P-values < 0.1 were regarded as sig-
nificant. All analyses and plots were performed using R 
statistical software version (4.2.1) and GraphPad Prism8.

https://data.qiime2.org/2020.8/common/silva-138-99-nb-classifier.qza
https://data.qiime2.org/2020.8/common/silva-138-99-nb-classifier.qza
https://data.qiime2.org/2020.8/common/silva-138-99-nb-classifier.qza
https://view.qiime2.cn/visualization/
https://view.qiime2.cn/visualization/
https://github.com/picrust/picrust2)
https://github.com/picrust/picrust2)
https://www.genome.jp/kegg/ko.html
https://www.genome.jp/kegg/ko.html
https://www.omicshare.com/tools/home/report/koenrich.html
https://www.omicshare.com/tools/home/report/koenrich.html
https://www.genome.jp/kegg/ko.html
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Results
Consistent data processing of the meta‑analysis
For our meta-analysis, four studies that were conducted 
using 16S rRNA gene sequencing were utilized to exam-
ine the influences of PPI use on the human gut micro-
biome. These four studies showed obvious imparities in 
medication, DNA extraction protocols, and the sequenc-
ing region (Table 1, Table S1). Moreover, baseline charac-
teristics of study subjects exists differences (Table S2). To 
rule out heterogeneity factors during the bioinformatic 
analysis [33], all raw reads were reprocessed through 
QIIME2 for bacterial taxonomic profiling [27] and PIC-
RUSt2 for functional profiling [40].

Microbial diversity and PPI use
We first investigated the influences of PPI use on gut 
microbial diversity. In total, 315 taxonomical end points 
from 292 total stool samples from three countries were 
evaluated in the meta-analysis. As described in Fig.  1, 
PPI use induced an increase in diversity in three stud-
ies (AT2: P = 0.0053, CN: P = 5.1e-07, US). Furthermore, 
there were also significant differences in the Shannon 
index among the four included studies (P = 2e-16). The 
principal coordinate analysis based on the Bray–Curtis 
distance indicated significant differences in the overall 
microbiome structure between the PPI and CTRL group 
participants, which was caused by the study and medica-
tion status (Pco1: study, P = 2e-16; Pco2: study, P = 0.021, 
disease, P = 2.2e-07; Fig. 2).

As study-associated heterogeneity has a strong influ-
ence on the microbiome composition [33], we evaluated 
the aforementioned results of diversity by performing 
a meta-analysis, by pooling the estimates from the four 
included studies [30]. Our results revealed a decrease 
in the gut microbial alpha diversity (Shannon index) 
among PPI users (Shannon index: pooled standardized 
mean difference [MD] =  − 0.17, 95% confidence inter-
val [95% CI] = [− 0.41, 0.07], fixed effects model pooled 
P-value < 0.00001; Fig. 3a). Significant differences, as ana-
lyzed based on the fixed effects model, were also found 
in the gut microbiome structure between the PPI and 
CTRL groups (Pco1: pooled standardized MD =  − 0.02, 
95% CI = [− 0.25, 0.22], fixed effects model pooled 
P-value = 0.07; Pco2: pooled standardized MD = 0.66, 
95% CI = [0.42, 0.90], fixed effects model pooled 
P-value < 0.00001; Fig. 3b, c). Overall, our results showed 
significant alteration of gut microbial diversity related to 
PPI use.

The Shannon indices for all the four studies was meas-
ured. P-values were calculated using Wilcoxon test. AT1, 
AT2, CN, and US were the country codes used for four 
different studies.

Studies are color-coded and medication (proton pump 
inhibitor [PPI] versus CTRL) is distinguished by shaded/
unshaded circles. The boxplots on the right and below 
show the projection of the 292 samples onto the first two 
principal coordinates, presented based on the study and 
medication, respectively. P-values were calculated using 
the Wilcoxon test. Country codes are provided in Fig. 1.

Fig. 1  Alpha diversity index demonstrates inconsistent effects of proton pump inhibitor (PPI) use on the gut microbiota among studies
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Univariate meta‑analysis of microbial genera 
and functional genes associated with PPI use
We selected 77 genera with relative abundance greater 
than 0.1% from 315 genera detected in the PPI micro-
biome across studies. Among them, we surveyed a core 
group of the 23 most significant markers (FDR < 0.1) 
for further analysis, the significance of which is pre-
sented based on the adjusted P-value and generalized 
fold-change in Fig.  4. The results included multiple 
genera significantly associated with PPI use, such as 
Parabacteroides, Veillonella, Bacteroides, and Prevo-
tella 9. Collectively, these 23 core microbial genera 
were mostly from the Lachnospiraceae, Prevotellaceae, 
Ruminococcaceae, and Veillonellaceae families. Com-
pared with those in the participants of CTRL group, 
the abundances of the genera Ruminococcaceae UCG-
002, Subdoligranulum, Lachnospiraceae NK4A136 
group, Roseburia, Paraprevotella, and Prevotella 2 were 
decreased in PPI users. These less-abundant genera 
mostly belonged to the Ruminococcaceae, Lachno-
spiraceae, and Prevotellaceae families. Moreover, the 
relative abundance of Haemophilus increased in PPI 
users. The family-level classification of the differential 
bacteria is provided in Fig.  4. The relative abundances 
of core microbial genera between the PPI and CTRL 
groups are shown in Fig. 5.

PPI use was also closely associated with functional 
changes in the human gut microbiome. Referring to the 
KEGG database and based on 16S rRNA sequences, we 
applied PICRUSt2 to acquire functional gene informa-
tion for the remaining three studies. Finally, 97 func-
tional genes were identified with significant differences 
(adjusted P < 0.05, Wilcoxon tests) in the meta-analysis 
(Fig. 6, Table S3). These genes mainly encoded primary-
amine oxidase, ferredoxin hydrogenase large subunit, 
D-arabinitol 4-dehydrogenase, and the fumarate reduc-
tase flavoprotein subunit, among others. Furthermore, 
we identified the top 20 enriched microbial functional 
pathways (Figure S1), which included glycolysis/glu-
coneogenesis, pyruvate metabolism, amino sugar and 
nucleotide sugar metabolism, and fructose and man-
nose metabolism. Our analysis also showed that com-
pared with those in the CTRL group participants, the 
relative abundances of several functional genes related 
to the aforementioned metabolic pathways increased 
in PPI users. These included those encoding fbp (fruc-
tose-1,6-bisphosphatase I) [EC:3.1.3.11], frdA (fumarate 
reductase flavoprotein subunit) [EC:1.3.5.4], and frdC 
(fumarate reductase subunit C) (Figure S2).

The false discovery rate (FDR) of the identified 77 
microbial genera in the meta-analysis is given by the 
bar height. The FDR-corrected P-values and generalized 

Fig. 2  Beta diversity values of the gut microbiota differs between different studies
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fold-change values of each differential genera within 
every study are presented as heatmaps in gray and as a 
color, respectively. Family-level taxonomic information is 
color-coded above the genus name and listed on the right 
side.

Bar heights show the significance of each functional 
gene expressed in each study. Bar colors indicate the dis-
tinction between single studies and meta-analyses.

Gut microbiome markers related to PPI use
To further excavate biomarkers in relation to the gut 
microbiota after PPI use, we generated a random forest 
classification model to evaluate gut microbiota taxo-
nomic community composition and functional genes. 
Here, 77 microbial genera (relative abundance more 
than 0.1%) and 97 differential functional genes were 
selected as the data for model construction. Based on 
the top 30 discriminatory predictor variables (Figure 
S3), which were selected according to the importance 
score, six genera and twenty genes were finally chosen 
as gut microbiota composition biomarkers and func-
tional biomarkers (adjusted P < 0.05, Wilcoxon tests, 
Figure S2). The six genera included Phascolarctobac-
terium, Subdoligranulum, Sutterella, Lachnospiraceae 

UCG-010, Prevotella 2, and Prevotella 9, whereas the 
20 genes included those encoding AOC3, AOC2, tynA 
(primary-amine oxidase) [EC:1.4.3.21], fbp (fructose-
1,6-bisphosphatase I) [EC:3.1.3.11], frdA (fumarate 
reductase flavoprotein subunit) [EC:1.3.5.4], and frdC 
(fumarate reductase subunit C), most of which are 
involved in citrate cycle, oxidative phosphorylation, 
pyruvate metabolism, and biosynthesis of secondary 
metabolites. Interestingly, we found that the abundance 
of these biomarkers was higher in the gut microbiota 
of the CTRL group participants. The performance of 
the model was quantified based on the AUC. The AUC 
was 0.748 for the six biomarker genera, compared with 
0.737 for all microbial genera (Fig.  7a). Similarly, the 
AUC was 0.879 for the 20 biomarker genes and 0.920 
of all genes (Fig. 7b). Thus, we verified the performance 
of the generated random forest model for classifying 
and identified biomarkers using this supervised learn-
ing technique, that showed better classification for 
functional genes. Overall, we proved the classification 
ability of random forest classifiers based on the gut 
microbiota as it relates to PPI use.

The receiver operating characteristic (ROC) curve in 
blue shows the area under the ROC (AUC) of biomarkers. 

Fig. 3  The standardized diversity indices (Shannon, PCo1, and PCo2) and results of pooled effect analysis of the four included studies
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The ROC curve in red shows the AUC of all microbial 
genera and genes.

Discussion
Alterations in the intestinal microbiota with PPI usage 
could play a vital role in determining the potential asso-
ciations between PPI use and liver cirrhosis, CDI, and 
other long-known adverse reactions [41–43]. In this 
study, we combined univariate analysis and a supervised 
classification method to identify core biomarkers of PPI-
related gut microbiota. We have summarized and shown 
the influence of a commonly used drug type, namely 
PPIs, on the human gut microbiome composition and 
function.

We observed a lower alpha diversity after PPI use. In 
terms of the overall microbial structure, we found that 
the overall structure of the gut ecosystem was altered by 
the use of PPIs, which is in agreement with the results of 
several previous studies [25, 44–46]. Tsuda et  al. (2015) 

and Kim et al. (2021) also reported significant differences 
in the gut microbiota between PPI users and non-users. 
It is speculated that this situation could be ascribed to 
the irreversible inactivation of pump molecules pump-
ing out H ions, which results in the long-lasting inhibi-
tion of gastric acid secretion and disruption of the gastric 
acid barrier, thus altering the microbiota [47, 48]. Despite 
some variation, our results revealed some consistent 
changes in the gut microbiota after PPI use. We observed 
a decrease in genera from the Ruminococcaceae and 
Lachnospiraceae families in the meta-analysis, which has 
been previously reported in studies informing that PPI 
use could increase the risk of hepatic encephalopathy and 
liver cirrhosis [48–52]. These studies reported that the 
progression of liver diseases may accompany a decrease 
in Ruminococcus. This unfavorable situation could be the 
consequence of PPI-induced increase in hydrochloride 
salts, which will lead to a reduced pH environment that 
restrains the growth of butyric acid-producing bacteria, 

Fig. 4  Twenty-three genera identified in relation to proton pump inhibitor (PPI) use in the meta-analysis
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such as members of the Ruminococcaceae and Lach-
nospiraceae families [48]. In our meta-analysis, we also 
found the significant difference of Haemophilus between 
PPI and CTRL group, which is consistent with Wellhöner 
et al. and they found that the relative abundance of Strep-
tococcus spp., Enterobacter spp. and Haemophilus spp. 
was significantly increased in patients with PPI use irre-
spectively of the stage of liver disease [22]. Furthermore, 
it has been reported that a member of the Veillonellaceae 
family, Veillonella, tends to increase in abundance in con-
junction with lactate synthesis [48]. This might explain 
the increase in the abundance of the genus Veillonella in 
our results and therefore is relevant to different types of 
infection, including intestinal infection [53]. As is known, 
Prevotella spp. play a key role in regulating human micro-
biome health and are mostly associated with oral infec-
tions. In fact, a newly published study found that the 
relative abundance of Prevotella copri and Ruminococcus 
gnavus is inversely correlated with the duration of PPI 
use in patients with CDI [54], which supports the discov-
ery of the decrease in the abundance of Paraprevotella, 
Prevotella 2, and Prevotella 9 belonging to the Prevo-
tellaceae family in our results. The altered abundance 
of Prevotella caused by the use of PPIs might therefore 

worsen infection and be associated with some risk factors 
for inflammatory diseases. Although Imhann and Hojo 
described an increase in Enterobacteriaceae in the gut 
microbiota of PPI users in three cohorts, we were unable 
to replicate this phenomenon in the meta-analysis [2, 55]. 
This could be related to differences in the study subjects; 
specifically, the mentioned study [2] included healthy 
individuals and an IBS cohort.

After analyzing the diversity and composition of the 
gut microbiota, functional profiling was performed using 
PICRUSt. We found that PPI-associated gut microbiota 
functional biomarkers were highly enriched in carbo-
hydrate metabolic pathways, such as glycolysis/glu-
coneogenesis, pyruvate metabolism, amino sugar and 
nucleotide sugar metabolism, and fructose and mannose 
metabolism. These findings were consistent with previ-
ous functional predictions to some extent [45, 56]. Shi 
et  al. also reported that the pathways related to amino 
sugar and nucleotide sugar metabolism, sphingolipid 
metabolism, and fructose and mannose metabolism were 
more prevalent in PPI users. The important role played 
by pyruvate metabolism and gluconeogenesis is impera-
tive to maintain the hepatic TCA cycle function and oxi-
dation, biosynthesis, and antioxidant defense [57–59]. 

Fig. 5  Distribution of the 23 differential microbial genera between the proton pump inhibitor (PPI) and control (CTRL) groups. The number of 
asterisks indicates the significance of the difference determined by the Wilcoxon test or Kruskal–Wallis test
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Our results thus illuminate the biological mechanisms 
underlying the effects of PPI use.

Supervised learning techniques have been employed 
as a classifier tool in many fields including food con-
tamination detection, disease classification, and data 
classification [60–63]. The random forest model has 
been validated as an applicable model for excavating 
microbiome data [38, 64, 65]. Using the random forest 
model, Qian Li proved that changes in the gut micro-
biota could be used to identify individuals with a high 
risk of Type 2 diabetes, since the intestinal mucosal 
barrier is essential for improving insulin sensitivity 

and preventing the development of diabetes [66]. Pan 
et  al. (2020) also analyzed the potential value of the 
intestinal microbiome as a biomarker in patients with 
schizophrenia, which could provide clues for targeted 
intervention for this disease. Here, we employed this 
method to identify biomarkers associated with PPI 
use. Based on AUC, we found that regarding func-
tional genes as biomarkers related to PPI use is more 
accurate compared to microbial genera. The classifica-
tion results by random forest model were consistent 
with the preliminary results of 23 differentially abun-
dant bacteria and 97 differentially abundant functional 

Fig. 6  Overview of significantly different functional genes associated with PPI usage
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genes screened before using the univariate and Wil-
coxon tests. This provides robust support for the future 
use of random forest models to identify bacterial taxa 
and functional genes in relation to drug use.

This study has some limitations. First, age, bmi, gender 
and geography have big impact on the gut microbiome. 
Among the four included studies in our meta-analysis, 
one involved infant while the rest involved adults (Table 
S2). It takes time for the gut microbiome develops over 
the course of host infancy to eventually reach its adult 
form [67, 68]. Moreover, as none of the four studies 
provides age or gender information of each subject, 
potential confounding of individual microbial genera 
associations by patient demographics could not be cal-
culated through mathematic method as Wirbel et  al. 
have done [33]. Second, types of study design were 
not identical across the four included studies. Specifi-
cally, the design of two studies is self-control (Table 1), 
which means the comparison of influences of PPI on 
gut microbiota is based on patients with acidity issues 
rather than healthy individuals in the case of other two 
studies. Finally, the performance of the gut microbiota-
based classification model based on PPI use needs to be 
validated in more datasets and with different popula-
tions worldwide.

Our meta-analysis revealed that gut microbiota dysbio-
sis induced by PPI use has a certain pattern and is closely 
associated with related complications. The random for-
est classification model provided strong support for the 
results of the identified differential genera and func-
tional genes using univariate analysis. Altogether, our 
meta-analysis reflects significant effect of PPI use on gut 
microbiota homeostasis and helps to clarify the potential 
mechanisms underlying its side effects.
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