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Abstract
Background  Many studies reported the association between gut microbiota and type 2 diabetes mellitus (T2D), but 
it is still unclear which bacterial genus plays a key role and how the metabolic function of gut microbiota changes in 
the occurrence and development of T2D. Besides, there is a high diabetic prevalence in Mongolian population, which 
may be partly affected by their high calorie diet. This study identified the main bacterial genus influencing T2D in 
Mongolian population, and analyzed the changes of metabolic function of gut microbiome. The association between 
dietary factors and the relative abundance of main bacterial genus and its metabolic function was also studied.

Methods  Dietary surveys and gut microbiota test were performed on 24 Mongolian volunteers that were divided 
into T2D (6 cases), PRET2D (6 cases) and Control group (12 cases) according to fasting plasma glucose (FPG) values. 
The relative abundance and metabolic function of gut microbiome from their fecal samples were measured by 
metagenomic analysis. Statistic method was used to evaluate the association between dietary factors and the relative 
abundance of the main bacterial genus or its metabolic function.

Results  This study found that the Clostridium genus may be one of the key bacterial genera affecting the process of 
T2D. First, the relative abundance of Clostridium genus was significantly different among the three groups. Second, 
there was a higher relative abundance of metabolic enzymes of gut bacteria in PRET2D and T2D group than that in 
Control group. Third, a strong correlation between Clostridium genus and many metabolic enzymes was uncovered, 
many of which may be produced by the Clostridium. Last, carotene intake daily was negatively correlated with 
the Clostridium but positively correlated with tagaturonate reductase catalyzing interconversions of pentose and 
glucuronate.

Conclusions  The gut Clostridium genus may play an important role in the development of T2D and it could be a 
potential biomarker for T2D in Mongolian population. Meanwhile, the metabolic function of gut bacteria has changed 
during the early stage of T2D and the changes in carbohydrate, amino acid, lipid or energy metabolism of Clostridium 
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Background
Diabetes mellitus (DM) is one of the fastest-growing 
global health emergencies in the 21st century and 90% of 
that is type 2 diabetes mellitus (T2DM / T2D). In 2021, 
537 million people estimated have diabetes and this num-
ber is projected to reach 643 million by 2030 [1]. China 
is a country with the largest number of diabetic patients, 
which brings a serious economic burden [1]. According a 
new survey, the T2D prevalence of Mongolian population 
in Inner Mongolia of China was 17.2%[2], that is a high 
rate comparing with the global average-level. Studies of 
the cause of T2D will be beneficial to the prevention and 
treatment of this disease. Growing evidence indicates 
gut microbiota plays an important role in development 
of T2D [3]. And the gut microbiome has changed before 
sugar regulation is impaired [4]. Comparing with healthy 
people, the patients with diabetes have a moderate distur-
bance in the intestinal bacteria and an increased number 
of pathogenic bacteria [3]. Similarly, PreT2D population 
has an abnormal intestinal flora [5]. This suggests that the 
gut microbiota changes dynamically during the occur-
rence and development of T2D. Therefore, we divided the 
population into T2D, preT2D and control group for com-
parative analysis. Dietary factors can affect the process 
of T2D by influencing gut microbiota [6]. A cohort study 
revealed that higher fruit intake-associated gut bacteria 
was associated with a lower risk of T2D [7]. Numerous 
evidences show that the change in dietary pattern can 
influence the gut microbial composition and diversity 
[8]. Meanwhile, some metabolites of gut microbiome 
are linked with the risk of T2D. And gut metabolites like 
short-chain fatty acids (SCFAs) yielded by fermentation 
of non-digestible carbohydrates in gut microbiome are 
mediators mediating communication between intestinal 
bacteria with host in T2D [9]. In this study, we concerned 
with how dietary factors and gut microbiota affect T2D. 
This study focused not only on the changes of the gut 
microbiota itself, but also on the changes of the meta-
bolic function of that through metagenomic analysis. The 
method can truly reflect the composition and interaction 
of microbiota in a sample and be used to study the meta-
bolic pathway and gene function at the molecular level 
[10–11]. Our data may contribute to promote the pre-
vention and treatment of the T2D.

Methods
Participants
This study recruited Mongolian volunteers in Inner 
Mongolia of China, who met the following criteria. (1) 

Inclusion criteria: More than three generations of pure 
Mongolian; Aged 18 to 79 years; Meeting diagnostic cri-
teria of T2D; New diagnosed cases of T2D and preT2D; 
The ratio of men to women is approximately 1: 1; No 
diarrhea in the recent week; Have not taken any anti-
biotics for nearly a month; No exposure to radioactive 
substances and radiation in recent three months; No 
gastrointestinal diseases; Voluntarily participate in the 
trial and sign the informed consent form. (2) Exclusion 
criteria: Other types of diabetes, such as type 1 diabetes, 
gestational diabetes and other special types of diabetes; 
Other types of endocrine disorders, such as primary 
aldosteronism, hyperthyroidism; Chronic infectious 
diseases such as chronic viral hepatitis and tuberculo-
sis; Pregnant or lactating subjects; Subjects with mental 
diseases; Subjects with acute inflammation and trauma; 
Subjects with serious heart, brain, liver and kidney dis-
eases, such as acute stroke, acute myocardial infarction 
and severe liver and kidney function damage; Subjects 
taking hypoglycemic drugs and other drugs for a long 
time.

Dietary survey
We collected information of volunteers through face-to-
face interviews. Food Frequency Questionnaire (FFQ) 
with 69-food items was used for the dietary survey and 
duration of the diet retrospect was one year.

Fasting plasma glucose (FPG) test, physical examination 
and fecal samples collection
FPG test was completed in a hospital. We Measured the 
height, weight, waistline, hipline, systolic blood pressure 
(SBP) and diastolic blood pressure (DBP) of the partici-
pants used unified standard measurement tools. Waist to 
hip ratio (WHR) and body mass index (BMI) were calcu-
lated. Meanwhile, fecal samples of the participants were 
collected for the metagenomic analysis.

Metagenomic analysis
1. Sequencing results pretreatment
The total DNA extracted from fecal samples was con-
structed into a library and sequenced by Illumina PE150. 
Preprocessing the Raw Data obtained from the Illumina 
HiSeq sequencing platform using Readfq (V8, https://
github.com/cjfields/readfq) was conducted to acquire the 
Clean Data for subsequent analysis. The specific process-
ing steps were as follows: (1) removed the reads which 
contained low quality bases (default quality threshold 
value < 38) above a certain portion (default length of 
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40  bp); (2) removed the reads in which the N base had 
reached a certain percentage (default length of 10 bp); (3) 
removed reads which shared the overlap above a certain 
portion with Adapter (default length of 15  bp) [12, 13]. 
Considering the possibility of host contamination in the 
samples, Clean Data needed to be performed sequence 
alignment with the host database which by default uses 
Bowtie 2.2.4 software (Bowtie 2.2.4, http://bowtie-bio.
sourceforge.net/bowtie2/index.shtml) to filter the reads 
that were of host origin, the parameters were as follows: 
--end-to-end, --sensitive, -I 200, -X 400 [13].

2. Metagenome Assembly
(1) Single sample assembly.

The Clean Data was assembled and analyzed by SOAP-
denovo software (V2.04, http://soap.genomics.org.cn/
soapdenovo.html) [14], the parameters were set as fol-
lows: -d 1, -M 3, -R, -u, -F, -K 55 [15]. Then interrupted 
the assembled Scaftigs from N connection and leave the 
Scaftigs without N. All samples’ Clean Data was com-
pared to each Scaffolds respectively by Bowtie2.2.4 soft-
ware to acquire the PE reads not used and the parameters 
were: --end-to-end, --sensitive, -I 200, -X 400 [15].

(2) Mixed assembly.
All the reads not used in the forward step of all samples 

were combined and then used the software of SOAPde-
novo (V2.04) for mixed assembly with the parameters 
same as single assembly. Break the mixed assembled 
Scaffolds from N connection and obtained the Scaftigs. 
Filtered the fragment shorter than 500  bp in all Scaft-
igs for statistical analysis both generated from single or 
mixed assembly.

3. Gene prediction and abundance analysis
(1) The Scaftigs (> 500  bp) assembled from both single 
and mixed were all predicted the ORF by MetaGeneMark 
(V2.10, http://topaz.gatech.edu/GeneMark/) software, 
and filtered the length information shorter than 100nt 
from the predicted result with default parameters [16, 
17].

(2) For ORF predicted, CD-HIT software (V4.5.8, 
http://www.bioinformatics.org/cd-hit) [18] was adopted 
to redundancy and obtain the unique initial gene cata-
logue (the genes here refers to the nucleotide sequences 
coded by unique and continuous genes), the parameters 
option were -c 0.95, -G 0, -aS 0.9, -g 1, -d 0 [19].

(3) The Clean Data of each sample was mapped to ini-
tial gene catalogue using Bowtie2.2.4 and got the num-
ber of reads to which genes mapped in each sample with 
the parameter setting were -end-to-end, --sensitive, -I 
200, -X 400 [20]. Filtered the gene which the number of 
reads < 2 in each sample and obtained the gene catalogue 
(Unigenes) eventually used for subsequently analysis.

(4) Based on the number of mapped reads and the 
length of gene, counted the abundance information of 
each gene in each sample [21]. We calculated the abun-
dance of any sample S as follow [22]:

Step 1: Calculation of the copy number of each gene:

	
bi =

xi

Li

Step 2: Calculation of the relative abundance of gene i:

	
ri =

bi∑n
j=1

xj

Lj

bi: the copy number of gene i in the sequenced data from 
samples S.

ri: the relative abundance of gene i in sample S.
xi: the number of mapped reads.
Li: the length of gene i.
(5) The basic information statistic, core-pan gene anal-

ysis, correlation analysis of samples and venn figure anal-
ysis of number of genes were all based on the abundance 
of each gene in each sample in gene catalogue.

4. Taxonomy prediction
(1) DIAMOND [23] software (V0.9.9, https://github.
com/bbuchfink/diamond/) was used to blast the Unige-
nes to the sequences of Bacteria, Fungi, Archaea and 
Viruses which are all extracted from the NR database 
(Version: 2018-01-02, https://www.ncbi.nlm.nih.gov/) of 
NCBI with the parameter setting are blastp, -e 1e-5. (2) 
For the finally aligned results of each sequence, as each 
sequence may have multiple aligned results, chose the 
result of which the e value < the smallest e value * 10 to 
take the LCA algorithm which was applied to system 
classification of MEGAN software to make sure the spe-
cies annotation information of sequences [24].

(3) The table containing the number of genes and the 
abundance information of each sample in each taxonomy 
hierarchy (kingdom, phylum, class, order, family, genus, 
species) were obtained based on the LCA annotation 
result and the gene abundance table. The abundance of a 
specie in one sample was the sum of the gene abundance 
annotated for the specie. The gene number of a specie in 
a sample equaled the number of genes whose abundance 
are nonzero.

(4) The exhibition of generation situation of relative 
abundance, the exhibition of abundance cluster heat map, 
and NMDS (R vegan package, Version 2.15.3) decrease-
dimension analysis were based on the abundance table of 
each taxonomic hierarchy.

(5) LEfSe analysis was used to look for the different 
species between groups [25]. First, a non-parametric 
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factorial Kruskal-Wallis (KW) sum-rank test was used to 
test the species with significant differences in abundance 
between groups. Second, a group Wilcoxon rank sum 
test was used to determine the differences. And finally, 
linear discriminant analysis (LDA) was used to reduce 
dimensionality analysis and assess the impact size of sig-
nificantly different species to the group by LDA Score. 
Permutation test between groups was used in Metastats 
analysis for each taxonomy and got the p value, then used 
Benjamini and Hochberg False Discovery Rate to correct 
p value and acquire q value. LEfSe analysis was conducted 
by LEfSe software (the default LDA score is 4).

5. Common functional database annotations
(1) Adopted DIAMOND software (V0.9.9) to blast 
Unigenes to KEGG functional database (Version 2018-
01-01, http://www.kegg.jp/kegg/) with the parameter 
setting of blastp, -e 1e-5 [20, 26]. For each sequence’s 
blast result, the best Blast Hit was used for subsequent 
analysis.

(2) Statistic of the relative abundance of different func-
tional hierarchy, the relative abundance of each func-
tional hierarchy equaled the sum of relative abundance 
annotated to that functional level.

(3) Based on the function annotation result and gene 
abundance table, the gene number table of each sample 
in each taxonomy hierarchy was obtained. The gene 
number of a function in a sample equaled the gene num-
ber that annotated to this function and the abundance 
was nonzero.

(4) Based on the abundance table of each taxonomy 
hierarchy, not only the counting of annotated gene num-
bers, the exhibition of the general relative abundance sit-
uation, the exhibition of abundance cluster heat map was 
conducted, but also comparative analysis of metabolic 
pathways between groups were performed.

Statistical analysis
SPSS26 and R software were used for statistical analy-
sis. The measurement data of normal distribution was 
expressed by mean ± standard deviation, which met the 
conditions of parameter test. The data were compared 
between groups by one-way ANOVA. The data that did 
not meet the conditions of parameter test were expressed 
by median (interquartile interval), and the comparison 
between groups was analyzed by rank sum test and multi 
classification logistic regression. Chi square test was 
used for counting data. Spearman nonparametric inertia 
analysis was used for correlation analysis. When *p < 0.05, 
**p < 0.01 and ***p < 0.001, the differences were statisti-
cally significant. Some figures were completed using the 
Wekemo Bioincloud (https://www.bioincloud.tech).

Results
Characteristics of study participants
24 Mongolian participants were screened out from 160 
volunteers by the inclusion and exclusion criteria. They 
were divided into three groups, diabetes group (T2D, 6 
cases), prediabetes group (PRET2D, 6 cases) and normal 
glucose control group (Control, 12 cases), according to 
FPG values. Every T2D patient was matched a PRET2D 
case and two control numbers with same gender and 
similar age. The detailed information of each participant 
was showed in supplemental Table  1. Excepting FPG, 
waistline and WHR, there were no statistical differences 
of other characteristics between the three groups, includ-
ing age, BMI, hipline, SBP and DBP (Table 1).

Metagenomic analysis
1. Species analysis
(1) Number of genes
Number of genes in T2D, PRET2D and Control group 
was counted respectively. Comparing the gene sequences 
between the three groups, we sorted out common 
and unique genes, which was showed by a flower map 
(Fig.  1A). From the figure we can see clearly that Con-
trol group owned the largest quantities of unique genes 
with 228,013. Second came T2D group with 113,106. 
Following the T2D came PRET2D with 45,592, that was 
the smallest. It is interesting to note that the total genes 
of the three groups had the similar trend with that of 
above, Control (1,238,524) > T2D (1,059,495) > PRET2D 
(869,014). In addition, to study changes of gene number 
in different groups with different FPG value in a healthy 
state, Control group was divided into Control 1 with 
low value (5.4 ± 0.2 mmol/L) and Control 2 with high 
value (5.8 ± 0.1 mmol/L). Then the difference of the four 
groups was shown by a Venn map (Fig. 1B). It is notice-
able that there was an obvious disagree between Con-
trol 1 and Control 2, which the unique genes in Control 
1 were almost twice as many as that in Control 2. That 

Table 1  Characteristics of participants in the three groups
Charac-
teristics

T2D (n = 6) PRET2D 
(n = 6)

Control 
(n = 12)

F 
value

p 
value

FPG, 
mmol/L

10.81 ± 5.54 6.38 ± 0.29 5.57 ± 0.27 7.74 0.03*

Age, 
years

61.33 ± 7.71 59.17 ± 8.47 56.25 ± 8.31 0.82 0.46

BMI 27.41 ± 2.52 26.84 ± 1.35 24.89 ± 3.40 1.94 0.17

Waist-
line, cm

101.33 ± 6.83 95.83 ± 6.21 89.00 ± 7.83 6.13 0.08*

Hipline, 
cm

104.17 ± 6.11 102.25 ± 5.60 98.91 ± 6.61 1.55 0.24

WHR 0.97 ± 0.03 0.94 ± 0.08 0.90 ± 0.05 3.76 0.04*

SBP, 
mmHg

132.33 ± 17.13 134.83 ± 15.70 129.75 ± 16.88 0.19 0.83

DBP, 
mmHg

82.17 ± 12.37 88.50 ± 6.38 87.25 ± 10.31 0.70 0.51

* means a difference between three groups is statistically significant.

http://www.kegg.jp/kegg/
https://www.bioincloud.tech
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means, even in the normal group, the genes of gut micro-
biota were variant in different FPG level. We could con-
clude that following the FPG value rising, the number of 
specific genes decreased, but that increased again at T2D 
state. These difference of genes in different groups could 
be reflected the result of changes in the number and 
function of microbiome.

(2) Analysis of the relative abundance of microbial species
Cluster heat map and NMDS decrease-dimension analy-
sis were used to compare diversity difference between 
groups. There was not a significant difference between 
each level of gut microbiome and we showed partly 

results in Fig.  1, including a heat map of phylum, two 
NMDS maps of phylum and genus. The top 35 species 
with the highest relative abundance (top 35) were sta-
tistically analyzed respectively by ANOVA. We found 
that there was significant difference among the three 
groups in a family level and genus level, which was 
Clostridiaceae family(k_Bacteria; p_Firmicutes; c_Clos-
tridia; o_Clostridiales; f_Clostridiaceae)(p = 0.047) and 
Clostridium genus (k_Bacteria; p_Firmicutes; c_Clos-
tridia; o_Clostridiales; f_Clostridiaceae; g_Clostridium) 
(p = 0.049) (Fig.  2). The number of Clostridiaceae family 
and Clostridium genus all decreased in PRET2D group, 

Fig. 2  Results of gut microbiome abundance analysis in phylum and genus hierarchies. A Cluster heat map of abundance in phylum in the three groups. 
A different profile between the groups without statistic difference. The redder the color, the more quantity, while the bluer, the less quantity. B NMDS 
decrease-dimension analysis in phylum in the three groups with no significant difference. C NMDS decrease-dimension analysis in genus in the three 
groups with no significant difference. D Abundance comparison in genus. The abundance of Clostridium differed significantly between the three groups, 
*p < 0.05. E Abundance comparison of each sample in genus

 

Fig. 1  Common and unique characteristic of genes among the different groups. Overlapping regions represent common part, other regions mean 
unique part, numbers are gene quantity. A A flower map showing difference between T2D, PRET2D and Control groups; B A Venn map showing differ-
ence between T2D, PRET2D, Control 1 and Control 2 groups
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but increased in T2D group with the most number, this 
difference was similar to the result of unique genes above.

(3) LEfSe analysis of different species among groups
In order to screen bacterial biomarkers with significant 
difference among groups, we measured different species 
among groups by LEfSe analysis. The criteria was that 
it had significantly impact to the group when the LDA 

Score over 4. The analysis showed that the Clostridium 
genus has the highest LDA score in T2D group, whereas 
there was no species whose LDA score over 4 in PRET2D 
and Control. As a result, it could be used as a potential 
bacterial biomarker for T2D (Fig. 3).

2. Analysis of function
(1) Statistics on the number of genes annotated in the KEGG 
database
Unigenes were blasted in the KEGG database. Most of 
the genes annotated in the first level of KEGG database 
were metabolism related genes, especially genes of carbo-
hydrate metabolism were the highest with 57,937 (Fig. 4). 
In this study, we focused on the difference of the meta-
bolic function of gut microbiotic and the the difference 
of carbohydrate metabolism of Clostridium was priority, 
among T2D, PRET2D and Control groups.

(2) Functional analysis
A camparation of relative abundance of functional genes 
was carryed out among the three groups in level 1,level 
2 and level 3 of KEGG database by ANOVA. There was 
no significant diffrence in level 1, while digestive system 
in level 2 belonging to organismal systems was signifi-
cantly diffrent among groups (PRET2D > Control > T2D, 
p = 0.034). That implyed the digestive function of gut 
microbiota had a trend that it would become more activ-
ity in preT2D stage then decline the lowest level when 
the T2D occurred. Seven significant differences in level 
3 were observed, including five of metabolic function 
(ko00600, ko00361, ko00791, ko00941 and ko00945) 
(Table 2). The trend of difference of ko00600 among the 
three groups was consistent with that of digestive system, 
while other four metabolic functions were all the highest 
in T2D group (Fig. 5).

Fig. 4  Number of genes that were annotated in the first level in KEGG da-
tabase was dispaled with different colors. Most of which were metabolism 
related genes in blue and the highest is carbohydrate metabolism

 

Fig. 3  Results of the LEfSe analysis. A A distribution diagram of LDA score of different species. Length of histogram represents an influence of different 
species. Species with LDA score is higher than 4 can be regarded as biomarkers with statistical difference among groups. B A evolutionary branch diagram 
of different species. Circles radiating from inside to outside represent the classification hierarchy from phylum to species. Each small circle in different clas-
sification hierarchies represents a classification at this hierarchy. The diameter of the small circle is directly proportional to the relative abundance. Species 
with no significant difference are uniformly colored as yellow, whereas the species with significant difference which can be used as a biomarker for T2D 
are colored as red. The red node indicates the microbial flora that play an important role in the red group
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(3) Difference analysis of the relative abundance of metabolic 
enzymes
Many genes of metabolic enzymes were discovered by 
the annotated function of KEGG. 35 of them were iden-
tified significant difference in relative abundance among 
the 3 groups by ANOVA. It is interesting to note that 
most of that were involved in carbohydrate metabo-
lism, amino acid metabolism and metabolism of cofac-
tors and vitamins. Besides, some of them participated 
in multiple metabolic pathways (Table  3). The number 
of most enzymes were the highest in T2D or PRET2D 
group, while the quantity of tagaturonate reductase cata-
lyzing the interconversions of pentose and glucuronate 

(1.1.1.58) gradually declined from Control to PRET2D to 
T2D group. Therefore, a hypothesis was estimated that 
the metabolic function of gut microbiota changed sig-
nificantly in the T2D stage and even in the early stage of 
T2D (Fig. 6).

3. Correlation analysis of dietary factors, Clostridium genus 
and metabolic enzymes
(1) Correlation analysis of dietary factors and Clostridium 
genus
We calculated the average daily intake of food or nutri-
ents for each participant. The difference of carotene 
intake in 3 groups was statistically significant by ANOVA 
(481.3 ± 216.9 µg vs. 444.0 ± 170.3 µg vs. 666.0 ± 183.8 µg) 
(p = 0.048). Meanwhile, the carotene intake and seafood 
intake showed a negative correlation with FPG (spear-
man, r = -0.503, p = 0.012; r = -0.570, p = 0.004). In addi-
tion, the carotene intake and the relative abundance of 
Clostridium genus was negatively correlated (spearman, r 
= -0.423, p = 0.039) (Fig. 7).

(2) Correlation analysis of dietary factors, Clostridium genus 
and metabolic enzymes
We found 19 in the 35 metabolic enzymes above could 
be produced by Clostridium genus through analyzing the 
result of KEGG annotating. We counted correlations of 
the relative abundance of the19 metabolic enzymes with 
Clostridium genus and other factors that may be rele-
vant, including age, FPG, BMI, waistline, hipline, WHR, 
DBP, SBP, carotene intake, beans intake and fruits intake 
(Fig. 8). There were ten metabolic enzymes significantly 
correlated to Clostridium genus, among which three have 
negative and seven have positive association. The three 
enzymes were tagaturonate reductase (1.1.1.58), glucos-
amine-6-phosphate deaminase (3.5.99.6) and transfer-
ases (2.3.1.182) respectively, which were all involved in 
carbohydrate metabolism. The seven enzymes were glu-
taconate CoA-transferase (2.8.3.12), 1,2-diacylglycerol 
3-alpha-glucosyltransferase (2.4.1.337), [methyl-Co(III) 
methanol-specific corrinoid protein]-coenzyme M 
methyltransferase (2.1.1.246), Urease (3.5.1.5), L-threo-
nine 3-dehydrogenase (1.1.1.103), undecaprenyl-phos-
phate 4-deoxy-4-formamido-L-arabinose transferase 
(2.4.2.53) and L-fuculose-phosphate aldolase (4.1.2.17 
) respectively, some of the them involved in carbohy-
drate metabolism, amino acid metabolism, some par-
ticipated in lipid metabolism and energy metabolism. 
Carotene intake was positively related with tagaturo-
nate reductase (1.1.1.58) that catalyzes the interconver-
sions of pentose and glucuronate. Fruits intake showed 
a negative relation with respiratory dimethylsulfox-
ide reductase (1.8.5.3), dihydroneopterin triphosphate 
diphosphatase (3.6.1.67) and 3-hydroxyacyl-[acyl-carrier-
protein] dehydratase (4.2.1.59), that participates in the 

Table 2  Seven functional genes with significant difference in 
level 3, annotation and p value
Name Level1 Level 2 Level 3 p 

value
ko00600 Metabolism Lipid metabolism Sphingolipid 

metabolism
0.045

ko00361 Metabolism Xenobiotics bio-
degradation and 
metabolism;

Chlorocyclo-
hexane and 
chlorobenzene 
degradation

0.043

ko00791 Metabolism Xenobiotics bio-
degradation and 
metabolism

Atrazine 
degradation

0.022

ko00941 Metabolism Biosynthesis of 
other secondary 
metabolites

Flavonoid 
biosynthesis

0.026

ko00945 Metabolism Biosynthesis of 
other secondary 
metabolites;

Stilbenoid, 
diarylheptanoid 
and gingerol 
biosynthesis

0.026

ko04213 Organismal 
Systems;

Aging Longevity regulat-
ing pathway - 
multiple species

0.046

ko05150 Human 
Diseases

Infectious dis-
eases: Bacterial

Staphylococcus 
aureus infection

0.019

Fig. 5   A result of difference of relative abundance of functionnal genes 
between three groups in level 3. Five kinds of functional genes were the 
highest in T2D and two ones were the highest in PRET2D than that in 
other groups. The redder the color, the more quantity, while the bluer, the 
less quantity
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Table 3  Affiliation, Name, Function and p value of the 35 gut microbiotic enzymes with significant difference between T2D, PRET2D 
and Control group
Level 2 EC ID Name Function p 

value
Carbo-
hydrate 
metabolism

1.1.1.58 tagaturonate reductase pentose and glucuronate interconversions. 0.049

2.3.1.182 Transferases C5-Branched dibasic acid metabolism; Valine, leucine and isoleu-
cine biosynthesis.

0.047

2.4.2.53 undecaprenyl-phosphate 4-deoxy-4-formami-
do-L-arabinose transferase

Amino sugar and nucleotide sugar metabolism. 0.015

2.6.1.19 4-aminobutyrate-2-oxoglutarate transaminase Butanoate and Propanoate metabolism; Alanine, aspartate, gluta-
mate, beta-Alanine metabolism.

0.015

2.7.1.1 Hexokinase Starch, Sucrose, Glycolysis, Gluconeogenesis, Galactose, Fructose 
and mannose, Amino sugar and nucleotide sugar metabolism; 
Streptomycin, Neomycin, kanamycin, gentamicin biosynthesis.

0.022

2.7.1.55 allose kinase Fructose and mannose metabolism. 0.027

2.8.3.12 glutaconate CoA-transferase Butanoate metabolism; Styrene degradation.

3.5.99.6 glucosamine-6-phosphate deaminase Amino sugar and nucleotide sugar metabolism. 0.027

4.1.2.17  L-fuculose-phosphate aldolase Fructose and mannose metabolism. 0.017

Amino acid 
metabolism

1.1.1.103  L-threonine 3-dehydrogenase Glycine, serine and threonine metabolism.

2.1.1.104 caffeoyl-CoA O-methyltransferase Phenylalanine metabolism; Flavonoid biosynthesis; Phenyl-
propanoid biosynthesis; Stilbenoid, diarylheptanoid, gingerol 
biosynthesis.

0.026

2.8.1.2 3-mercaptopyruvate sulfurtransferase Cysteine and methionine metabolism. 0.045

3.3.2.12 oxepin-CoA hydrolase Phenylalanine metabolism 0.033

3.5.1.5 Urease Arginine biosynthesis; Nucleotide metabolism; Purine metabolism; 
Atrazine degradation.

0.017

3.5.2.14  N-methylhydantoinase (ATP-hydrolysing) Arginine and proline metabolism. 0.045

4.4.1.1 cystathionine gamma-lyase Cysteine and methionine metabolism; Glycine, serine and threo-
nine metabolism; Selenocompound metabolism.

0.007

5.1.1.4 proline racemase Arginine and proline metabolism 0.020

6.1.1.13 D-alanine-poly(phosphoribitol) ligase D-Alanine metabolism. 0.042

6.3.2.1 pantoate-beta-alanine ligase (AMP-forming) beta-Alanine metabolism; Pantothenate and CoA biosynthesis. 0.018

Metabolism 
of cofac-
tors and 
vitamins

2.1.2.3 phosphoribosylaminoimidazolecarboxamide 
formyltransferase

One carbon pool by folate. 0.046

2.1.2.11 3-methyl-2-oxobutanoate 
hydroxymethyltransferase

Pantothenate and CoA biosynthesis. 0.026

3.5.4.25 GTP cyclohydrolase II Riboflavin metabolism; Folate biosynthesis; 0.038

3.6.1.67 dihydroneopterin triphosphate diphosphatase Folate biosynthesis. 0.043

4.1.99.12 3,4-dihydroxy-2-butanone-4-phosphate 
synthase

Riboflavin metabolism. 0.036

4.1.99.19 2-iminoacetate synthase Thiamine metabolism. 0.030

4.3.99.3 7-carboxy-7-deazaguanine synthase Folate biosynthesis. 0.027

Lipid 
metabolism

2.4.1.337 1,2-diacylglycerol 3-alpha-glucosyltransferase Glycerolipid metabolism. 0.017

3.1.4.46 glycerophosphodiester phosphodiesterase Glycerophospholipid metabolism. 0.013

4.2.1.59 3-hydroxyacyl-[acyl-carrier-protein] dehydratase Fatty acid biosynthesis. 0.020

Nucleotide 
metabolism

3.5.4.10 IMP cyclohydrolase Purine metabolism. 0.047

Energy 
metabolism

1.8.5.3 respiratory dimethylsulfoxide reductase Sulfur metabolism. 0.011

2.1.1.246 [methyl-Co (III) methanol-specific corrinoid 
protein]-coenzyme M methyltransferase

Methane metabolism. 0.023

Metabolism 
of terpe-
noids and 
polyketides

2.6.1.33 dTDP-4-amino-4,6-dideoxy-D-glucose 
transaminase

Polyketide sugar unit biosynthesis; Biosynthesis of other secondary 
metabolites;Acarbose and validamycin biosynthesis.

0.007

5.3.3.2 sopentenyl-diphosphate Delta-isomerase Terpenoid backbone biosynthesis. 0.013

Xenobiotics 
metabolism

3.5.4.43 hydroxydechloroatrazine ethylaminohydrolase Atrazine degradation. 0.032
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sulfur metabolism, folate biosynthesis and fatty acid bio-
synthesis respectively. Beans intake was related to amino 
acid metabolic enzymes (3.5.2.14, 6.3.2.1). Blood pres-
sure is negatively correlated with glycerolipid metabolic 
enzymes (2.4.1.337). Waistline, hipline and BMI also had 
correlation with metabolic enzymes.

Discussion
In the present study of small population, we uncovered 
a difference in gut bacterial genus level between differ-
ent T2D conditions. It means that we may have chance 
to screen out some specific species or strains with criti-
cal roles to regulate process of T2D from the Clostridium 
genus. It is meaningful because lots evidence has high-
lighted the importance of individual species or strains 
of the microbiome in human health [27]. In the Mon-
golian population, the Clostridium genus was declined 
in PRET2D group compared to Control group, that was 
agreed with another study in Danish adults [28]. How-
ever, in the T2D group, the genus was the highest than 
other two groups, that was a different result contrasting 
that of another research in ethnic Han population, which 
the genus’ quantity in T2D was lower than that in con-
trol [29]. Meanwhile, similar results as the study were not 
discovered in other researches [4, 30, 31], that could be 
contributed to the difference of testing method. We also 
found a difference in species level, Firmicutes bacterium 
CAG:341. There was a graduate increasing trend of the 
strain from Control to PRET2D to T2D. However, it is 
an unclassified species in Firmicutes and did not have 
significant correlation with the main changed metabolic 
enzymes in the study, we did not analyze that overmuch 
for keeping the story compactness. Fortunately, a team 
has constructed a Mongolian Gut Genome catalogue, 
comprising 802 closed and 5,927 high-quality metage-
nome-assembled genomes, providing a high-quality, 
large-scale resource for studying gut flora of Mongolian 
population [32]. That will be helpful to demonstrate the 
crucial intestinal bacteria in affecting the development of 
T2D in Mongolian.

We selected the Clostridium genus as a potential bac-
terial biomarker for T2D, apart from it was the largest 

Fig. 8  Correlations of 19 metabolic enzymes with Clostridium genus and 
other factors. The redder the color, the more quantity, while the bluer, the 
less quantity. *p < 0.05, **p < 0.01 and ***p < 0.001

 

Fig. 7  Negative correlation between the carotene intake daily and the 
relative abundance of Clostridium genus. The biggest bubbles were sam-
ples from the Control and the medium ones were from the PERT2D, the 
smallest ones were from the T2D.

 

Fig. 6  Relative abundances of 35 metabolic enzymes with significant dif-
ference between T2D, PRET2D and Control group in gut microbiota were 
showed. A A clustering heat map of the 35 metabolic enzymes in each 
sample. B A clustering heat map of the 35 metabolic enzymes in the three 
groups. The redder the color, the more quantity, while the bluer, the less 
quantity
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difference genus in T2D, it had significant statistic dif-
ference between groups in the study, whereas other spe-
cies or genera did not have the difference. Besides, as a 
diagnostic biomarker, it should be easy to test, so we can 
test the genus by qPCR in a normal laboratory with qPCR 
machine. However, the other species need more compli-
cated technique like sequencing to identified. Meanwhile, 
Clostridium genus contains many butyrate-producing 
bacteria that were known as a friendly group for human 
health [9, 33, 34]. Although the quantity of the genus 
was higher in T2D, that did not mean that of butyrate-
producing bacteria also rose. We may have a chance to 
isolate some crucial species that are involved in butyr-
ate metabolic in the genus to be treatment biomarkers in 
future.

Besides, changes of metabolic function in gut micro-
biome were significantly related to T2D. Especially 
the changes of the metabolic pathway of carbohydrate 
played an important role, which was consistent with 
other studies [35]. Increasing evidence described that 
gut microbiota regulate sugar metabolism of the host by 
gut metabolites like SCFAs mediating, that were proved 
good for regulating T2D [9]. There were 9 metabolic 
enzymes significantly correlating with Clostridium in 
relative abundance. What the most interesting was the 
enzymes that negatively associating to the genus were all 
in carbohydrate metabolic pathways. It means that we 
should pay attention to mechanisms of effecting process 
of T2D in carbohydrate metabolic pathways of gut Clos-
tridium genus. Meanwhile, the carotene intake may affect 
the reproduction and metabolic function of Clostridium 
genus.

Admittedly, there are several limitations in the pres-
ent study. First, although the T2D patients and PreT2D 
participants were all new diagnosis, excluding the inter-
ference of drug treatment and other diseases, the sample 
size was small, so there would be sampling errors. Sec-
ond, the dietary assessment was based on FFQ, which 
was subject to recall bias and measurement error. What’ 
s more, we could not know the methods of cooking that 
affect intake of nutrients by body. Consequently, the 
results need to be further confirmed by more population 
experiments.

Conclusions
There was a significant difference in the relative abun-
dance and metabolic function of gut microbiome among 
T2D, PRET2D and Control groups. And Clostridium 
genus can be a potential biomarker for T2D in Mongo-
lian population. Meanwhile, compared with Control, 
PRT2D and T2D had an increased metabolic function of 
gut microbiota. The changes of the metabolic function of 
carbohydrate, amino acid, lipid and energy of Clostrid-
ium may play an important role. In addition, the carotene 

intake may negatively regulate the Clostridium but posi-
tively regulate tagaturonate reductase of the genus.
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