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Abstract 

Background  Pseudomonas aeruginosa is a common co-infecting pathogen recognized among COVID-19 patients. 
We aimed to investigate the antimicrobial resistance patterns and molecular typing of Pseudomonas aeruginosa iso-
lates among Coronavirus disease-19 patients.

Methods  Between December 2020 and July 2021, 15 Pseudomonas aeruginosa were isolated from COVID-19 patients 
in the intensive care unit at Sina Hospital in Hamadan, west of Iran. The antimicrobial resistance of the isolates was 
determined by disk diffusion and broth microdilution methods. The double-disk synergy method, Modified Hodge 
test, and polymerase chain reaction were utilized to detect Pseudomonas aeruginosa extended spectrum beta-lacta-
mase and carbapenemase producers. Microtiter plate assay was performed to evaluate the biofilm formation ability of 
the isolates. The isolates phylogenetic relatedness was revealed using the multilocus variable-number tandem-repeat 
analysis method.

Results  The results showed Pseudomonas aeruginosa isolates had the most elevated resistance to imipenem (93.3%), 
trimethoprim-sulfamethoxazole (93.3%), ceftriaxone (80%), ceftazidime (80%), gentamicin (60%), levofloxacin (60%), 
ciprofloxacin (60%), and cefepime (60%). In the broth microdilution method, 100%, 100%, 20%, and 13.3% of isolates 
showed resistance to imipenem, meropenem, polymyxin B, and colistin, respectively. Ten (66.6%) isolates were identi-
fied as multiple drug resistance. Carbapenemase enzymes and extended spectrum beta-lactamases were identified 
in 66.6% and 20% of the isolates, respectively and the biofilm formation was detected in 100% of the isolates. The 
blaOXA-48, blaTEM, blaIMP, blaSPM, blaPER, blaVEB, blaNDM, blaSHV, and blaCTX-M genes were detected in 100%, 86.6%, 86.6%, 
40%, 20%, 20%, 13.3%, 6.6%, and 6.6% of the isolates, respectively. The blaVIM, blaGIM, blaGES, and blaMCR-1 genes were 
not identified in any of the isolates. The MLVA typing technique showed 11 types and seven main clusters and most 
isolates belong to cluster I, V and VII.
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Conclusion  Due to the high rate of antimicrobial resistance, as well as the genetic diversity of Pseudomonas aerugi-
nosa isolates from COVID-19 patients, it is indispensable to monitor the antimicrobial resistance pattern and epidemi-
ology of the isolates on a regular basis.

Keywords  COVID-19, Co-infection, Pseudomonas aeruginosa, Antimicrobial resistance, Biofilm formation, MLVA

Background
The Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2) is bringing forth Coronavirus Disease 
2019 (COVID-19), giving health systems and clinicians 
a difficult medical challenge [1]. Hospitalized patients, 
specifically COVID-19 patients, receive antibiotics with-
out sufficient scientific evidence and clinical experience. 
Although co-infections between viruses and bacteria can 
have severe consequences, not much information is avail-
able on the coinfection of bacteria with SARS-CoV-2 [2]. 
COVID-19 patients are affected by a number of bacteria, 
including P. aeruginosa [3]. P. aeruginosa is an opportun-
istic organism that causes nosocomial infections (such as 
pneumonia, urinary tract infections, bloodstream infec-
tions, surgical site infections and burn wound infections), 
and infections in immunocompromised patients (espe-
cially neutropenia and malignancy blood) as well as one 
of the leading causes of disability and death for patients 
with cystic fibrosis (CF) and non-CF bronchiectasis [4]. 
In P. aeruginosa, pathogenesis is conducted by adhesions 
(flagella and type IV pilli), secreted toxins, proteases, 
effector proteins (such as ExoS, ExoT, ExoU, and ExoY 
produced by the type III secretion system) and pigments 
that induce adhesion, regulate or interrupt host cell path-
ways, and interact with the external matrix. Its ability 
to cause severe infections is also enhanced by quorum 
sensing and biofilm formation [5]. Multidrug resistance 
has increased worldwide, which is considered a threat 
to public health. Several recent studies have reported 
the emergence of multidrug-resistant bacterial patho-
gens from different origins, which increases the need for 
proper use of antibiotics. In addition, the routine use of 
antimicrobial susceptibility testing is necessary to detect 
the antibiotic of choice as well as to screen for emerging 
MDR strains [6–8].

The rising prevalence of nosocomial infections caused 
by MDR P. aeruginosa is related to a considerable 
increase in morbidity and fatality due to limitations in 
the selection of appropriate antibiotics [9, 10]. The selec-
tive treatment of P. aeruginosa-infections is the use of 
beta-lactam antibiotics [11]. Resistance to the mentioned 
antibiotics is extending and is done by diverse resistance 
mechanisms, including the breakdown of antibiotics by 
β-lactamase enzymes such as Extended-spectrum-β-
lactamases (ESBLs), the excretion of antibiotics by efflux 
pumps, and the reduction of drug absorption [12, 13]. 

The biofilm formation by P. aeruginosa is responsible for 
hospital-acquired infections and contributes to persistent 
colonization in tissues. Biofilms protect bacteria from 
antibiotics and host immune reactions and contribute 
to the interchange of resistance genes among microor-
ganisms [14, 15]. Besides routine susceptibility tests to 
antimicrobial agents, typing pathogenic microorganisms 
isolated from hospitalized patients, particularly patients 
with COVID-19, can provide helpful information for phy-
sicians. Several genotyping procedures have been applied 
to investigate the epidemiology and genetic relatedness 
of P. aeruginosa isolates in the primary phase of infec-
tion. Due to the faster, less complicated, and inexpensive 
Multilocus Variable Number Tandem Repeat Analysis 
(MLVA) technique, it has become increasingly popular to 
characterize microorganisms [16, 17]. The foundation of 
the MLVA method is the proliferation of sequences con-
taining a variable number of tandem repeats (VNTRs) in 
particular loci on microorganisms’ genomes. The differ-
ence in the numeral of repetitions from a VNTR allows 
the strain’s discrimination [18]. Therefore, the purpose of 
this study was to investigate the antibiotic resistance pat-
terns and molecular typing of Pseudomonas aeruginosa 
strains that were isolated from patients with Covid-19.

Methods
Isolation and identification of P. aeruginosa
From December 2020 to July 2021, fifteen P. aeruginosa 
were isolated from COVID-19 patients in the inten-
sive care unit (ICU) at Sina Hospital in Hamadan, west 
of Iran. The collected P. aeruginosa isolates were cul-
tured on blood agar, MacConkey agar and cetrimide agar 
(Merck, Germany). After incubation for 24  h at 37 ºC, 
the grown colonies were examined in terms of morphol-
ogy and pigment production and gram staining. Lactose 
negative bacteria were purified to perform confirma-
tory tests. The growth at 42 ºC, oxidase test, TSI, urease, 
simon citrate and oxidative/fermentative media (Merck, 
Germany) were used to confirm the P. aeruginosa isolates 
[19, 20].

Antimicrobial susceptibility testing
The disc diffusion method was accomplished using 
guided by the Clinical and Laboratory Standards Institute 
(CLSI) criteria [21]. Briefly, a standardized inoculum was 
cultured onto the surface of Mueller–Hinton (MH) agar 
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(Merck, Germany) and antibiotic disks were placed on 
the surface of the agar, and the size of the zone of inhibi-
tion around the disk was measured after overnight incu-
bation at 37 °C. The following antibiotic disks (Condalab, 
Spain) were used: carbapenems (imipenem 10 μg), ceph-
alosporins (cefepime 30 μg, ceftazidime 30 μg, and ceftri-
axone 30  μg), fluoroquinolones (ciprofloxacin 5  μg, and 
levofloxacin 5  μg), aminoglycosides (gentamicin 10  μg), 
and trimethoprim-sulfamethoxazole (1.25—23.75  μg). 
P. aeruginosa ATCC 27,853 was used as control positive 
organism. The MDR, extensively drug-resistant (XDR), 
and pandrug-resistant (PDR) isolates categorized based 
on criteria defined by Magiorakos et al. [22]. When per-
forming routine antimicrobial susceptibility testing on 
bacterial isolates in clinical microbiology laboratories, 
the limited number of agents generally tested will result 
in many MDR bacteria being categorized as ‘possible 
XDR’ or possible PDR’ [22].

The broth microdilution method was conducted to 
determine the minimum inhibitory concentration (MIC) 
of the imipenem, meropenem, colistin, and polymyxin B 
(Sigma-Aldrich/USA) and interpreted as CLSI guidelines 
[21]. Briefly, the bacterial isolates were inoculated into a 
MH broth in the presence of different concentrations of 
an antimicrobial agent and the growth of bacteria was 
assessed after incubation (16–20 h) at 37 °C and the MIC 
value was determined.

Phenotypic ESBLs examination
Combination Disk Test (CDT) was applied to identify 
ESBL-producing isolates using ceftazidime, ceftazidime-
clavulanic acid, cefotaxime, and cefotaxime-clavulanic 
acid disks (Oxoid, UK). After incubation, the difference 
of > 5  mm in zones of growth inhibition for a disk with 
clavulanic acid compared to a disc without clavulanic 
acid is indicative of the presence of ESBLs [23].

Phenotypic carbapenemase examination
The Modified Hodge test (MHT) was conducted accord-
ing to CLSI guidelines [21]. Briefly, a suspension of the 
indicator organism of Escherichia coli ATCC 25,922 was 
prepared and lawn cultured. The meropenem disk (Con-
dalab, Spain) was put in the center of the plate. After that, 
a colony of the test organisms was inoculated onto the 
plate and incubated at 37 °C for 18 h. The cloverleaf-like 
structure indicated the production of carbapenemase.

Biofilm assay
Microtiter plate (MTP) assay evaluated biofilm formation as 
described previously [24]. Briefly, the isolates were cultured 
in Luria–Bertani broth (LB) medium (Merck, Germany) 
overnight and adjusted to 1.5 × 108  CFU/mL, then were 
diluted 1:100 and inoculated into a 96-well microtiter plate. 

Each isolate was investigated three times. The un-inoculated 
LB medium was used as a negative control. Following incu-
bation of the microplate, the wells’ contents were discharged 
and flushed with saline solution. Wells were stained with 
0.1% crystal violet (Sigma–Aldrich, St Louis, USA). The 
crystal violet was aspirated and it’s remaining in the wells 
was solubilized by adding 95% ethanol (Flucka, Germany). 
The optical density (OD) of wells was measured at 570 nm 
and biofilm formation was assayed.

Polymerase chain reaction (PCR) detection of resistance 
genes
DNA extraction was done from the P. aeruginosa isolates 
by the salting out method [25]. PCR assay was conducted 
on all the extracted DNA of the isolates using specific 
primers (Table  1). Electrophoresis detected amplicons 
on a 1% agarose (CinnaGen,  Iran) gel in TBE (Tris–
borate-EDTA)  Buffer (CinnaGen,  Iran). A 50  bp DNA 
ladder (MBI Fermentas, France) was utilized for compar-
isons. A representative for each positive PCR result was 
sequenced using the Applied Biosystems 3500.

Genotyping
The PCR method based on MLVA was conducted to 
amplify the VNTRs in the bacterial genome to deter-
mine various variants of P. aeruginosa isolates. The VNTR 
regions (Table 2) were chosen according to Vu-Thien et al. 
suggestion [36]. PCR products were dissociated in 1% aga-
rose gel (CinnaGen, Iran). A 50 bp ladder (MBI Fermentas, 
France) was employed to determine the size of the ampli-
cons. The size of the amplicons was analyzed by gel ana-
lyzer software [37]. To analyze the clusters, the Unweighted 
Pair Group Method with Arithmetic (UPGMA) technique 
was used with the BioNumerics 7.1 software (Applied 
Maths, Belgium). In addition, calculating the similarity 
coefficient of Pearson’s correlation and the minimum span-
ning tree (MST) was implemented in BioNumerics 7.1 
software (Applied Maths, Belgium). The dissimilarity of 
the isolates in conforming to the UPGMA algorithm was 
shown in the dendrogram. The Hunter-Gaston diversity 
index (HGDI) was utilized to assess the individual or com-
bined VNTR loci polymorphism index. Observing one dif-
ference at any VNTRs was considered as a new genotype 
number. The clustering analysis using the categorical coef-
ficient correlates with an interval of 85 to 100% similarity.

Statistical analyses
To analysis the data of this study, descriptive statistics 
(frequency and percentage) were used, and for this pur-
pose Statistical Package for the Social Sciences (SPSS) 
version 16 was utilized. ​BioNumerics 7.1 software was 
used to analyze MLVA results.
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Table 1  Primer sequences used for genes amplification by PCR

Genes Primer Sequences (5’-3’) Annealing temperature (°C) Product Size (bp) Refrences

blaOXA-48 F-GCG​TGG​TTA​AGG​ATG​AAC​AC
R-CAT​CAA​GTT​CAA​CCC​AAC​CG

58 438 [26]

blaPER F-AAT​TTG​GGC​TTA​GGG​CAG​AA
R-ATG​AAT​GTC​ATT​ATA​AAA​GC

56 925 [27]

blaVEB F-CGA​CTT​CCA​TTT​CCC​GAT​GC
R-GGA​CTC​TGC​AAC​AAA​TAC​GC

55 643 [28]

blaCTX-M F-TCT​TCC​AGA​ATA​AGG​AAT​CCC​
R-CCG​TTT​CCG​CTA​TTA​CAA​AC

55 909 [29]

blaTEM F-TTT​CGT​GTC​GCC​CTT​ATT​CC
R-ATC​GTT​GTC​AGA​AGT​AAG​TTGG​

60 403 [30]

blaSHV F-TCA​GCG​AAA​AAC​ACC​TTG​
R-TCC​CGC​AGA​TAA​ATC​ACC​

52 472 [31]

blaVIM F- AGT​GGT​GAG​TAT​CCG​ACA​
R- ATG​AAA​GTG​CGT​GGA​GAC​

53 261 [27]

blaGIM F- TCG​ACA​CAC​CTT​GGT​CTG​AA
R- AAC​TTC​CAA​CTT​TGC​CAT​GC

52 477 [32]

blaIMP F-ACC​GCA​GCA​GAG​TCT​TTG​CC
R-ACA​ACA​AGT​TTT​GCC​TTA​CC

55 587 [27]

blaGES F- ATG​CGC​TTC​ATT​CAC​GCA​C
R- CAA​AAT​TTT​AAG​ACG​GAT​CG

55 864 [27]

blaSPM F-AAA​ATC​TGG​GTA​CGC​AAA​CG
R-ACA​TTA​TCC​GCT​GGA​ACA​GG

58 271 [33]

blaNDM-1 F-GGT​TTG​GCG​ATC​TGG​TTT​TC
R-CGG​AAT​GGC​TCA​TCA​CGA​TC

52 621 [34]

blaMCR-1 F- CGG​TCA​GTC​CGT​TTG​TTC​
R- CTT​GGT​CGG​TCT​GTA​GGG​

50 309 [35]

Table 2  Primer sequences used for multiple VNTRs loci in the PCR reactions

a Hunter-Gaston discriminatory index

Locus name Primer name Primer Sequences (5’-3’) Repeat unit size (bp) HGDI indexa

ms142 ms142L
ms142R

AGC​AGT​GCC​AGT​TGA​TGT​TG
GTG​GGG​CGA​AGG​AGT​GAG​

115 0.81

ms211 ms111L
ms111R

ACA​AGC​GCC​AGC​CGA​ACC​TGT​
CTT​CGA​ACA​GGT​GCT​GAC​CGC​

101 0.76

ms212 ms112L
ms112R

TGC​TGG​TCG​ACT​ACT​TCG​GCAA​
ACT​ACG​AGA​ACG​ACC​CGG​TGTT​

40 0.75

ms213 ms113L
ms113R

CTG​GGC​AAG​TGT​TGG​TGG​ATC​
TGG​CGT​ACT​CCG​AGC​TGA​TG

103 0.85

ms214 ms114L
ms114R

AAA​CGC​TGT​TCG​CCA​ACC​TCTA​
CCA​TCA​TCC​TCC​TAC​TGG​GTT​

115 0.81

ms215 ms115L
ms115R

GAC​GAA​ACC​CGT​CGC​GAA​CA
CTG​TAC​AAC​GCC​GAG​CCG​TA

129 0.80

ms216 ms116L
ms116R

ACT​ACT​ACG​TCG​AAC​ACG​CCA​
GAT​CGA​AGA​CAA​GAA​CCT​CG

113 0.64

ms217 ms117L
ms117R

TTC​TGG​CTG​TCG​CGA​CTG​AT
GAA​CAG​CGT​CTT​TTC​CTC​GC

109 0.79

ms222 ms122L
ms122R

AGA​GGT​GCT​TAA​CGA​CGG​AT
TGC​AGT​TCT​GCG​AGG​AAG​GCG​

101 0.76

ms223 ms123L
ms123R

TTG​GCA​ATA​TGC​CGG​TTC​GC
TGA​GCT​GAT​CGC​CTA​CTG​G

106 0.77
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Results
Multidrug resistance P. aeruginosa has increased 
worldwide, which is considered a threat to public 
health. Our study investigated the phenotypic and gen-
otypic antimicrobial resistance and molecular typing 
of P. aeruginosa isolates from Coronavirus disease-19 
patients. Overall, 15 clinical isolates of P. aeruginosa 
were collected from blood cultures and endotracheal 
aspirates of COVID-19 patients in the ICU. The hyper-
tension (60%), diabetes mellitus (33.3%), and ischemic 
heart disease (33.3%) were the most prevalent comor-
bidities. Six (40%) of the patients did not have any 
underlying disease. Table  3 showed the demographic 
characteristics of the patients hospitalized in ICU and 
infected with P. aeruginosa in the COVID-19 pan-
demic waves in Iran.

Phenotypic characteristics of P. aeruginosa isolates
Using the biochemical tests, all 15 isolates were con-
firmed as P. aeruginosa.

Antimicrobial susceptibility testing
The antimicrobial susceptibility of P. aeruginosa isolates 
were reported as follows: 14(93.3%) isolates resistant to 
imipenem, 14(93.3%) to co-trimaxazole, 12(80%) to cef-
triaxone, 12(80%) to ceftazidime, 9(60%) to gentamicin, 
9(60%) to levofloxacin, 9(60%) to ciprofloxacin, and 
9(60%) isolates resistant to cefepime. Ten (66.6%) isolates 
were identified as MDR (Table  4). In the MIC method, 
15(100%), 15(100%), 3(20%), and 2(13.3%) P. aeruginosa 
isolates were resistant to imipenem, meropenem, poly-
myxin B, and colistin, respectively.

ESBLs and carbapenemases producing P. aeruginosa
Detection of carbapenemases by MHT demonstrated 
that 10(66.6%) P. aeruginosa isolate were positive (Fig. 1) 
and ESBLs were identified in 3(20%) P. aeruginosa 
isolates.

Biofilm formation and quantification
The results demonstrate that 15(100%) P. aeruginosa iso-
lates were positive for biofilm formation, which 11(73.3%) 
and 4(26.7%) isolates were strong and moderate biofilm 
producers, respectively.

PCR results
The results of PCR for ESBLs blaTEM, blaPER, blaSHV, 
and blaCTX-M genes were detected in 13(86.6%), 3(20%), 
1(6.6%), and 1(6.6%) of the isolates, respectively. The 
blaVIM, blaGIM, blaGES, and blaMCR-1 genes were not iden-
tified in any of the isolates. The blaOXA-48, blaIMP, blaSPM, 
blaVEB, and blaNDM were detected in 15(100%), 13(86.6%), 
6(40%), 3(20%), and 2(13.3%) of the isolates, respectively. 

Eleven (73.3%) isolates carried blaOXA-48, blaIMP, and 
blaTEM genes, and 6 (40%) isolates also carried blaOXA-48, 
blaTEM, and blaSPM genes, simultaneously.

MLVA typing
The molecular typing of 15 clinical isolates of P. aerugi-
nosa were evaluated by the MLVA method regarding 
the amplification of ten different VNTR regions. Gener-
ally, there were 11 different MLVA types of P. aeruginosa, 
which the most frequent types belonged to types 6 with 4 
isolates, and type 9 with 2 isolates. Eleven various MLVA 
types of P. aeruginosa isolates were allocated to seven 
clusters (Fig. 2). The MST algorithm originated from the 
MLVA genotyping for the clinical isolates of P. aeruginosa 
shown in Fig. 3.

Table 3  Demographic characteristics of patients and the 
frequency of P. aeruginosa isolated from COVID-19 pandemic 
waves

0: No underlying disease; 1: Hypertension; 2: Diabetes; 3: Heart failure; 4: Brain 
aneurysm

Characteristics P. aeruginosa 
isolates No 
(%)

Age groups
  15–25 0(0)

  26–35 1(6.67)

  36–45 0(0)

  46–55 3(20)

  56–65 4(26.67)

  66–75 5(33.33)

  76–85 0(0)

  86–95 1(6.67)

  96–105 1(6.67)

Gender
  Male 10(66.67)

  Female 5(33.33)

COVID-19 pandemic waves in Iran
  Third (November, 2020) 5(33.33)

  Fourth (April, 2021) 4(26.67)

  Fifth (August, 2021) 6(40)

Underlining disease
  0 6(40)

  1 2(13.33)

  1, 2 2(13.33)

  1, 2, 3 3(20)

  1, 3 1(6.67)

  1,3, 4 1(6.67)

Fate
  Deceased 7(46.67)

  Discharged 8(53.33)
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Discussion
COVID-19 patients are particularly prone to superin-
fection and secondary bacterial infections. However, 
the pattern of bacterial co-infections associated with 
COVID-19 and the microbiological profile in these cases 
are not widely studied [38]. Therefore, it is essential to 

monitor bacterial co-infection in COVID-19 patients, 
especially with multi-drug resistant bacteria, to control 
hospital infections. Antibiotic resistance is a serious cri-
sis that threatens global health and needs urgent action. 
In prior investigations, resistance to carbapenem var-
ied significantly from 17.5% to 100% [39–41]. A recent 
study reported that P. aeruginosa isolated from COVID-
19 patients showed 100% resistance to ciprofloxacin, 
levofloxacin, co-trimaxazole, cefotaxime, cefepime, 
meropenem, and imipenem and 50% resistance to gen-
tamicin [42]. In a recent study done in Iraq by Tizkam 
et  al., P. aeruginosa isolated from COVID-19 patients 
showed 100% resistance to ceftriaxone and gentamicin, 
48.9% and 50% resistance to levofloxacin and merope-
nem, respectively [43]. Based on Jamnani et  al. study, 
P.aeruginosa isolated from ICU-admitted COVID-19 
patients was 100% resistant to cefixime and co-trimaxa-
zole, 50% resistant to ciprofloxacin, 25% resistant to gen-
tamycin and colistin [44]. In this study, colistin (86.6%) 
showed the highest rate of susceptibility, similar to prior 
investigations [45, 46]. It can be attributed to factors 
such as the high cost of colistin and its limited use out-
side hospitals. Discrepancies in antibiotic susceptibility 
patterns between isolates in various countries can be 
explained by the source of isolates, the rise of empiric 
antibiotic use, the existence or lack of antibiotic use 
supervision schedules, horizontal gene transfer, and dis-
crepancies in the region’s epidemiology.

Fig. 1  Modified Hodge test; isolates 2 and 4 show positive results, 
isolates 1 and 3 show negative results

Fig. 2  Inferred dendrogram from the clustering analysis of MLVA results of 15 P. aeruginosa isolates using the UPGMA algorithm. A: third wave 
of COVID-19, B: fourth wave of COVID-19, C: fifth wave of COVID-19, Key: isolates ID, T.A.C: tracheal aspirates culture, B.C: blood culture, ESBL: 
Extended-spectrum-β-lactamases, MHT: Modified Hodge Test, N: negative, P: positive, St: strong biofilm producer, Mod: moderate biofilm producer, 
F: female, M: male, None: No underlying disease
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Multiple mechanisms of resistance to antibiot-
ics exist in bacteria, including reduced permeability, 

expression of efflux pumps, generation of antibiotic-inac-
tivating enzymes, and target modifications. Most of these 

Fig. 3  Minimum Spanning Tree (MST) algorithm obtained from the 15 P. aeruginosa isolates by MLVA. Each circle indicates a single type, the size 
showing the number of isolates with this specific type. The numbers on a single circle are 100% identical to each other. Thick black lines connecting 
pairs of MLVA-types display that they differ in one VNTR locus, thin black lines connecting pairs of MLVA-types show that they differ in two VNTR 
loci, and dashed lines connecting pairs of MLVA-types show that they differ in three VNTR loci. Pink and light green zones surround MLVA-types that 
belong to the same MLVA clonal complexes (MLVA-CC)
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resistance mechanisms are present in P. aeruginosa. By 
producing these mechanisms simultaneously, MDR, 
XDR, and PDR strains emerge [47]. A recent study 
showed the most abundant species of bacteria isolated 
from severe COVID-19 patients were P. aeruginosa 
(39.5%), and 64.7% of these isolates also were multi-
drug-resistant strains [48]. Another study detected 
MDR isolates in 64.5% of COVID-19 patients [49]. Typi-
cal resistance mechanisms in pathogens isolated from 
COVID-19 patients have rarely been examined. Similarly, 
low production (27.3%) of ESBL was reported by Dutta 
et al., while Farhan et al. study presented ESBL produc-
tion in 54% MDR P. aeruginosa [50, 51]. In the other 
study, the production rate of ESBL and carbapenemase 
enzymes was stated at 24.7% and 25.7% in P.aeruginosa 
isolates, respectively [52]. The emergence and rapid 
spread of β-lactamase enzymes producing bacteria are of 
serious concern and threat. Thus, it is essential to exam-
ine β-lactamase enzymes producing isolates.

Hence, for COVID-19 subjects that exhibit co-infec-
tions with other respiratory infections, the immedi-
ate administration of antimicrobial agents relevant to 
the Antibiotic sensitivity test results and also accurate 
application of infection control protocols are required 
to alleviate mortality and hospital spread [53–55]. 
Moreover, the isolates were assessed for the presence 
of several resistance genes. A recent report indicated 
that the gram-negative clinical isolates from COVID-
19 Patients were mostly multidrug-resistant and ESBL 
and/or carbapenemase producers and carried differ-
ent resistance-associated genes, including blaNDM-1, 
blaTEM, blaCTX-M, and blaSHV. According to their 
results, 100% of P. aeruginosa isolates carried blaNDM-1 
and blaTEM, and no isolates had blaCTX-M and blaSHV 
[56]. In contrast to our study, in Farhan et  al. Study, 
blaCTX-M15 was detected in 55.5% positive ESBL P. aer-
uginosa, and blaIMP, blaVIM, and blaGIM were found in 
42.8%, 52.3%, and 52.3% of carbapenem-resistant P. 
aeruginosa, respectively. In a study in Iraq, out of 20 
P. aeruginosa isolates isolated from Covid-19 patients 
hospitalized in ICU, 16 (80%) isolates were positive 
for blaCTX-M,but blaSHV and blaTEM were not found in 
any of the tested isolates [57]. Furthermore, Similar to 
our findings, reported for incidence of blaSPM (38%) 
among P. aeruginosa isolates [51]. Ahmed et al. reprted 
a low prevalence of positive blaCTX-M P. aeruginosa 
isolates(10.7%), which is consistent with the results 
of our study [58]. In contrast to current study, Tawfik 
et  al. reported 68% and 20% the prevalence of blaVEB, 
and blaGES in P. aeruginosa, respectively. Also, ESBLs 
blaTEM, blaSHV, blaPER, and blaCTX-M genes were not 
reported [59]. Based on the findings of Bianco et  al., 
among the 1242 clinical isolates of Enterobacterales 

during the Covid-19 epidemic, 1034 (83.2%), 114 
(9.2%), 53 (4.3%) and 51 (4.1%) isolates were positive for 
KPC, blaVIM, blaOXA-48 and blaNDM, respectively [60]. 
According to Miftode et al. Study, 72 (82.7%) of the 87 
Enterobacterales isolated from covid-19 patients pro-
duced carbapenemases and 26 (36.1%), 25 (34.7%), 13 
(18%), and 2 (2.7%) isolates were positive for blaOXA-48, 
blaNDM, KPC, and blaVIM, respectively [61]. However, 
resistance genes rate vary significantly between various 
studies, which can lead to diversity in infection man-
agement guidelines. Prior studies showed that viral 
infections, including COVID-19, promote bacterial 
biofilm formation [62–64]. In recent studies, 92.7% and 
94% P. aeruginosa isolates were reported as biofilm pro-
ducers [39, 65]. Typing methods have a substantial role 
in comprehending the epidemiology relevant to severe 
nosocomial infections caused by P. aeruginosa [66]. 
Detection of diverse strains of various bacterial types 
is necessary for the investigation of the prevalence and 
control of bacterial infections [67]. Regarding the great 
genetic variety of MDR P. aeruginosa isolates, espe-
cially seen in ICU, implementing appropriate infection 
management procedures is challenging. In the present 
study, the amplification of the ten distinct VNTR loci 
showed all studied P. aeruginosa isolates were typeable. 
In contrast, Lalancette et al. study reported three not-
typable strains [68]. Regarding observed high genetic 
diversity among P. aeruginosa isolates, separated from 
COVID-19 patients, it is essential the continuous mon-
itoring of the molecular epidemiology of P. aeruginosa 
isolates in the COVID-19 epidemic. The current study 
has some limitations. We have no information about 
COVID-19 patients who did not develop co-infections 
(control patients), the type and number of antimicrobi-
als prescribed during the COVID-19 pandemic, and the 
length of hospitalization. We suggest that subsequent 
work comprise such information to allow comparative 
analysis.

Conclusions
At the beginning of the Covid-19 pandemic, the exist-
ing guidelines for COVID-19 patients did not include 
specific recommendations for the use of antibiotics or 
specific management measures to prevent nosocomial 
infections in these patients. Due to the excessive use of 
antibiotics during the pandemic, there was a significant 
increase in antibiotic resistance. It was worried that 
the existent overuse of antimicrobial agents during the 
COVID-19 pandemic could accelerate the emersion of 
the subsequent global public health crisis caused by the 
resistance of microorganisms to a variety of drugs. Due 
to the high rate of antimicrobial resistance, as well as 
the genetic diversity of Pseudomonas aeruginosa isolates 
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from COVID-19 patients, the current study emphasizes 
the significance of monitoring local epidemiology, which 
might be helpful in antimicrobial agents use and surveil-
lance programs.
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