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Abstract

mTORCT complex to inactivate autophagy.

the rpSé.

Background Autophagy is an important part of pathogenesis of IBD. Thiopurines such as azathioprine (AZA) are
approved drugs for clinical practices in IBD patients. Besides, as an escape strategy, Toxoplasma gondii can use the

Methods In this study, we investigated whether T. gondii tachyzoites may modulate autophagy and interfere the
effects of azathioprine in IBD treatment. PMA-activated human monocyte cell line (THP-1) was infected with fresh T.
gondii RH tachyzoites. After 5 h of infection, the cells were treated with AZA for 6 h. The expression of atg5, atg7, atg12,
Ic3b, and B-actin (BACT) genes was evaluated using quantitative real-time PCR. To analyze the phosphorylation of
ribosomal protein S6 (rpS6), western blot using specific primary antibodies was performed.

Results The results of real-time PCR revealed that AZA, T. gondii tachyzoites, and a combination of AZAand T.
gondii tachyzoites upregulated atg5 gene for 4.297-fold (P-value=0.014), 2.49-fold (P-value =0.006), and 4.76-fold
(P-value=0.001), respectively. The atg7 gene showed significant upregulation (2.272-fold; P-value =0.014) and
(1.51-fold; P-value =0.020) in AZA and AZA /T. gondii, respectively. The expression of atg12 gene was significantly
downregulated in AZA and T. gondii tachyzoites for (8.85-fold; P-value =0.004) and (2.005-fold; P-value=0.038),
respectively, but upregulated in T. gondii/AZA (1.52-fold; P-value =0.037). In addition, the Ic3b gene was only
significantly changed in AZA /T. gondii (3.028-fold; P-value =0.001). Western blot analysis showed that T. gondii
tachyzoites significantly phosphorylated rpS6, and tachyzoites did not interfere the effects of AZA to phosphorylate

Conclusion Taken together, although AZA and T. gondii similarly affects the expression levels of atg5, atg7, and atg12,
but T gondii does not seem to modulate the effects of AZA via mTORC functions.
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Background

Autophagy is a cellular process, which scavenges and
recycles unused proteins and damaged organelles [1,
2]. Autophagy is significantly involved in the systemic
homeostasis of an organism [3]. This process is mainly
modulated by AMP-activated protein kinase (AMPK)
and mammalian/ mechanistic target of rapamycin
(mTOR) [4-6]. The mTOR, as a master regulator of
autophagy, activates the ATG1 complex [7], and AMPK
(as a significant energy sensor) regulates autophagy via
inhibition of mTOR signaling [8]. The mTOR is a mem-
ber of the phosphatidylinositol 3-kinase (PI3K)-related
family, which regulates several cell mechanisms from
growth and proliferation to recycling via autophagy [9—
11]. However, rapamycin inhibits mMTORC1 complex and
strongly induces autophagy [12, 13].

Interestingly, autophagy also regulates the immune sys-
tem and broad-spectrum of inflammatory cytokines [3].
Autophagy plays crucial role in pathogenesis of cardio-
vascular disease [14], cystic fibrosis (CF) [15], Hunting-
ton’s disease [16], cancers, and infectious diseases [3]. In
addition, failed autophagy has been linked to numerous
diseases, particularly autoimmune disorders, such as
systematic lupus erythematosus (SLE) [17], rheumatoid
arthritis (RA) [17], experimental autoimmune encepha-
lomyelitis (EAE) [18] and inflammatory bowel diseases
(IBD) [19].

IBD is a gastrointestinal disorder, which is mainly cat-
egorized to crohn’s disease (CD) and ulcerative colitis
(UC) [20]. Regarding the critical role of autophagy in
pathogenesis of IBD, modulation of autophagy seems to
be a pharmaceutical target for resolution of inflammation
during this autoimmune disease [21]. Thiopurines such
as azathioprine (AZA), 6-mercaptopurine, and 6-thio-
guanine, are currently approved drugs for clinical prac-
tices in IBD patients [22]. It was shown that thiopurines
can activate autophagy by different mechanisms [23].
For example, AZA, as an immunosuppressive agent, not
only inhibits purine synthesis in DNA/ RNA of B and
T cells [24], but also may downregulate mTORC]1, acti-
vates autophagy, and controls inflammation [25]. Similar
clinical evidence [26, 27] supports the role of sirolimus
(rapamycin), an mTORC1 inhibitor, in upregulating
autophagy and improving the clinical manifestations of
IBD.

Toxoplasma gondii is a cosmopolitan parasite that
invades, survives, and replicates into any nucleated cell
in humans and warm-blooded animals [28]. The evidence
has demonstrated that autophagy is critically involved in
protection against T. gondii in activated macrophage, as
well as clearance of inflammation [29]. T. gondii employs
many strategies to escape from the immune responses.
As an escape strategy, T. gondii can use the mTORC1
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complex and enhances S6K phosphorylation to inactivate
autophagy and modulate host immune system [30-32].

Therefore, regarding the high prevalence of toxoplas-
mosis [33], the role of T. gondii in triggering of IBD [34],
the crucial role of ATG5, ATG7, and ATG12 in lipida-
tion of LC3-I to form LC3-II in autophagy process during
the infection by T. gondii [35], and conflicting effects of
T. gondii and thiopurines on mTORC]1, we hypothesized
whether T. gondii tachyzoites may modulate autoph-
agy and interfere the effects of azathioprine during IBD
treatment.

Methods

Ethical approval

This project was approved by the Ethical Review Com-
mittee of the Research Institute for Gastroenterology and
Liver Diseases, Shahid Beheshti University of Medical
Sciences, Tehran, Iran (IR.SBMU.RIGLD.REC.1398.032).

T. gondii source

Tachyzoites of the virulent RH strain of 1. gondii were
prepared by the Toxoplasma lab directed by Dr. Seyed
Tabaei (Shahid Beheshti University of Medical Sciences,
Tehran, Iran). The harvested tachyzoites from the peri-
toneal cavity of infected BALB/c were washed with ster-
ile phosphate-buffered saline (PBS; pH=7.4). In order to
evaluate the viability of tachyzoites, samples were stained
by trypan blue and counted using a hemocytometer.

THP-1 cell line

Firstly, THP-1 (human monocyte) cell line (ATCC: TIB-
202) was cultivated in 25-cm? culture flasks containing
RPMI 1640 medium (Sigma, USA), 10% heat-inactivated
fetal bovine serum (FBS; Sigma, USA), and 1% Pen/Strep
(1% penicillin/streptomycin), and incubated at 37 °C and
5% CO, atmosphere. To differentiate THP-1 cells to MO
macrophages, 4x10° of cells were counted and trans-
ferred to a 12-well flat bottom plate, and incubated with
30 ng/ mL of phorbol 12-myristate 13-acetate (PMA;
Santa Cruz Biotechnology Cat No. sc-3576) at 37 °C
and 5% CO, for 36 h. Macrophage differentiation was
microscopically evaluated by an inverted microscopy.
Afterwards, supernatant and non-adherent cells were
removed, and M0 macrophages were rested together with
PMA- and LPS-free cell culture medium (RPMI medium
with 10% FBS, without antibiotic) for 24 h at 37 C with
5% CO, [36].

T. gondii and Azathioprine Treatment

Azathioprine (Imuran®) 6-(1-Methyl-4-nitroimidazol-
5-yl) was in crystallized solid. To prepare the drug, AZA
crystals were resolved in dimethyl sulfoxide (M,SO) and
stored in -20° C. MO macrophages were infected with
4x10° (multiplicity of infection [MOI]=1) of fresh T.



Nemati et al. BMC Microbiology (2023) 23:77

gondii RH tachyzoites. After 5 h of infection, the cells
were co-incubated with 120 uM /mL of AZA for 6 h [25].
To compare the results, two separated wells of MO mac-
rophages were treated with only 120 uM /mL of AZA and
T. gondii, respectively. A well of PMA-activated THP-1
without any treatment was considered as control. The
treatment durations for AZA and T. gondii were adjusted
6 h and 5 h, respectively. All experiments were performed
in duplicate.

Gene expression analysis

Total RNA was extracted from THP-1 cell line in each
tested well using total RNA extraction kit (Yekta Tajhiz
Azma, Tehran, Iran) in accordance with the manufactur-
er’s protocol [37]. Extracted RNA was purified by DNase
(Thermo Fisher Scientific) treatment, and its concen-
tration was calculated by NanoDrop (NanoDrop Tech-
nologies, USA). After adjustment complementary DNA
(cDNA) was synthesized using cDNA synthesis kit (Yekta
Tajhiz Azma, Tehran, Iran).

To analyze the expression of levels of atg5, atg7, atgl2,
lc3b, and f-actin (BACT) genes, amplification of corre-
sponded genes was performed using Rotor-Gene Q (Qia-
gen, Germany) thermocycler. The reaction mixture of
20 ul contained 1 uL of each cDNA sample, 10 pl SYBR
green qPCR master mix 2X (Ampliqon, Denmark), and
0.5 pL of each primer [37]. The final volume was adjusted
by adding RNase/DNase-free water. The thermal cycling
conditions consisted of an initial denaturation of 10 min
at 95°C followed by 40 cycles of 95°C for 20 s, 59-61 °C
for 30 s, 72°C for 20 s and a final extension step at 72°C
for 20 Sect. [37]. The melt curve analysis was performed
for each gene to rule out nonspecific amplifications. Rela-
tive expression level of each gene was compared to the
B-actin gene, and results were analyzed using the 27 42<t
method incorporated into the relative expression soft-
ware (REST).

Western blotting analysis

To analyze the presence of rpS6 in experiment wells,
total cells were lysed using the cell lysis buffer (Abcam;
cat no.ab156034) supplemented with mini EDTA-free
protease inhibitor cocktail (Roche, cat n0.4693159001).
The concentration of THP-1 cells-derived proteins was
measured using the BCA protein assay kit (Pars Tous; cat
no. A101251). Protein concentration was adjusted and
boiled at 100 °C for 5 min in the presence of a loading
buffer. Then, equal volumes of protein extract were spe-
rated by 10% sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS-PAGE), and then transferred
to the polyvinylidene difluoride (PVDF) membrane. The
blocking was performed overnight at 4 °C in 5% (wt/vol)
bovine serum albumin (BSA) in TBS-T (Tris-buffered
saline with Tween 20). Samples were then incubated for
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2 h with the specific primary antibodies (rat anti-human
rpS6 antibody [R&D Systems; 1:1000, MAB54361-SP],
and mouse anti-human/mouse/rat beta-actin antibody
[Novus Biologicals; 1:1000; NBP1-47423]. To visual-
ize the presence of proteins, secondary antibodies, goat
anti-rat IgG antibody HRP conjugate (Sigma; 1:1000;
AP136P) and goat anti-mouse HRP-conjugated anti-
body (Novus Biologicals; 1:1000; NBP2-30347 H), were
employed. Rapamycine was employed as positive control.
The expression of the proteins was visualized using the
enhanced chemiluminescence detection system (Fusion
Solo S, VILBER, France). Protein levels were analyzed
with Image] software.

Results

Quantity analysis of atg5, atg7, atg12, and Ic3b genes

The results of real-time PCR showed significantly
changes of atg5 gene compared to the control. Accord-
ingly, AZA, T. gondii tachyzoites, and combination of
AZA and T. gondii tachyzoites upregulated atg5 gene for
4.297-fold (P-value=0.014), 2.49-fold (P-value=0.006),
and 4.76-fold (P-value=0.001) compared to the control,
respectively (Fig. 1A).

Similar to the atg5 gene, the expression of atg7 gene
revealed significant upregulation in THP-1 cells treated
by AZA (2.272-fold; P-value=0.014) and AZA / T. gon-
dii (1.51-fold; P-value=0.020) compared to the control,
while T. gondii tachyzoites did not induce the expression
of atg7 gene (Fig. 1B).

The atgl2 gene was significantly downregulated in
AZA (8.85-fold downregulation; P-value=0.004) and
T. gondii tachyzoites (2.005-fold; P-value=0.038) and
upregulated in T. gondii/AZA (1.52-fold; P-value=0.037)
(Fig. 1C). Furthermore, the expression changes for lc3b
gene was only significant in MO macrophage cell line
cured by AZA / T gondii (3.028-fold; P-value=0.001),
compared to the control (Fig. 1D).

Western blot analysis showed that T. gondii tachyzoites
were significantly phosphorylated rpS6, while AZA did
not phosphorylate the rpS6, as expected. In addition, T.
gondii tachyzoites did not interfere the effects of AZA to
phosphorylate the rpS6 (Fig. 2).

Discussion

Autophagy pathway is modulated by the ATG proteins,
which are initiated by vesicle nucleation. LC3/ATG8 and
ATG12 are ubiquitin-like molecules, which plays central
role in autophagosome biogenesis [37, 38].

Autophagy is able to directly participate in immune cell
functions through regulating the secretion of cytokines
and chemokines [39, 40]. Autophagy may regulate the
IL-1pB and IL-23 secretion to protect from autoimmune
diseases [41-43]. Interestingly, polymorphisms through
the il-15 and il-23 genes may lead to susceptibility to IBD
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Fig. 1 The expression levels of A) atg5, B) atg7, C) atg12, and D) Ic3b genes in THP-1 cell line co-incubated with T. gondii tachyzoites and azathioprine. *
P value <0.05; ** Pvalue <0.01; NS: not significant. AZA: azathioprine; ACTB: 3-actin

[41, 44]. Additionally, autophagy-related protein 16—1
(ATG16L1), nucleotide-binding oligomerization domain-
containing protein 2 [NOD2], immunity-related GTPase
family M protein [[IRGM], and leucine rich repeat kinase
2 [LRRK2] have been suggested as genetic susceptibil-
ity loci for CD based on genome-wide association stud-
ies (GWAS) [45-47]. Wittkopf et al. [48], showed that
although granule formation of paneth cells was affected
in ATG7-knock out mice, but depletion of only ATG7
did not disturb the immune homeostasis. Regarding the
promising role of autophagy in control of IBD symptoms,
modulation of canonical autophagy pathway via mTOR
seems to be a treatment approach for patients with IBD
[49, 50]. The role of sirolimus (rapamycin), as mTOR
inhibitor and autophagy activator, was clinically investi-
gated in amelioration of the IBD symptoms [27, 51]. In
a case study, Massey et al., [27] evaluated the effects of
sirolimus on a 37-year-old woman with refractory colonic
and perianal CD for six months and reported a remark-
able improvement in progress of the disease. Mutalib et
al. [26], evaluated the effects of sirolimus in IBD patients
(UC and CD), and suggested that inhibiting mTORC
using sirolimus could be considered a rescue therapy,
particularly in children with severe IBD refractory. The
results of an experimental study by Hu et al., [52] in mice
model supported previous findings and documented that

inhibiting mTORC attenuates dextran sulfate sodium
(DSS)-induced colitis. In addition, a single center study
on 15 CD-related fibrotic stricture patients by Zhong
et al. [53], demonstrated favorable effect of rapamycin
in symptoms of IBD patients with CD-related stricture
in upper gastrointestinal tract. Hooper et al., [25] dem-
onstrated that AZA not only modulates the immune
responses during the IBD onset, but also induces autoph-
agy via inhibiting mTORCI. In the line of these studies,
our findings showed that AZA induced the expression
of atg5 and atg7, which are essential for formation of the
autophagy complex [54, 55]. In addition, protein analy-
sis showed that AZA induces dephosphorylation of rpS6
and subsequently autophagy progress.

The AZA is an immunosuppressant, which its role in
immunomodulation during immune related diseases
has well been established [56, 57]. The impact of azathi-
oprine-associated lymphopenia on opportunistic infec-
tions was investigated that the findings showed lack of
significant upper incidence of the infections compared to
control group [58]. However, prescription of additional
immunomodulation agents increased the risk of oppor-
tunistic infections in IBD patients [58]. Therefore, re-
activation of T. gondii tachyzoites in IBD patients could
be an important challenge. T gondii employs strategies
to survive and replicate inside host cells via avoiding
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Fig. 2 The westernblot analysis shows phosphorylation of rpSé by T. gondii to activate mTORC and prevent autophagy formation. Dephosporylation
of rpS6 at the protein level by azathioprine suggests the similar effects of azathioprine and rapamycin in activating autophagy. * P value <0.05; ** P
value <0.01. AZA: azathioprine; Rap: rapamycin; rpS6: ribosomal protein S6; ACTB: 3-actin; NC: negative control

from phagolysosome formation. Wang et al. [32] inves-
tigated the effects of T. gondii on host mTOR signaling
and showed that T. gondii induces mTOR-dependent
cell cycle progression and cell growth. Actually, T. gon-
dii modulates mTORC and suppresses autophagy [59].
Notable, as an escape strategy, 1. gondii, type 1 and II
strain, may induce Akt activation followed by triggering
epidermal growth factor (EGF), which results in mTORC
phosphorylation and autophagy negative regulation
[60]. This fact may explain the lack of expression in LC3
transcription in THP-1 cell line infected by T. gondii RH

strain. Our findings represented that 7. gondii in THP-1
cell downregulated transcription of atgl2, while signifi-
cant phosphorylation of rpS6 in protein level, in the line
of previous studies, proposes deregulation of autophagy
via mTORC manipulation by T. gondii [61, 62]. However,
our finding suggests that although immunosuppressant
medications prescribed in IBD condition can increase the
risk of opportunistic infection and likely re-activation of
latent toxoplasmosis, T. gondii tachyzoites are not able
to phosphorylate mTORC and inhibit autophagy during
AZA treatment in IBD patients.
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The upregulation of atg5, atg”, atgl2, and lc3b genes
transcription in THP-1 cell line treated by both AZA
and T. gondii tachyzoites was reported by our results.
Actually, formation ATG5-ATG12 and ATG16 is criti-
cal for lipidation of LC3-I and establishment of LC3-II
[63]. As finding, our results showed an increase in the
expression level of atg5 gene. This finding is supported
by previous studies indication upregulation of atg5 gene
or its protein product upon invasion of 7. gondii [64, 65].
However, the lack of significant upregulation of atg7 and
lc3b, and downregulation of atgl2 genes are mostly time-
dependent. In this regard, Wang et al. [64], proposed
higher production of lc3b gene after 24 h compared to
8, 4, and 2 h post-infection. The inconsistency between
higher expression of atg5 in THP-1 cell line treated by
T. gondii with rpS6 phosphorylation may support find-
ing released by Wang et al. [64], indicating mTOR-inde-
pendent autophagosome recruitment. In addition, in the
current study the expression of ATG-related genes was
investigated in transcription level and considering the
lack of protein analysis, these results should be carefully
interpreted. Interestingly, our finding showed that co-
existence of AZA and T. gondii synergistically increase
the expression of all studied ATG-related genes. As men-
tioned above, AZA increases the expression of ATG-
related genes and induces dephosphorylation of rpS6 to
provoke autophagy process.

Moreover, in the current study, we employed strain I,
which is not suitable candidate to study reactivation of
T. gondii; however, this strain is popular genotype, which
has been investigated in autophagy studies [64, 66, 67].
Nevertheless, there is no data investigating the bilateral
effects of T. gondii and AZA. Therefore, in vivo study of
this bilateral effect of AZA and T. gondii, investigation of
the communication between different strains (I, II, and
III) and autophagy, regarding prescription of AZA, and
repeating this study in different timepoints and cell lines
could be an interesting field of study.

Conclusion

This study showed that T. gondii tachyzoites signifi-
cantly phosphorylated rpS6, while they were not able to
obstruct the autophagy activation by AZA treatment.
Taken together, simultaneous treatment of THP-1 cell
line by both T. gondii tachyzoites and AZA showed over-
coming the effects of AZA in activation of autophagy.
However, this is a preliminary study and further investi-
gations in animal models and with different strains of 7.
gondii are needed to rule out the negative effect of 7. gon-
dii tachyzoites on autophagy activation upon prescrip-
tion of AZA.
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