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Abstract 

Background  Artisanal and small-scale gold mining activities are producing contamination with heavy metals and 
metalloids (HMM) into soils and water worldwide. The HMM are considered as one of the major abiotic stresses due to 
their long-term persistence in soil. In this context, arbuscular mycorrhizal fungi (AMF) confer resistance to a variety of 
abiotic plant stressors including HMM. However, little is known regarding the diversity and composition of AMF com‑
munities in heavy metal polluted sites in Ecuador.

Methods  In order to investigate the AMF diversity, root samples and associated soil of six plant species were col‑
lected from two sites polluted by heavy metals, located in Zamora-Chinchipe province, Ecuador. The AMF 18S nrDNA 
genetic region was analyzed and sequenced, and fungal OTUs were defined based on 99% sequence similarity. 
Results were contrasted with AMF communities from a natural forest and from reforestation sites located in the same 
province and with available sequences in GenBank.

Results  The main pollutants in soils were Pb, Zn, Hg, Cd and Cu with concentrations exceeding the soil reference 
value for agricultural use. Molecular phylogeny and OTU delimitation showed 19 OTUs, the family Glomeraceae was 
the most OTU-rich followed by Archaeosporaceae, Acaulosporaceae, Ambisporaceae and Paraglomeraceae. Most of 
the OTUs (11 of 19) have been found at other locations worldwide, 14 OTUs were proven from nearby non-contami‑
nated sites in Zamora-Chinchipe.

Conclusion  Our study showed that there are no specialized OTUs at the studied HMM polluted sites, but rather 
generalists adapted to a wide variety of habitats. Their potential role in phytoremediation approaches remains to be 
investigated.

Keywords  AMF communities, Heavy metals, AMF-OTUs, Glomeromycotina, 18S nrDNA

Background
Soil pollution by heavy metals is an increasing environ-
mental problem worldwide. One of the most important 
sources of soil contamination is metal mining opera-
tions [26, 33]. The heavy metals and metalloids (HMM) 
are considered as one of the major abiotic stresses due 
to their long-term persistence in soil, provoking changes 
in plant functional traits [37] and structure of microbial 
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communities [54, 56], particularly in arbuscular myc-
orrhizal fungi (AMF) [14]. AMF are members of sub-
phylum Glomeromycotina, a ubiquitous component of 
terrestrial ecosystems, with many species worldwide dis-
tributed [51] and forming a symbiotic association with 
around 80 percent of vascular plants [50]. Mycorrhizal 
symbiosis plays a crucial role to improve the uptake of 
nutrients by plants, particularly on nutrient poor soils 
[39], confers resistance to a variety of abiotic plant stress-
ors such as drought, salinity [7], and can alleviate heavy 
metal toxicity to their host plants [15].

Currently, in many South American countries, espe-
cially in Ecuador, gold continues to be extracted and 
processed through artisanal and small-scale gold min-
ing (ASGM) resulting in heavy metals contamination of 
soil and water [47] as well as serious socio-environmental 
conflicts [45]. The province of Zamora-Chinchipe, spe-
cifically Chinapintza district, which is in the Paquisha 
cantón in the southeast of Ecuador, is one of the most 
affected areas with intensive exploitation of gold (Au) 
[46], silver (Ag) and copper (Cu), with a high potential 
of soil contamination. In Zamora-Chinchipe, around 
26.8% (282.998  ha) of the total surface is franchised to 
miner exploitation [43], in which Chinapintza locality is 
exploited since pre-colonial times [36]. As a consequence 
of ASGM, the heavy metals, lead (Pb), zinc (Zn), cad-
mium (Cd) and Cu were reported as serious soil pollut-
ants in Chinapintza [11].

However, dominant plant species present in HMM 
contaminated sites are habitually colonized by AMF, 
which is an indicator of their central role in mitigating 
heavy metal stress in plants [34, 62]. Chamba et al. [11] 
analyzed the potential use of Axonopus compressus, Erato 
polymnioides and Miconia zamorensis for phytoremedia-
tion of metal-contaminated soils in Chinapintza. In addi-
tion, in the same site, seven AMF spore morphotypes 
from Glomus, Acaulospora, Ambispora and Racocetra 
were associated with E. polymnioides and M. zamoren-
sis, plant species considered as mercury accumulators 
[12]. The existing information derived from spore mor-
phology may not reflect the root-associated AMF com-
munity [58]. In this context, the molecular identity of the 
involved AMF species is lacking taking into consideration 
plant species growing at these metal contaminated sites.

Previous studies of AMF communities present in nat-
ural forest and reforestation sites in the same Zamora-
Chinchipe province were conducted [22, 20], revealing a 
diverse AMF community dominated by Operational Tax-
onomic Units (OTUs) belonging to Glomerales, followed 
by Diversisporales and Archaeosporales. Native AMF 
species shows better performance in metal remediation 
compared with the non-native fungi [29] consequently, 
information on local AMF adapted to soil conditions is 

relevant for applications such as phytoremediation. As far 
as we know, there is no previous report on the molecular 
diversity of AMF in soils polluted with heavy metals in 
gold-mining areas in Ecuador, and their role in favoring 
plant growth under such conditions.

Studies on AMF diversity in response to heavy metal 
contamination have been carried out in temperate or 
Mediterranean countries with ancient histories of land use 
in mining or other industrial activities. Orphan mining site 
in southern France with very high Zn (97,333 ppm), and 
Pb (31,333  ppm), presented a higher incidence of Glom-
erales, in addition to Paraglomerales and Diversisporales 
[44]. Mine tailings in Qiandongshan region (China) with 
high Pb (5899), and Zn (812  ppm), sustained 28 AMF 
species, among which Rhizophagus intraradices, Funneli-
formis mosseae, and Acaulospora sp. were the most abun-
dant [60]. In a mining core over 2,500 years old with very 
high Al (14,500 ppm), Cd (37 ppm), Fe (190,300 ppm), Pb 
(6,900 ppm), and Zn (12,000 ppm), Alguacil et al. [1] found 
12 AMF sequence types, and G. mosseae was the least 
frequent species. Three species of spontaneous colonizer 
plants of polluted zones around Dabaoshan Mine in China 
with very high Pb, Zn, and Cu had six Glomus ecotypes in 
their roots, while two other plants had only Kuklospora 
and Ambispora [35]. The same pattern of dominance of 
Glomeraceae has also been observed in urban and peri-
urban locations contaminated by heavy metals. In areas 
within the city of Montreal with high concentrations of Pb 
and Zn caused by old depositions (60 years) of industrial 
and demolition waste, G. mosseae was found as the domi-
nant ribotype [19]. In sites affected for 50 years by a cop-
per smelter in South Korea (with higher concentrations of 
As, Zn, Cd, Cu and Pb) the dominant AMF were Funneli-
formis mosseae and Rhizophagus intraradices [28]. On the 
other hand, in areas affected by an old battery factory in 
the city of Córdoba, Argentina, a decrease in the relative 
proportion of Glomeraceae was observed, and an increase 
in Paraglomeraceae in response to Pb [14]. The results of 
these studies indicate that the dominance of AMF species 
and community assembly changes depending on the type, 
concentration, and combinations of heavy metals present. 
In some cases, host plant identity also has a significant 
effect on the composition of AMF communities under 
metal stress [1, 35].

The main objective of the present work is to investigate 
the diversity of AMF associated with six frequent plant 
species growing in soils polluted with heavy metals in 
mining areas of Chinapintza and La Pangui (Zamora-
Chinchipe, Ecuador), and to understand whether the 
AMF taxa found are local specialists or rather general-
ists adapted to a variety of habitats. Phytoremediation 
with indigenous AMF [4] is discussed as an alternative to 
remediate soils in the studied sites.
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Results and discussion
Physico‑chemical analyses of soil samples and presence 
of AMF colonization
The analyses of 9 soil samples from Chinapintza and 21 
soil samples from La Pangui showed low pH values, low 
nutrient content and high heavy metal concentration 
(Tables 1, 2). The lowest pH value and the highest con-
centration of heavy metals were detected at Chinapintza 
site (Table  2). The main heavy metals found at both 
sites were Pb, Zn, Hg, Cd and Cu, all with concentra-
tions exceeding the soil reference value for agricultural 
use [10]; Table  2). There was a wide variability in the 
concentrations of the heavy metals from the different 
samples, which was also observed by Chamba et al. [11]. 
In our study, we consider the same species as [11, 12], 
Axonopus compressus, Erato polymnioides and Miconia 
zamorensis, but in addition, Medinilla sp., Colacasia sp. 
and Cyathea sp.

Despite the adverse soil conditions, examined root 
samples in both sites were moderate to highly colonized 
by AMF (40–80%) and showed the usual characteristics 
of AMF such as arbuscules, coils, extra and intracellular 
hyphae and vesicles (data not shown). This finding is con-
sistent with Chamba et al. [11] in the same area of Chi-
napintza that showed mycorrhizal colonization of up to 
70% in E. polymnioides, M. zamorensis and A. compressus 
(70 ± 7, 60 ± 5 and 50 ± 5%) respectively. Long et al. [35] 
earlier reported moderate to high degree of mycorrhizal 
colonization in five plant species growing in acidic soils 
severely polluted with Zn, Pb, Cu, and Cd. The extent 
of AMF colonization can be interpreted as positive cor-
relation to plant dependence on symbiosis [55], even 
more under extreme soil conditions. The lack of data on 
essential soil factors, such as measurements of cation 
exchange capacity (CEC), phosphorus, and organic mat-
ter, is certainly a limitation of this study. Alguacil et al. [1] 
observed an increase in the percentage of colonization by 
AMF and a decrease in the concentration of heavy met-
als in native plants growing in polluted soil with organic 
amendments, indicating an increase in the resistance to 
heavy metals stress. In other cases, immobilization of 
metals such as Pb and Cd in roots and stems increases 
plant tolerance to heavy metals in presence of AMF colo-
nization [24, 52].

Molecular phylogeny and OTU delimitation
Successful PCR amplification was obtained from 18 plant 
samples in total, 7 samples from Chinapintza and 11 sam-
ples from La Pangui. After cloning 78 sequences of AMF 
were obtained, 64 sequences were grouped in 19 OTUs 
(Fig.  1 a, b and Table  3) and 14 sequences were single-
tons. The family Glomeraceae was the most diverse fam-
ily displaying 52% (33) of all sequences and 53% (10) of 

all OTUs (OTU 1 to 10, Fig. 1 a). The Archaeosporaceae 
were represented with 15 sequences and 5 OTUs (OTU 
13 to 17), Acaulosporaceae with 12 sequences and 2 
OTUs (OTU 11 and OTU 12), Ambisporaceae with 3 
sequences and 1 OTU (OTU 18) and Paraglomeraceae 
with 1 sequence and 1 OTU (OTU 19) (see Fig. 1 b). The 
most frequent OTU 1 Glomeraceae occurred in 72% of 
the samples (Table 3). The OTU 11 Acaulospora species 
is also frequent, occurring in 56% of the samples and a 
further Glomeraceae OTU 6 present in 44% of the sam-
ples. Many of the other OTUs were proven in smaller 
numbers, 8 only once.

Most of the OTUs (14 of 19) were previously found in 
other locations in Ecuador, mostly in Zamora-Chinchipe 
province [20, 22], whereas 9 OTUs were previously found 
in Ecuador and several locations worldwide. For three 
OTUs (OTUs 12, 13 and 17) there were no proofs from 
other sites (Fig. 1 b and Table 4).

At La Pangui site 15 OTUs were detected, while at 
Chinapintza site 11 OTUs (Table  3). Seven OTUs were 
present at both sites, including all frequent ones. 3 to 8 
OTUs per plant species and 1 to 5 OTUs per plant indi-
vidual are present (Table 3 and Table 4). All plant species 
harbor Glomeraceae-OTUs and members of Archae-
osporales with exception of Axonopus compressus, most 
of them also Acaulosporaceae (Table  3). The molecular 
analysis of AMF showed a species-rich community with 
19 OTUs belonging to five different families: Glomer-
aceae, Acaulosporaceae, Archaeosporaceae, Ambispo-
raceae and Paraglomeraceae.

Diversity of AMF fungi in heavy metal polluted mining 
areas
The highest concentration of heavy metals was detected 
at Chinapintza, with average values of Pb, Zn and Cu 
approximately double the value detected at La Pangui 
(Table 2). Previous studies have shown that an increase of 
HMM concentration decreases AMF richness [19, 60–62]. 
However, the observed difference in the number of OTUs 
between La Pangui and Chinapintza cannot attributed 
to differences in the concentration of heavy metals as the 
number of samples in both sites are not equivalent due to 
plant rarity.

Within Glomeraceae, OTU 1 was the most frequent 
followed by OTU 6, both present in the nearby sites 
of Zamora-Chinchipe, but also present elsewhere in 
the world. Our results are similar to those of previous 
studies showing the dominance of Glomeraceae in soils 
contaminated with heavy metals [8, 19, 28, 35, 44, 60]. 
In contrast, the most abundant AMF in several heavy 
metal contaminated soils Rhizophagus intraradices and 
Funneliformis mosseae [8, 19, 28, 60] were not found in 
our contaminated sites. Further studies are needed to 
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determine whether host plant identity or site charac-
teristics, such as climate or soil, have a significant effect 
on the composition of AMF communities.

In contrast to our results, in a recent study Faggioli 
et al. [14] found a rich AMF community dominated by 
members of Paraglomeraceae followed by Glomeraceae, 
in Pb-contaminated soils using an Illumina approach. 
In our study, together with the fact that 14 OTUs were 
previously found in other locations in Ecuador, it can 
be concluded that there are no specialists in heavy 
metal polluted sites, but generalists adapted to dis-
turbed sites. However, the overall composition of the 
AMF-community of these heavy metal contaminated 
sites is similar to many other AMF-communities at 
family level: Glomeraceae dominates in terms of OTUs 
and frequencies, followed by Archaeosporaceae and 
Acaulosporaceae.

Zamora-Chinchipe, a place where artisanal and small-
scale gold mining is a deeply rooted activity, provoking 
contamination for several decades, was object of study 
to investigate the diversity and composition of AMF 
communities associated with the roots of six plant spe-
cies sampled from heavy metal polluted soils located 
in Chinapintza and La Pangui sites. Although several 
members of Glomeromycota are consider as cosmopoli-
tan species [51], its local distribution is affected by sev-
eral factors [23]. Some AM fungal taxa have only been 
reported in the highly contaminated areas, which could 
represent ecotypes adapted to this extreme environment 
[61, 62]. For phytoremediation of metal-contaminated 
soils, the use of indigenous fungi is recommended con-
sidering that they are adapted to particular abiotic and 
stressful conditions [41]. The potential role in phytore-
mediation approaches of the dominant fungi detected 
in our study remains to be investigated.

Conclusion
We investigate the AMF diversity and associated soil 
of six plant species growing at two sites polluted by 
heavy metals. Overall results showed that there are no 

specialized OTUs at the studied HMM polluted sites, but 
rather generalists adapted to a wide variety of habitats.

Methods
Sampling sites
The study area is located in Zamora-Chinchipe Province, 
beside the Condor mountain range, southeast Ecuador 
close to the Peruvian border. The study area comprises 
two sites, the first one located at Chinapintza locality 
(1854  m a.s.l. 04º02′19.74’’S, 78º36′27.35’’W) where a 
large volume of ASGM activities are being carried out. 
The mineral richness of Chinapintza was rediscovered 
and exploited in a disorderly manner through an artisa-
nal mining process in the early 1980s, and since 1993 has 
been additionally subject to extensive exploitation, with 
more than 22,580 m of drilling by Chinapintza Gold Pro-
ject, a small-scale gold mining operation [36]. Samples 
were collected from a nearby wastewater canal (Fig. 2a).

The second site is La Pangui (1677 m a.s.l., 04º02′56.29’’S, 
78º34′58.59’’W) located about 5 km from Chinapintza. The 
intensity of ASGM activities is lower than in Chinapintza. 
Samples were collected close to a waste collection pool 
(Fig.  2b). The weather in Chinapintza is typical for areas 
situated at this elevation along the Amazonian side of the 
Andes, with average daily temperatures ranging between 
18 – 29ºC and relative air humidity between 80 – 85%. 
Annual rainfall ranges between 2000 and 4000  mm with 
increase in rainfall between February and April [11]. The 
two sampling sites share the same climatic characteristics 
due to their proximity.

Sampling of plant roots and soil
Sampling was conducted between October 2014 and July 
2015. Plants and root samples were collected from herbs, 
trees, and shrubs common to both polluted locations. 
Fine roots (diameter < 0.2 cm) were collected by identify-
ing the main root and carefully following the secondary 
roots until the fine roots were located to evaluate myc-
orrhizae. At Chinapintza, roots of 1 to 2 individuals of 
the plant species Axonopus compressus (SW.) P. Beauv 

Table 2  Levels of heavy metals on soils recorded from Chinapintza and La Pangui sites of Zamora-Chinchipe, Ecuador

* Mean value of 4 data
** Mean value of 6 data
*** Canadian Council of Ministers of the Environment (2007). The lower level is a reference value for agricultural and higher level is for industrial use

Name of site Levels of heavy metals in ppm

Al Cd Cr Cu Pb Zn Hg Au

Chinapintza* 9426.83 ± 2211.24 4.25 ± 9.73 17.43 ± 3.51 131.84 ± 117.89 1501.25 ± 915.31 886.16 ± 595.30 26.26 ± 13.03 15.99 ± 7.13

La Pangui** 7922.37 ± 3556.19 3.13 ± 2.19 13.02 ± 8.50 94.83 ± 60.44 560.53 ± 283.53 460.42 ± 390.55 17.33 ± 12.88 9.58 ± 6.39

Soil quality 
reference***

1.4 – 22.0 64.0 – 87.0 63.0 – 91.0 70.0 – 600.0 200.0 – 360.0 6.6 – 50.0
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Fig. 1  Phylogram inferred from a Maximum Likelihood (ML) analysis of 
partial 18S nrDNA sequences of Glomeromycotina associated with six 
plant species growing at heavy metal polluted soils in Chinapintza and La 
Pangui sites including sequences from the databases NCBI and MaarjAM 
with high similarity. The values that support the nodes correspond to 
Maximum Likelihood bootstrap. Only bootstrap values greater than 
50% are shown. The tree was outgroup rooted with Endogone pisiformis 
X58724. OTUs are defined on a 99% similarity threshold. Sequences 
from this study are indicated by the species name, followed by 
individual number, clone number and location (Ch = Chinapintza and 
LP = La Pangui). Sequence provenances: BRA = Brazil, CAN = Canada, 
CHN = China, DEU = Germany, ECU = Ecuador, GBR = United Kingdom, 
IND = India, IRL = Ireland, ITA = Italy, JPN = Japan, LSO = Lesotho, 
MYS = Malaysia, NZL = New Zealand, SPN = Spain, USA = United States, 
VEN = Venezuela, VNM = Vietnam, ZAF = South Africa. Phylogenetic tree 
was divided into Fig. 1a and 1b
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(Poaceae), Erato polymnioides DC. (Asteraceae), Miconia 
zamorensis Gleason (Melastomataceae) and Medinilla sp. 
(Melastomataceae) were collected, in total 9 samples. In 
La Pangui roots of 2 to 7 individuals of the plant species 
E. polymnioides, Medinilla sp., M. zamorensis, Colocasia 
sp. (Araceae), and Cyathea sp. (Cyatheaceae) were col-
lected, in total 21 samples. Together, 30 samples. Plant 
species identity was determined based on existing collec-
tions at Herbarium of the Universidad Técnica Particular 
de Loja (HUTPL) and Chamba et al. [11]. Collected spec-
imens correspond to Erato polymnioides HUTPL11521, 
Axonopus compressus HUTPL 12,456 and Miconia zamo-
rensis Chicago Nat. Hist. Museum 1,188,658.

Only small plants were present at each site due to the 
harsh conditions (Fig. 2 a, b). Samples were packed in bags 
and transported to the laboratory. Approximately 1  kg of 
root zone soil was collected per each sampled plant at a 
depth between 0 and 20 cm. The soil samples were air-dried 
and preserved at room temperature until soil analyses. In 
addition, fine roots were selected and cleaned with tap 
water, labeled, stored in 70% ethanol, and kept for subse-
quent analysis. The research permit was issued by Ministe-
rio del Ambiente del Ecuador (MAE-DNB-CM-2015–0016).

Analysis of physico‑chemical parameters and heavy metals 
from soils
The soil samples were sent to the Laboratorio de 
Manejo de Suelos y Aguas at Instituto Nacional de 
Investigaciones Agropecuarias (INIAP), Quito, Ecua-
dor, for analysis. Physical properties such as pH, and 
chemical ions like ammonia, chloride, calcium, mag-
nesium, sodium, potassium, ferrous, boron ions were 
tested. The analyses were performed according to 
standard methods [6, 25].

The soil samples were analyzed individually, 1 g of the 
homogenized oven dried soil was subjected to diges-
tion with a mixture of HCl and HNO3 in a 3:1 ratio 
(v/v). Samples were left for one week to soak in the acid, 
after which they were digested in an open thermal block 
(Environmental express 54 Hot block SC154) for 2  h. 
After cooling, the samples were diluted up to 100  ml 
with HCl 0.1 M and stored until metal analyses. Prior to 
measurements, the solutions were filtered through filter 
paper. The concentrations of heavy metals in digested 
solutions were analyzed immediately using a flame 
atomic absorption spectrophotometry (FAAS). The met-
als evaluated were Cd, Pb, Al, Cu, Zn, Cr, Au and Hg.

Table 3  Frequency of AMF OTU at each plant individual recorded from samples collected from Chinapintza and La Pangui sites of 
Zamora-Chinchipe, Ecuador

* OTU 1 to 10 correspond to Glomeraceae, OTU 11 and OTU 12 to Acaulosporaceae, OTU 13 to 17 Archaeosporaceae, OTU 18 Ambisporaceae and OTU 19 
Paraglomeraceae

Plan species OTU*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Axonopus compressus 1 1 1 1 3

Cyathea sp 1 1 1 1 1 4

Cyathea sp 2 1 1 2

Colacasia sp 1 1 1 1 3

Colacasia sp 2 1 1 1 1 4

Erato polymnioides 1 1 1 1 1 1 5

Erato polymnioides 2 1 1

Erato polymnioides 3 1 1 1 3

Erato polymnioides 4 1 1 1 1 1 5

Medinilla sp 1 1 1 1 1 4

Medinilla sp 2 1 1 2

Medinilla sp 3 1 1 2

Medinilla sp 4 1 1 1 1 1 5

Medinilla sp 5 1 1 1 1 1 5

Miconia sp 1 1 1 1 3

Miconia sp 2 1 1 1 3

Miconia sp 3 1 1 2 1 5

Miconia sp 4 1 1 1 1 1 5

Total 13 4 1 1 1 8 1 2 1 1 10 2 5 5 1 2 2 3 1 64

La Pangui 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15

Chinapintza 1 1 1 1 1 1 1 1 1 1 1 11
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Table 4  List of sequences and previous recorded distribution corresponding at each OTU recorded from samples collected from 
Chinapintza and La Pangui sites of Zamora-Chinchipe, Ecuador

OTU Freq Plant species Location Family of Glomeromycotina Previous recorded distribution

LP Ch

1 13 Colacasia sp. 1_8 1 Glomeraceae Ecuador1,2 and several locations worldwide (MYS3, JPN4, ZAF3, 
GBR3)Medinilla sp. 1_7 1

Miconia zamorensis 3_8 1

Miconia zamorensis 2_8 1

Cyathea sp. 2_5 1

Medinilla sp. 3_4 1

Cyathea sp. 1_2 1

Medinilla sp. 2_5 1 

Medinilla sp. 5_3 1

Erato polymnioides 3_4 1

Erato polymnioides 4_1 1

Erato polymnioides 1_3 1

Miconia zamorensis 4_2 1

2 4 Erato polymnioides 1_9 1 Glomeraceae Ecuador1,2and USA5. Correspond to VTX00074 at MaarjAM 
databaseMedinilla sp. 4_3 1

Cyathea sp. 1_4 1

Erato polymnioides 4_6 1

3 1 Erato polymnioides 3_2 1 Glomeraceae Ecuador and GBR3

4 1 Axonopus compressus 1_2 1 Glomeraceae Ecuador

5 1 Axonopus compressus 1_5 1 Glomeraceae Several locations worldwide (CHN6, USA7, DEU, JPN) Correspond 
to VTX00309 at MaarjAM database

6 8 Miconia zamorensis 4_4 1 Glomeraceae Ecuador1, VEN8 and BRA3. Correspond to VTX00268 at MaarjAM 
databaseErato polymnioides 1_1 1

Erato polymnioides 2_1 1

Medinilla sp. 1_1 1

Erato polymnioides 4_9 1

Medinilla sp. 4_5 1 

Medinilla sp. 3_9 1

Medinilla sp. 2_3 1

7 1 Medinilla sp. 5_9 1 Glomeraceae Ecuador1. Correspond to VTX00292 at MaarjAM database

8 2 Miconia zamorensis 3_5 1 Glomeraceae Ecuador. Correspond to VTX00292 at MaarjAM database

Miconia zamorensis 4_1 1

9 1 Colacasia sp. 2_5 1 Glomeraceae Ecuador1 and several locations worldwide (SPN9, CHN10, IND3). 
Correspond to VTX00166 at MaarjAM database

10 1 Miconia zamorensis 2_1_X 1 Glomeraceae Brazil. Correspond to VTX00418 at MaarjAM database

11 10 Medinilla sp. 4_4 1 Acaulosporaceae Ecuador1 and several locations worldwide (VEN, JPN, CHN3)

Medinilla sp. 5_4 1

Colacasia sp. 2_9 1

Miconia zamorensis 1_3 1

Miconia zamorensis 2_5 1

Colacasia sp. 1_11 1

Medinilla sp. 1_3 1

Miconia zamorensis 3_6 1

Miconia zamorensis 3_9 1

Miconia zamorensis 4_5 1

12 2 Colacasia sp. 2_8 1 Acaulosporaceae

Miconia zamorensis 1_6 1
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Table 4  (continued)

OTU Freq Plant species Location Family of Glomeromycotina Previous recorded distribution

LP Ch

13 5 Cyathea sp. 1_5 1 Archaeosporaceae

Medinilla sp. 5_5 1

Medinilla sp. 4_8 1

Cyathea sp. 2_1 1

Erato polymnioides 4_4 1

14 5 Erato polymnioides 1_4 1 Archaeosporaceae Ecuador1 and several locations worldwide (GBR3,10, BRA3, CHN3, 
NZL11). Correspond to VTX00005 at MaarjAM databaseMedinilla sp. 1_2 1

Medinilla sp. 5_10 1

Miconia zamorensis 3_7 1 

Colacasia sp. 1_1 1

15 1 Erato polymnioides 1_7 1 Archaeosporaceae Ecuador1,2

16 2 Medinilla sp. 4_1 1 Archaeosporaceae Ecuador1

Cyathea sp. 1_1 1

17 2 Erato polymnioides 3_11 1 Archaeosporaceae

Erato polymnioides 4_10 1

18 3 Miconia zamorensis 1_4 1  Ambisporaceae Ecuador1,2 and NZL12

Miconia zamorensis 4_3 1

Colacasia sp. 2_1 1

19 1 Axonopus compressus 1_6 1 Paraglomeraceae Ecuador and several locations worldwide (JPN, DEU13, USA). Cor‑
respond to CVTX00238 at MaarjAM database

 [20],1 [21],2 [42],3 [59],4 [49],5 [35],6 [31],7 [3],8 [2],9 [13],10 [9],11 [16],12 [48]13

Sequences are indicated by the species name, followed by individual number and clone number. Freq  Frequency. Locations correspond to Ch Chinapintza and LP La 
Pangui. Sequence provenances as give in Fig. 1 ab: BRA Brazil, CHN China, DEU Germany, ECU Ecuador, GBR United Kingdom, IND India, JPN Japan, MYS Malaysia, NZL 
New Zealand, SPN Spain, USA United States, VEN Venezuela, ZAF South Africa

Fig. 2  Sampling sites located in Zamora-Chinchipe Province were soil and root samples were collected: wastewater canal at Chinapintza site (a) 
and waste collection pool at La Pangui site (b). Both photographs were taken by JPS
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DNA isolation, PCR and molecular cloning
Colonization of the ethanol fixed mycorrhizae was exam-
ined using a standard staining method [17] to select 
root fragments for DNA isolation. Ten to fifteen root 
fragments of 1  cm per each plant were used for total 
DNA extraction using the DNeasy Plant Mini Kit (Qia-
gen, Hilden, Germany), according to the manufacturer’s 
protocol. The 18S nrDNA was amplified by two rounds 
of PCR. The first PCR was performed with primer pair 
NS1/NS4 (5’-GTA GTC ATA TGC TTG TCT C-3’ and 
5’-CTT CCG TCA ATT CCT TTA AG-3’, [57] and for 
the nested PCR (second PCR) using the Glomeromycota-
specific primer combination AML1 (5’-ATC AAC TTT 
CGA TGG TAG GAT AGA-3’, [32] and AML2 (5’-GAA 
CCC AAA CAC TTT GGT TTC C-3’, [32]. The reaction 
volume was 25  µl using the Phusion High-Fidelity PCR 
Mastermix (Finnzymes, Espoo, Finland), 200  mM for 
each dNTP (Life Technologies, Eggenstein, Germany), 
0.5  mM for each primer (Biomers, Ulm, Germany) and 
0.2  mL 1% Bovine Serum Albumin (BSA; Sigma). The 
PCR conditions were as follows: 3  min initial denatura-
tion at 94  °C, followed by 30 cycles of 1  min denatura-
tion at 94 °C, 1 min primer annealing at 50 °C and 1 min 
extension at 72 °C, followed by a final extension period of 
10 min at 72 °C [57].

The success of PCR amplification products was tested 
in 1% agarose gel stained with GelRed™ Safe Nucleic Acid 
Gel Stain (Biotium, Hayward, USA), the expected frag-
ment size of amplicons was approximately 0.8  Kb. The 
amplicons were cloned using the Zero Blunt® TOPO® 
PCR Cloning Kit (Invitrogen), according to the manu-
facturer’s protocol. Twelve colonies per individual were 
selected for PCR amplification using modified M13F and 
M13R primers [30]. The cloned mycorrhizal DNA was 
purified using S.N.A.P Miniprep purification kit (Invitro-
gen), using the manufacturer’s instructions. Clones were 
sequenced by Macrogen (Seoul, Korea) using universal 
primers M13F and M13R.

Molecular phylogeny and OTU calculation
Raw sequences obtained from samples of Chinapintza 
and La Pangui were edited with Sequencer software 
(Version 4.9, Gene Codes, Ann Arbor, Michigan). Con-
sensus were generated, and with the resulting consensus 
sequences, a BLAST search was performed against the 
nucleotide sequence database (NCBI, [5] and MaarjAM 
database [38]. Sequences from the databases with high 
similarity to our sequences were added to the dataset to 
obtain the final alignment.

Operational Taxonomic Units (OTUs) were defined as 
surrogates for species on the basis of sequence similar-
ity with OPTSIL [18]. A first analysis of OTUs was per-
formed with sequences from heavy metal polluted sites 

using a cut-off value of 99% similarity for the about 800 
bases long section of the 18S nrDNA. The linkage frac-
tion was 0.5, which combines two clusters if the dis-
tances between 50% of the sequences in each cluster are 
equal or below the cut-off value [18]. Later, a new OPT-
SIL analysis was done with OTUs obtained in the first 
analysis and including the downloaded sequence(s) from 
NCBI and MaarjAM, singleton sequences were removed.

Sequence alignments of the complete matrix were done 
with MAFFT v6.847b (http://​mafft.​cbrc.​jp/​align​ment/​
softw​are/; strategy G-INS-i, [27]. A maximum likelihood 
(ML) analysis was performed in MEGA 5 [53], under the 
General Time Reversible DNA substitution model with 
1000 bootstrap replicates. The resulting tree was edited 
using FigTree Ver. 1.4.3 [40]. Calculated OTUs from the 
heavy metal polluted soils were drawn in this ML tree. 
Finally, 64 sequences were deposited in GenBank with 
accession numbers OL652886–OL652949.
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