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Abstract
Background Data on antibiotic resistance is essential to adapt treatment strategies against the rapidly changing 
reality of antimicrobial resistance.

Objective To study the in vitro activity of ceftaroline, ceftazidime-avibactam, and comparators against Gram-positive 
and Gram-negative bacteria collected from China in the year 2018.

Methods A total of 2301 clinical isolates were collected from 17 medical center laboratories in China, which 
participated in the ATLAS program in 2018. Antimicrobial susceptibilities were determined by the broth microdilution 
method at a central laboratory. Clinical and Laboratory Standards Institute (CLSI) breakpoints were used to interpret 
the results except for tigecycline, for which the US Food and Drug Administration (FDA) breakpoint were used.

Results The susceptibility rates of methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus 
pneumoniae (PRSP), and β-hemolytic streptococcus to ceftaroline were 83.9%, 100%, and 100%, respectively. 
Escherichia coli, imipenem-susceptible (IMP-S) Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, IMP-S 
Enterobacter cloacae, Proteus mirabilis, Morganella morganii, Serratia marcescens and Pseudomonas aeruginosa had 
high susceptibility rates to ceftazidime-avibactam (95.8%, 100%, 97.7%, 94.5%, 100%, 90.2%, 96.0%, 97.5% and 
90.7%, respectively). However, imipenem-resistant Escherichia coli and imipenem-resistant Pseudomonas aeruginosa 
demonstrated low susceptibility to ceftazidime-avibactam (33.3% and 75.8%, respectively). Against MRSA, methicillin-
susceptible Staphylococcus aureus (MSSA), S. pneumoniae and β-hemolytic streptococci, the susceptibility rates of 
tigecycline were 93.5%, 99.2%, 100% and 100%, respectively. Levofloxacin also showed high in vitro activity against 
S. pneumoniae and β-hemolytic streptococci with a susceptibility rate of 100% and 98.4%. The susceptibility rate of E. 
faecalis to ampicillin was 100%. Among Gram-negative isolates, tigecycline and colistin showed good activity against 
E. coli, K. pneumoniae, imipenem-resistant E. cloacae, C. freundii and A. baumannii (susceptibility rates and intermediate 
susceptibility rates of 99.3% and 96.8%, 95.4% and 94.5%, 100% and 87.5%, 96.4% and 89.3%, MIC90 of 2 mg/L and 
97.4%, respectively). E. coli and E. cloacae had high susceptibility rates to imipenem and meropenem (93.0% and 
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Introduction
Antimicrobial resistance is a top healthcare priority for 
the Centers for Disease Control and Prevention (CDC) 
and the World Health Organization (WHO) [1, 2]. High 
rates of antibiotic resistance are found among organ-
isms that cause common nosocomial and community-
acquired infections globally. This high rate of antibiotic 
resistance is a challenge for physicians and a global 
healthcare crisis that can seriously threaten the life and 
well-being of many individuals [3]. Indeed, resistance to 
multiple drugs can lead to untreatable infections that are 
refractory even to antibiotics of last resort [4]. China is 
one of the top consumers of antibiotics in the world [5]. 
The rates of resistance of Gram-negative and Gram-posi-
tive bacteria to antibiotics are severe in China [5].

Ceftaroline is a fifth-generation broad-spectrum ceph-
alosporin that is mainly active against MRSA and Gram-
positive bacteria but also against some Gram-negative 
bacteria [6, 7]. It is prescribed for community-acquired 
bacterial pneumonia and acute bacterial skin and skin 
structure infections [8–11]. Ceftazidime-avibactam is a 
β-lactam combined with a β-lactamase inhibitor and is 
potent against many Carbapenem Resistant (CR) Entero-
bacteriaceae [7]. Avibactam can bind to β-lactamase 
enzymes, including Ambler class A, class C, and some 
class D carbapenemases, but is not active against 
metallo-β-lactamases [12]. It can also bind to Klebsi-
ella pneumoniae carbapenemase (KPC) which is a main 
mechanism causing carbapenem resistance in Enterobac-
teriaceae [12]. It is indicated to treat complicated urinary 
tract infections, complicated intra-abdominal infections 
(in combination with metronidazole), and hospital-
acquired bacterial pneumonia [13, 14]. Both drugs are 
widely available around the globe. Nevertheless, ceftaro-
line and ceftazidime-avibactam have been approved rela-
tively recently, and their use is limited to selected cases. 
Therefore, there is a need for susceptibility data regarding 
these two drugs.

Previous multicenter studies have demonstrated the 
resistance patterns of various pathogens to ceftaroline 
and ceftazidime-avibactam in China [15–18]. Neverthe-
less, to use antibiotics more judiciously, updated data 
about antibiotic resistance and susceptibility is essen-
tial. ATLAS (Antimicrobial Testing Leadership and 

Surveillance) is an international surveillance program 
evaluating the longitudinal in vitro activity of antimi-
crobial agents against Gram-positive and -negative 
isolates from hospitalized patients with various compli-
cated infections in Europe, Asia-Pacific, South America, 
Africa-West Asia, and the United States. Compared with 
previous studies in China, the present study updates 
antibiotic resistance data for ceftaroline, ceftazidime-
avibactam, and comparators against bacterial pathogens 
collected in China in 2018.

Results
Sample retrieval
A total of 2301 isolates were collected in 2018 from 
bloodstream infections, skin and soft tissue infections, 
urinary tract infections, abdominal cavity infections, 
lower respiratory tract infections, and other types of 
infections. The bacteria included in this study were Esch-
erichia coli (n = 403), Klebsiella pneumoniae (n = 217), 
Enterobacter cloacae (n = 127), Citrobacter freundii 
(n = 28), Proteus mirabilis (n = 51), Morganella morganii 
(n = 50), Serratia marcescens (n = 80), Acinetobacter bau-
manii (n = 114), Pseudomonas aeruginosa (n = 386), meth-
icillin-resistant Staphylococcus aureus (MRSA) (n = 155), 
methicillin-susceptible Staphylococcus aureus (MSSA) 
(n = 251), coagulase-negative staphylococci (n = 125), 
Enterococcus faecalis (n = 109), Enterococcus faecium 
(n = 64), Streptococcus pneumoniae (n = 77) including 
penicillin-resistant Streptococcus pneumoniae (PRSP) 
(n = 36), penicillin-intermediate Streptococcus pneu-
moniae (PISP) (n = 7) and penicillin-susceptible Strep-
tococcus pneumoniae (PSSP) (n = 34), and β-hemolytic 
streptococci (n = 64).

In vitroactivity of ceftaroline, ceftazidime-avibac-
tam, and comparators against Gram-negative bacteria 
in 2018 in China.

Table 1 and Supplementary Figure S1 show the in vitro 
activity of ceftaroline, ceftazidime-avibactam, and com-
parators against Gram-negative bacteria. Generally, the 
susceptibility of Gram-negative bacteria to ceftaroline 
was low. Indeed, only 55.9% of E. cloacae and 56.0% of 
M. morganii were susceptible to ceftaroline, with an 
MIC90 of > 8  mg/L. E. coli, K. pneumoniae, C. freundii, 
P. mirabilis and S. marcescens were all < 50% susceptible 

92.8%, 89.8% and 92.1%, respectively). M. morganii and P. mirabilis demonstrated meropenem and piperacillin-
tazobactam susceptibility rates of 96.0% and 94.0%, 94.1% and 92.2%, respectively.

Conclusion Ceftaroline showed good activity among tested antimicrobial agents against Gram-positive species, 
while ceftazidime-avibactam had good activity against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, 
Proteus mirabilis, Morganella morganii, Serratia marcescens and Pseudomonas aeruginosa excluding carbapenem-
resistant isolates.

Keywords Ceftaroline, Ceftazidime-avibactam, Antibiotic susceptibility, Gram-negative, Gram-positive, China
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Organism/Antibiotic MIC50
mg/L

MIC90
mg/L

MIC Range
mg/L

†
% Susceptible % Intermediate % Resistant

Escherichia coli (n = 403)

Ceftaroline > 8 > 8 0.03->8 29.8 1.2 69.0

Ceftazidime-avibactam 0.12/4 0.5/4 ≤ 0.015/4->64/4 95.8 0 4.2

Amoxicillin-clavulanic acid 8/4 > 16/8 1/0.5->16/8 62.0 20.4 17.6

Ampicillin > 16 > 16 ≤ 1->16 10.2 0.2 89.6

Ampicillin-sulbactam 32/16 > 64/32 ≤ 1/0.5->64/32 23.1 25.3 51.6

Cefepime 8 > 32 ≤ 0.12->32 36.0 14.1 49.9

Cefoperazone-sulbactam 4/4 32/32 ≤ 0.06/0.06 - >64/64 NA NA NA

Ceftazidime 4 128 0.12->128 54.3 9.4 36.2

Ciprofloxacin > 4 > 4 ≤ 0.12->4 23.6 7.7 68.7

Colistin 0.5 1 ≤ 0.06->8 NA 96.8 3.2

Imipenem 0.12 0.5 ≤ 0.06->8 93.0 1.0 6.0

Levofloxacin 8 > 8 ≤ 0.25->8 30.5 4.0 65.5

Meropenem ≤ 0.06 0.12 ≤ 0.06->16 92.8 0 7.2

Piperacillin-tazobactam 2/4 > 64/4 0.25/4->64/4 85.4 3.0 11.7

Tigecycline 0.25 1 0.06->8 99.3 0.2 0.5

IMP-REscherichia coli (n = 24)

Ceftaroline > 8 > 8 > 8->8 0 0 100

Ceftazidime-avibactam > 64/4 > 64/4 ≤ 0.015->64/4 33.3 0 66.7

Amoxicillin-clavulanic acid > 16/8 > 16/8 4/2->16/8 4.2 0 95.8

Ampicillin > 16 > 16 > 16->16 0 0 100

Ampicillin-sulbactam > 64/32 > 64/32 32/16->64/32 0 0 100

Cefepime > 32 > 32 32->32 0 0 100

Cefoperazone-sulbactam > 64/64 > 64/64 16/16->64/64 NA NA NA

Ceftazidime > 128 > 128 16->128 0 0 100

Ciprofloxacin > 4 > 4 0.25->4 4.2 0 95.8

Colistin 1 2 0.25-8 NA 91.7 8.3

Imipenem > 8 > 8 4->8 0 0 100

Levofloxacin > 8 > 8 ≤ 0.25->8 4.2 4.2 91.7

Meropenem > 16 > 16 8->16 0 0 100

Piperacillin-tazobactam > 64/4 > 64/4 8/4->64/4 4.2 0 95.8

Tigecycline 0.5 1 0.12-8 95.8 0 4.2

IMP-SEscherichia coli (n = 375)

Ceftaroline > 8 > 8 0.03->8 31.7 1.3 66.9

Ceftazidime-avibactam 0.12/4 0.25/4 ≤ 0.015/4–4/4 100 0 0

Amoxicillin-clavulanic acid 8/4 > 16/8 1/0.5->16/8 66.1 21.9 12.0

Ampicillin > 16 > 16 ≤ 1->16 10.9 0.3 88.8

Ampicillin-sulbactam 16/8 64/32 ≤ 1/0.5->64/32 24.5 27.2 48.3

Cefepime 8 > 32 ≤ 0.12->32 38.4 14.7 46.9

Cefoperazone-sulbactam 4/4 32/32 ≤ 0.06/0.06->64/64 NA NA NA

Ceftazidime 4 64 0.12->128 57.9 9.9 32.3

Ciprofloxacin > 4 > 4 ≤ 0.12->4 25.1 8 66.9

Colistin 0.5 1 ≤ 0.06->8 NA 97.6 2.4

Imipenem 0.12 0.25 ≤ 0.06-1 100 0 0

Levofloxacin 8 > 8 ≤ 0.25->8 32.5 4 63.5

Meropenem ≤ 0.06 ≤ 0.06 ≤ 0.06->16 99.2 0 0.8

Piperacillin-tazobactam 2/4 16/4 0.25/4->64/4 90.4 3.2 6.4

Tigecycline 0.25 1 0.06-4 99.7 0.3 0

Klebsiella pneumoniae (n = 217)

Ceftaroline 1 > 8 0.03->8 47.9 2.3 49.8

Ceftazidime-avibactam 0.25/4 2/4 0.06/4->64/4 97.7 0 2.3

Amoxicillin-clavulanic acid 8/4 > 16/8 1/0.5->16/8 53.9 6.0 40.1

Table 1 In vitro susceptibilities of Gram-negative isolates obtained from the ATLAS program, 2018
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Organism/Antibiotic MIC50
mg/L

MIC90
mg/L

MIC Range
mg/L

†
% Susceptible % Intermediate % Resistant

Ampicillin > 16 > 16 16->16 0 0.9 99.1

Ampicillin-sulbactam 16/8 > 64/32 2/1->64/32 42.9 9.2 47.9

Cefepime 0.25 > 32 ≤ 0.12->32 53.0 1.8 45.2

Cefoperazone-sulbactam 2/2 > 64/64 ≤ 0.06/0.06->64/64 NA NA NA

Ceftazidime 1 > 128 0.06->128 56.7 1.8 41.5

Ciprofloxacin 0.5 > 4 ≤ 0.12->4 44.7 7.4 47.9

Colistin 1 2 0.5->8 NA 94.5 5.5

Imipenem 0.25 > 8 ≤ 0.06->8 67.3 0 32.7

Levofloxacin 0.5 > 8 ≤ 0.25->8 50.2 5.5 44.2

Meropenem ≤ 0.06 > 16 ≤ 0.06->16 67.7 0 32.3

Piperacillin-tazobactam 4/4 > 64/4 0.5/4->64/4 62.7 1.8 35.5

Tigecycline 0.5 2 0.12->8 95.4 3.2 1.4

IMP-RKlebsiella pneumoniae (n = 71)

Ceftaroline > 8 > 8 > 8->8 0 0 100

Ceftazidime-avibactam 2/4 4/4 0.25/4->64/4 93.0 0 7.0

Amoxicillin-clavulanic acid > 16/8 > 16/8 2/1->16/8 1.4 0 98.6

Ampicillin > 16 > 16 > 16->16 0 0 100

Ampicillin-sulbactam > 64/32 > 64/32 8/4->64/32 1.4 0 98.6

Cefepime > 32 > 32 ≤ 0.12->32 1.4 2.8 95.8

Cefoperazone-sulbactam > 64/64 > 64/64 4/4->64/64 NA NA NA

Ceftazidime > 128 > 128 2->128 2.8 0 97.2

Ciprofloxacin > 4 > 4 ≤ 0.12->4 4.2 1.4 94.4

Colistin 1 2 0.5->8 NA 90.1 9.9

Imipenem > 8 > 8 4->8 0 0 100

Levofloxacin > 8 > 8 ≤ 0.25->8 4.2 2.8 93.0

Meropenem > 16 > 16 ≤ 0.06->16 2.8 0 97.2

Piperacillin-tazobactam > 64/4 > 64/4 2/4->64/4 4.2 0 95.8

Tigecycline 1 2 0.25-8 93.0 2.8 4.2

IMP-SKlebsiella pneumoniae (n = 146)

Ceftaroline 0.12 > 8 0.03->8 71.2 3.4 25.3

Ceftazidime-avibactam 0.12/4 0.5/4 0.06/4 − 2/4 100 0 0

Amoxicillin-clavulanic acid 4/2 > 16/8 1/0.5->16/8 79.5 8.9 11.6

Ampicillin > 16 > 16 16->16 0 1.4 98.6

Ampicillin-sulbactam 8/4 64/32 2/1->64/32 63.0 13.7 23.3

Cefepime ≤ 0.12 > 32 ≤ 0.12->32 78.1 1.4 20.5

Cefoperazone-sulbactam 0.25/0.25 16/16 ≤ 0.06/0.06->64/64 NA NA NA

Ceftazidime 0.25 32 0.06->128 82.9 2.7 14.4

Ciprofloxacin ≤ 0.12 > 4 ≤ 0.12->4 64.4 10.3 25.3

Colistin 1 2 0.5->8 NA 96.6 3.4

Imipenem 0.25 0.5 ≤ 0.06-1 100 0 0

Levofloxacin ≤ 0.25 8 ≤ 0.25->8 72.6 6.8 20.6

Meropenem ≤ 0.06 ≤ 0.06 ≤ 0.06->16 99.3 0 0.7

Piperacillin-tazobactam 2/4 16/4 0.5/4->64/4 91.1 2.7 6.2

Tigecycline 0.5 1 0.12-4 96.6 3.4 0

Enterobacter cloacae (n = 127)

Ceftaroline 0.5 > 8 0.06->8 55.9 1.6 42.5

Ceftazidime-avibactam 0.25/4 1/4 ≤ 0.015/4->64/4 94.5 0 5.5

Amoxicillin-clavulanic acid > 16/8 > 16/8 1->16/8 2.4 2.4 95.3

Ampicillin > 16 > 16 ≤ 1->16 3.9 6.3 89.8

Ampicillin-sulbactam 32/16 > 64/32 ≤ 1/0.5->64/32 11.8 24.4 63.8

Cefepime ≤ 0.12 16 ≤ 0.12->32 76.4 11.8 11.8

Cefoperazone-sulbactam 0.5/0.5 32/32 ≤ 0.06/0.06->64/64 NA NA NA

Table 1 (continued) 
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Organism/Antibiotic MIC50
mg/L

MIC90
mg/L

MIC Range
mg/L

†
% Susceptible % Intermediate % Resistant

Ceftazidime 0.5 > 128 0.12->128 63.8 3.9 32.3

Ciprofloxacin ≤ 0.12 4 ≤ 0.12->4 74.0 5.5 20.5

Colistin 1 > 8 0.12->8 NA 71.6 28.4

Imipenem 0.5 2 0.12->8 89.8 3.9 6.3

Levofloxacin ≤ 0.25 4 ≤ 0.25->8 79.5 7.1 13.4

Meropenem ≤ 0.06 0.5 ≤ 0.06->16 92.1 1.6 6.3

Piperacillin-tazobactam 4/4 > 64/4 0.5/4->64/4 70.9 11.8 17.3

Tigecycline 0.5 2 0.12-4 98.4 1.6 0

IMP-REnterobacter cloacae (n = 8)

Ceftaroline > 8 > 8 > 8->8 0 0 100

Ceftazidime-avibactam > 64/4 > 64/4 1/4->64/4 12.5 0 87.5

Amoxicillin-clavulanic acid > 16/8 > 16/8 > 16/8->16/8 0 0 100

Ampicillin > 16 > 16 > 16->16 0 0 100

Ampicillin-sulbactam > 64/32 > 64/32 64/32->64/32 0 0 100

Cefepime > 32 > 32 8->32 0 12.5 87.5

Cefoperazone-sulbactam > 64/64 > 64/64 32/32->64/64 NA NA NA

Ceftazidime > 128 > 128 64->128 0 0 100

Ciprofloxacin 4 > 4 ≤ 0.12->4 12.5 12.5 75.0

Colistin 1 > 8 0.5->8 NA 87.5 12.5

Imipenem > 8 > 8 4->8 0 0 100

Levofloxacin 4 > 8 ≤ 0.25->8 12.5 12.5 75.0

Meropenem > 16 > 16 4->16 0 0 100

Piperacillin-tazobactam > 64/4 > 64/4 > 64/4->64/4 0 0 100

Tigecycline 1 2 0.5-2 100 0 0

IMP-SEnterobacter cloacae (n = 114)

Ceftaroline 0.5 > 8 0.06->8 60.5 1.8 37.7

Ceftazidime-avibactam 0.25/4 0.5/4 0.06/4 − 2/4 100 0 0

Amoxicillin-clavulanic acid > 16/8 > 16/8 1/0.5->16/8 2.6 1.8 95.6

Ampicillin > 16 > 16 ≤ 1->16 4.4 7.0 88.6

Ampicillin-sulbactam 32/16 > 64/32 ≤ 1/0.5->64/32 13.2 25.4 61.4

Cefepime ≤ 0.12 4 ≤ 0.12->32 82.5 11.4 6.1

Cefoperazone-sulbactam 0.5/0.5 32/32 ≤ 0.06/0.06-64/64 NA NA NA

Ceftazidime 0.5 128 0.12->128 68.4 4.4 27.2

Ciprofloxacin ≤ 0.12 1 ≤ 0.12->4 78.9 5.3 15.8

Colistin 1 16 0.12->8 NA 71.0 29.0

Imipenem 0.5 1 0.12-1 100 0 0

Levofloxacin ≤ 0.25 1 ≤ 0.25->8 85.1 6.1 8.8

Meropenem ≤ 0.06 0.12 ≤ 0.06-2 99.1 0.9 0

Piperacillin-tazobactam 2/4 > 64/4 0.5/4->64/4 76.3 13.2 10.5

Tigecycline 0.5 1 0.12-4 99.1 0.9 0

Citrobacter freundii (n = 28)

Ceftaroline 8 > 8 0.12->8 28.6 10.7 60.7

Ceftazidime-avibactam 0.25/4 > 64/4 0.06/4->64/4 82.1 0 17.9

Amoxicillin-clavulanic acid > 16/8 > 16/8 1->16/8 10.7 10.7 78.6

Ampicillin > 16 > 16 2->16 10.7 7.1 82.1

Ampicillin-sulbactam 64/32 > 64/32 ≤ 1/0.5->64/32 25.0 7.1 67.9

Cefepime 2 > 32 ≤ 0.12->32 64.3 7.1 28.6

Cefoperazone-sulbactam 8/8 > 64/64 0.12/0.12->64/64 NA NA NA

Ceftazidime 8 > 128 0.12->128 50.0 3.6 46.4

Ciprofloxacin 0.5 > 4 ≤ 0.12->4 46.4 7.1 46.4

Colistin 1 4 0.5->8 NA 89.3 10.7

Imipenem 1 > 8 ≤ 0.06->8 75.0 3.6 21.4

Table 1 (continued) 
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Organism/Antibiotic MIC50
mg/L

MIC90
mg/L

MIC Range
mg/L

†
% Susceptible % Intermediate % Resistant

Levofloxacin 1 > 8 ≤ 0.25->8 50.0 7.1 42.9

Meropenem ≤ 0.06 > 16 ≤ 0.06->16 78.6 3.6 17.9

Piperacillin-tazobactam 16/4 > 64/4 1/4->64/4 57.1 3.6 39.3

Tigecycline 0.5 2 0.12-4 96.4 3.6 0

Proteus mirabilis (n = 51)

Ceftaroline > 8 > 8 0.03->8 27.5 3.9 68.6

Ceftazidime-avibactam 0.06/4 2/4 0.03/4->64/4 90.2 0 9.8

Amoxicillin-clavulanic acid 16/8 > 16/8 1/0.5->16/8 49.0 33.3 17.7

Ampicillin > 16 > 16 ≤ 1->16 19.6 0 80.4

Ampicillin-sulbactam 32/16 64/32 ≤ 1/0.5->64/32 35.3 5.9 58.8

Cefepime 16 > 32 ≤ 0.12->32 49.0 0 51.0

Cefoperazone-sulbactam 4/4 8/8 0.25/0.25->64/64 NA NA NA

Ceftazidime 0.25 > 128 0.06->128 78.4 5.9 15.7

Ciprofloxacin > 4 > 4 ≤ 0.12->4 23.5 3.9 72.6

Imipenem 1 2 0.25->8 58.8 33.3 7.8

Levofloxacin 8 > 8 ≤ 0.25->8 27.4 0 72.6

Meropenem ≤ 0.06 0.12 ≤ 0.06->16 94.1 0 5.9

Piperacillin-tazobactam 1/4 16/4 ≤ 0.12/4->64/4 92.2 0 7.8

Morganella morganii (n = 50)

Ceftaroline 0.5 > 8 0.03->8 56.0 2.0 42.0

Ceftazidime-avibactam 0.06/4 0.25/4 0.03/4->64/4 96.0 0 4.0

Ampicillin-sulbactam 32/16 > 64/32 ≤ 1/0.5->64/4 18.0 24.0 58.0

Cefepime ≤ 0.12 > 32 ≤ 0.12->32 84.0 4.0 12.0

Cefoperazone-sulbactam 1/1 16/16 0.25/0.25->64/64 NA NA NA

Ceftazidime 0.25 64 0.06->128 74.0 6.0 20.0

Ciprofloxacin 1 > 4 ≤ 0.12->4 28.0 8.0 64.0

Imipenem 2 4 0.12->8 20.0 62.0 18.0

Levofloxacin 1 > 8 ≤ 0.25->8 30.0 22.0 48.0

Meropenem 0.12 0.25 ≤ 0.06-8 96.0 0 4.0

Piperacillin-tazobactam 0.25/4 8/4 ≤ 0.12/4->64/4 94.0 0 6.0

Serratia marcescens (n = 80)

Ceftaroline 1 > 8 0.12->8 28.7 25.0 46.3

Ceftazidime-avibactam 0.12/4 1/4 0.06/4–64/4 97.5 0 2.5

Cefepime ≤ 0.12 > 32 ≤ 0.12->32 67.5 7.5 25.0

Cefoperazone-sulbactam 2/2 > 64/64 0.25/0.25->64/64 NA NA NA

Ceftazidime 0.25 16 0.12->128 80.0 7.5 12.5

Ciprofloxacin ≤ 0.12 > 4 ≤ 0.12->4 67.5 1.2 31.3

Imipenem 0.5 > 8 0.25->8 76.2 3.8 20.0

Levofloxacin ≤ 0.25 8 ≤ 0.25->8 68.7 8.8 22.5

Meropenem ≤ 0.06 > 16 ≤ 0.06->16 80.0 0 20.0

Piperacillin-tazobactam 2/4 > 64/4 0.5/4->64/4 81.2 0 18.8

Tigecycline 1 2 0.25-4 98.7 1.3 0

Acinetobacter baumannii (n = 114)

Ceftaroline > 8 > 8 1->8 NA NA NA

Ceftazidime-avibactam 32/4 64/4 1/4->64/4 NA NA NA

Ampicillin-sulbactam 64/32 > 64/32 ≤ 1/0.5->64/32 12.3 7.9 79.8

Cefepime > 32 > 32 1->32 13.2 4.4 82.5

Cefoperazone-sulbactam 32/32 64/64 0.5/0.5->64/64 NA NA NA

Ceftazidime 128 > 128 2->128 14.0 0.9 85.1

Ciprofloxacin > 4 > 4 ≤ 0.12->4 13.2 0 86.8

Colistin 1 2 1->8 NA 97.4 2.6

Imipenem > 8 > 8 0.12->8 14.9 0 85.1

Table 1 (continued) 
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Fig. 1 Fold MIC reduction of Gram-negative isolates by addition of avibactam to ceftazidime. eco: Escherichia coli; kpn: Klebsiella pneumoniae; ecl: En-
terobacter cloacae; cfr: Citrobacter freundii; pmi: Proteus mirabilis; mmo: Morganella morganii; sma: Serratia marcescens; aba: Acinetobacter baumannii; pae: 
Pseudomonas aeruginosa. Note: a. The MIC90 fold reduction for K. pneumoniae is actually ≥ 128, for E. cloacae is actually ≥ 256, for P. mirabilis is actually ≥ 128, 
for A. baumannii is actually ≥ 4. b. The MIC90 values of ceftazidime and ceftazidime-avibactam for C. freundii are > 128 mg/L and > 64 mg/L. Since they are 
both off-scale high, this MIC90 comparison wasn’t shown in Fig. 1

 

Organism/Antibiotic MIC50
mg/L

MIC90
mg/L

MIC Range
mg/L

†
% Susceptible % Intermediate % Resistant

Levofloxacin 8 > 8 ≤ 0.25->8 14.9 23.7 61.4

Meropenem > 16 > 16 0.12->16 13.2 0 86.8

Piperacillin-tazobactam > 64/4 > 64/4 ≤ 0.12/4->64/4 13.2 0.9 86.0

Tigecycline 1 2 0.12-4 NA NA NA

Pseudomonas aeruginosa (n = 386)

Ceftaroline > 8 > 8 0.06->8 NA NA NA

Ceftazidime-avibactam 2/4 8/4 0.03/4->64/4 90.7 0 9.3

Cefepime 4 > 32 ≤ 0.12->32 68.9 9.3 21.8

Cefoperazone-sulbactam 8/8 64/64 0.25/0.25->64/64 NA NA NA

Ceftazidime 4 128 0.06->128 68.9 3.9 27.2

Ciprofloxacin 0.25 > 4 ≤ 0.12->4 66.1 11.1 22.8

Imipenem 2 > 8 ≤ 0.06->8 59.3 7.5 33.2

Levofloxacin 1 > 8 ≤ 0.25->8 57.0 14.5 28.5

Meropenem 1 > 16 ≤ 0.06->16 64.5 10.4 25.1

Piperacillin-tazobactam 8/4 > 64/4 ≤ 0.12/4->64/4 64.5 10.4 25.1

IMP-R Pseudomonas aeruginosa (n = 128)

Ceftaroline > 8 > 8 > 8->8 NA NA NA

Ceftazidime-avibactam 4/4 32/4 1/4->64/4 75.8 0 24.2

Cefepime 16 > 32 1->32 41.4 10.9 47.7

Cefoperazone-sulbactam 32/32 > 64/64 4/4->64/64 NA NA NA

Ceftazidime 32 > 128 1->128 40.6 6.3 53.1

Ciprofloxacin 1 > 4 0.12->4 42.9 13.3 43.8

Imipenem > 8 > 8 8->8 0 0 100

Levofloxacin 2 > 8 ≤ 0.25->8 34.4 16.4 49.2

Meropenem 8 > 16 0.12->16 7.8 22.7 69.5

Piperacillin-tazobactam > 64/4 > 64/4 1/4->64/4 35.1 13.3 51.6
† Cefepime CLSI (Clinical and Laboratory Standards Institute) susceptibility for Enterobacteriaceae adopted the susceptible, susceptible-dose-dependent, and 
resistant categories

MIC = minimal inhibitory concentration; CLSI = Clinical and Laboratory Standards Institute; IMP-R = imipenem-resistant; IMP-S = imipenem-susceptible; NA = not 
applicable

Table 1 (continued) 
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to ceftaroline. The susceptibility of P. aeruginosa and A. 
baumannii to ceftaroline could not be evaluated because 
of the lack of a breakpoint, and the MIC50 and MIC90 val-
ues against A. baumannii and P. aeruginosa were both 
> 8 mg/L.

The addition of 4 mg/L avibactam generally increased 
ceftazidime activity against all the Gram-negative bacte-
ria except (≥ 4 reduction fold in MIC90) except C. freun-
dii (Fig.  1). The addition of avibactam to ceftazidime 
had a greater impact on MIC90 values than MIC50 values 
against E. coli, K. pneumoniae, E. cloacae, P. mirabilis, 
M. morganii, S. marcescens and P. aeruginosa, because 
avibactam has little or no effect on ceftazidime-suscep-
tible isolates. E. coli (susceptibility to ceftazidime/ceftazi-
dime-avibactam: 54.3%/95.8%), K. pneumoniae (56.7% 
S/97.7% S), E. cloacae (63.8% S/94.5% S), P. mirabilis 
(78.4% S/90.2% S), M. morganii (74.0% S/96.0% S), and 
S. marcescens (80.0% S/97.5% S) showed > 90% suscepti-
bility to ceftazidime-avibactam, with MIC90 values that 
ranged from 0.25/4 to 2/4 mg/L. For C. freundii, the sus-
ceptibility rate to ceftazidime-avibactam was 82.1%, but 
the MIC90 was high (> 64/4 mg/L). P. aeruginosa showed 
68.9% susceptibility rates to ceftazidime and 90.7% sus-
ceptibility rates to ceftazidime-avibactam. Although the 
susceptibility of A. baumannii to ceftazidime-avibactam 
could not be evaluated because of the lack of a break-
point, a trend of decreased MIC after adding avibactam 
was detected, as indicated by a 4-fold reduction in MIC50 
and ≥ 4-fold reduction in MIC90 (ceftazidime: 128 and 
> 128 mg/L, ceftazidime-avibactam: 32/4 and 64/4 mg/L). 
The proportions of IMP-R K. pneumoniae (32.7%) and P. 
aeruginosa (33.2%) were relatively high compared with 
IMP-R E. coli (6.0%) and E. cloacae (6.3%). Regarding 
resistant Gram-negative isolates, ceftazidime-avibactam 
also showed high activity of 93.0% against IMP-R K. 
pneumoniae, but showed low activity against IMP-R E. 
coli (33.3% susceptibility) and IMP-R E. cloacae (12.5% 
susceptibility). The susceptibility rate of IMP-R P. aerugi-
nosa to ceftazidime-avibactam was relatively low (75.8%).

Among the tested comparators, tigecycline showed 
good activity against all Gram-negative bacteria (> 95% 
susceptible) except P. aeruginosa, P. mirabilis and M. 
morganii since these three organisms display intrinsic 
resistance to tigecycline according to the CLSI M100 
document. Against A. baumannii, tigecycline also dem-
onstrated high activity with a MIC50 of 1  mg/L and a 
MIC90 of 2  mg/L. Colistin was the most active agent 
tested in vitro against A. baumannii (97.4% intermediate; 
CLSI eliminated the susceptible category for colistin). 
Imipenem and meropenem showed high activity against 
E. coli (93.0% S and 92.8% S) and E. cloacae (89.8% S and 
92.1% S). Meropenem and piperacillin-tazobactam are 
showed high activity against P. mirabilis (94.1% S and 
92.2% S) and M. morganii (96.0% S and 94.0% S).

In general, among tested antimicrobial agents, 
ceftazidime-avibactam and imipenem had potent activ-
ity against IMP-S E. coli, IMP-S K. pneumoniae, and 
IMP-S E. cloacae; ceftazidime-avibactam against K. 
pneumoniae and P. aeruginosa; ceftazidime-avibactam 
and tigecycline had potent activity against IMP-R K. 
pneumoniae;ceftazidime-avibactam, meropenem and 
piperacillin-tazobactam had potent activity against M. 
morganii and P. mirabilis; and colistin had potent activity 
against A. baumannii.

In vitroactivity of ceftaroline and comparators 
against Gram-positive bacteria in 2018 in China.

Table  2 shows the in vitro activity of ceftaroline and 
comparators against Gram-positive bacteria. The rate 
of susceptibility to ceftaroline in MRSA was 83.9%, with 
an MIC90 of 2  mg/L. Methicillin-susceptible S. aureus 
(MSSA), S. pneumoniae, and β-hemolytic streptococci 
showed 100% susceptibility to ceftaroline, with MIC90 
ranging from 0.03 to 0.5  mg/L. The susceptibility of E. 
faecalis, E. faecium, and coagulase-negative staphylococci 
to ceftaroline could not be evaluated because of the lack 
of a breakpoint. Ceftaroline showed good activity against 
E. faecalis (MIC50/MIC90, 2/4  mg/L) and coagulase-
negative staphylococci (MIC50/MIC90, 0.5/4  mg/L), but 
showed low activity against E. faecium (MIC50/MIC90, 
> 16/>16 mg/L).

Among the tested comparators, tigecycline showed 
high in vitro activity (> 90% S) against all the Gram-posi-
tive bacteria except E. faecalis (74.3% S), including MRSA 
(93.5% S), MSSA (99.2% S), S. pneumoniae (100% S), 
and β-hemolytic streptococci (100% S) (Supplementary 
Figure S2). Levofloxacin was active against PRSP (100% 
S). Levofloxacin and meropenem showed high activ-
ity against PSSP (100% S and 97.1% S) and β-hemolytic 
streptococci (98.4% S and 100% S). E. faecalis showed 
100% susceptibility to ampicillin.

Discussion
Ceftaroline and ceftazidime-avibactam are two recently 
approved drugs that can overcome antibiotic resistance 
in many bacterial species [8–11, 13]. Still, the suscepti-
bility patterns of different bacterial species responsible 
for infections need to be monitored to optimize the use 
of these antibiotics and reduce resistance by preventing 
the spread of resistant organisms. The resistance pat-
terns to ceftaroline and ceftazidime-avibactam have been 
reported using 2012–2014 data from a national surveil-
lance study in China [17]. The present study aimed to 
update the results of ceftaroline, ceftazidime-avibactam, 
and comparators against clinical isolates from hospi-
talized patients with various complicated infections 
using the Chinese data from the ATLAS program in 
2018. The results indicate that ceftaroline generally has 
high in vitro activity against the Gram-positive species. 
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Organism/Antibiotic MIC50 MIC90 MIC Range % Susceptible % Intermediate % 
Resistant

MRSA (n = 155)

Ceftaroline 1 2 ≤ 0.06-2 83.9 16.1 0

Ampicillin > 8 > 8 2->8 NA NA NA

Ampicillin-sulbactam 8/4 > 8/4 0.5/0.25->8/4 NA NA NA

Levofloxacin 0.25 > 4 0.06->4 71.0 0.6 28.4

Tigecycline 0.25 0.5 0.06-1 93.5 6.5 0

MSSA (n = 251)

Ceftaroline 0.5 0.5 0.12-1 100 0 0

Ampicillin > 8 > 8 ≤ 0.25->8 NA NA NA

Ampicillin-sulbactam 2/1 4/2 ≤ 0.25/0.12->8/4 NA NA NA

Levofloxacin 0.25 > 4 0.06->4 88.4 0.8 10.8

Tigecycline 0.25 0.5 0.06-1 99.2 0.8 0

Enterococcus faecalis(n = 109)

Ceftaroline 2 4 0.12->16 NA NA NA

Ampicillin 1 2 ≤ 0.25-2 100 0 0

Ampicillin-sulbactam 1/0.5 2/1 ≤ 0.25/0.12-2/1 NA NA NA

Levofloxacin 1 > 4 0.25->4 73.4 0 26.6

Tigecycline 0.25 0.5 0.06–0.5 74.3 25.7 0

Enterococcus faecium(n = 64)

Ceftaroline > 16 > 16 2->16 NA NA NA

Ampicillin > 8 > 8 1->8 9.4 0 90.6

Ampicillin-sulbactam > 8/4 > 8/4 1/0.5->8/4 NA NA NA

Levofloxacin > 4 > 4 0.5->4 4.7 0 95.3

Tigecycline 0.12 0.25 0.03–0.25 NA NA NA

Streptococcus pneumoniae(n = 77)a

Ceftaroline 0.06 0.25 0.008-0.5 100 0 0

Penicillin 0.5 4 ≤ 0.06->4 44.16 9.09 46.75

Ampicillin-sulbactam 0.5/0.25 > 4/2 ≤ 0.12/0.06->4/2 NA NA NA

Cefoperazone-sulbactam 2/2 > 4/4 ≤ 0.12/0.12->4/4 NA NA NA

Levofloxacin 1 1 0.5-2 100 0 0

Meropenem 0.12 1 ≤ 0.03-1 55.8 23.4 20.8

Piperacillin-tazobactam 1/4 > 4/4 ≤ 0.25/4->4/4 NA NA NA

Tigecycline 0.015 0.03 ≤ 0.008–0.06 100 0 0

PRSP (n = 36)

Ceftaroline 0.25 0.25 0.06–0.5 100 0 0

Ampicillin-sulbactam 4/2 > 4/2 2/1->4/2 NA NA NA

Cefoperazone-sulbactam 4/4 > 4/4 2/2->4/4 NA NA NA

Levofloxacin 1 1 0.5-2 100 0 0

Meropenem 0.5 1 0.25-1 8.3 47.2 44.4

Piperacillin-tazobactam > 4/4 > 4/4 2/4->4/4 NA NA NA

Tigecycline 0.015 0.03 0.015–0.03 100 0 0

PSSP (n = 34)b

Ceftaroline 0.015 0.03 0.008–0.12 100 0 0

Ampicillin-sulbactam ≤ 0.12/0.06 ≤ 0.12/0.06 ≤ 0.12/0.06-≤0.12/0.06 NA NA NA

Cefoperazone-sulbactam ≤ 0.12/0.12 0.25/0.25 ≤ 0.12/0.12-1/1 NA NA NA

Levofloxacin 1 2 0.5-2 100 0 0

Meropenem ≤ 0.03 ≤ 0.03 ≤ 0.03–0.5 97.1 2.9 0

Piperacillin-tazobactam ≤ 0.25/4 ≤ 0.25/4 ≤ 0.25/4-≤0.25/4 NA NA NA

Tigecycline 0.015 0.03 ≤ 0.008–0.06 100 0 0

Coagulase-negative staphylococci (n = 125)

Ceftaroline 0.5 4 ≤ 0.06->16 NA NA NA

Ampicillin > 8 > 8 ≤ 0.25->8 NA NA NA

Table 2 In vitro susceptibilities of Gram-positive isolates obtained from the ATLAS program, 2018
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Ceftazidime-avibactam showed high activity against 
most Gram-negative species.

Ceftaroline had in vitro activity with low MIC90 val-
ues against all tested Gram-positive bacteria, except 
E. faecium, as previously observed in China [17]. For 
E. faecium, only tigecycline showed a low MIC90 value 
among the drugs tested. Ceftaroline showed favorable 
activity against all the streptococcal isolates, as previ-
ously reported [17, 19]. The susceptibility rate (93.8%) 
of S. aureus to ceftaroline in the present study was much 
higher than the corresponding value (65.6%) reported 
for S. aureus isolates from hospitalized patients in China 
between 2012 and 2014 [17]. Globally, the susceptibility 
of MRSA to ceftaroline increased from 87.5% in 2012 to 
91.7% in 2016 [20] indicating the effective management 
of antibiotics. Against MRSA, ceftaroline and tigecycline 
both showed good in vitro activity in the present study. 
Tigecycline, in addition to vancomycin and linezolid, 
may be suitable alternatives when ceftaroline resistance 
is observed. In Gram-negative bacteria, the susceptibility 
rates to ceftaroline were relatively low.

Enterobacteriaceae is a large family that includes, 
among others, E. coli, K. pneumoniae, E. cloacae, P. mira-
bilis, M. morganii, S. marcescens and C. freundii, and 
all these species were examined in the present study. 
As a β-lactamase inhibitor, the addition of avibactam 
at 4  mg/L (fixed concentration) improved the ceftazi-
dime MIC90 value up to 256-fold against the species of 
Enterobacteriaceae tested in this study. The improve-
ments in MIC90 and susceptibility with the addition of 
avibactam to ceftazidime were consistent with previous 
reports in China, Europe, Canada, and the United States 
during 2012–2014 [17, 21, 22]. Ceftazidime-avibactam 
showed potent activity against E. coli, K. pneumoniae, 
E. cloacae, P. mirabilis, S. marcescens and M. morganii 

(susceptibilities to ceftazidime-avibactam, 90.2–97.7%). 
Compared with global susceptibility data from 2012 to 
2016, the susceptibilities of Enterobacteriaceae to ceftazi-
dime–avibactam decreased slightly, but with a marked 
decrease observed in C. freundii and P. mirabilis from 
98.5% to 99.7% during 2012–2016 to 82.1% and 90.2% 
in 2018, respectively [20]. Similar potent activity against 
Enterobacteriaceae was observed for imipenem and 
meropenem, while tigecycline displayed the highest sus-
ceptibility rate, in general, of the drugs tested. Still, tige-
cycline has limitations such as low serum concentrations 
and excessive deaths, and inferiority to other agents for 
certain types of infection [23, 24]. These factors should be 
considered when selecting an antibiotic.

For A. baumannii, neither ceftaroline nor ceftazidime-
avibactam showed significant in vitro activity. High 
MIC90 were observed for all antibiotics except colistin 
and tigecycline, as supported by a previous national sur-
veillance study in China [17]. For P. aeruginosa, ceftazi-
dime-avibactam showed good activity (90.7% susceptible) 
but with a relatively high MIC90 value. That was similar 
to the previous reports and was expected because avi-
bactam had reduced activity against non-fermentative 
Gram-negative bacilli caused by non-enzyme-mediated 
resistance [17]. Nevertheless, avibactam was not com-
pletely without effect since some improvements in MIC90 
compared to ceftazidime alone were observed in P. aeru-
ginosa (16-fold reduction) and A. baumannii (≥ 4-fold 
reduction), as previously observed [17, 25, 26].

In the past few years, the rates of imipenem-resistant 
K. pneumoniae increased from 3.0 to 10.5% and imipe-
nem-resistant P. aeruginosa decreased from 31.0 to 26.6% 
from 2005 to 2014 in China [27], while the imipenem-
resistant rate was 32.7% in K. pneumoniae and 33.2% in 
P. aeruginosa in 2018 this study. Ceftazidime-avibactam 

Organism/Antibiotic MIC50 MIC90 MIC Range % Susceptible % Intermediate % 
Resistant

Ampicillin-sulbactam 4/2 > 8/4 ≤ 0.25/0.12->8/4 NA NA NA

Levofloxacin > 4 > 4 ≤ 0.03->4 32.0 0.8 67.2

Tigecycline 0.25 0.5 0.03-1 NA NA NA

β-hemolytic streptococci (n = 64)c

Ceftaroline 0.015 0.03 ≤ 0.004–0.06 100 0 0

Ampicillin-sulbactam ≤ 0.12/0.06 ≤ 0.12/0.06 ≤ 0.12/0.06–0.5/0.25 NA NA NA

Cefoperazone-sulbactam 0.25/0.25 1/1 ≤ 0.12/0.12-4/4 NA NA NA

Levofloxacin 0.5 1 ≤ 0.25->4 98.4 0 1.6

Meropenem ≤ 0.03 0.12 ≤ 0.03–0.25 100 0 0

Piperacillin-tazobactam ≤ 0.25/4 0.5/4 ≤ 0.25/4-0.5/4 NA NA NA

Tigecycline 0.03 0.06 ≤ 0.008–0.12 100 0 0
MIC = minimal inhibitory concentration; CLSI = Clinical and Laboratory Standards Institute; MRSA = methicillin-resistant Staphylococcus aureus; MSSA = methicillin-
susceptible Staphylococcus aureus; PRSP = penicillin-resistant Streptococcus pneumoniae; PSSP = penicillin-susceptible Streptococcus pneumoniae; NA = not applicable

a. For levofloxacin, 76 Streptococcus pneumoniae isolates were tested

b. For levofloxacin, 33 penicillin-susceptible Streptococcus pneumoniae isolates were tested

c. For levofloxacin, 63 β-hemolytic streptococci isolates were tested

Table 2 (continued) 
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displays potent activity against many carbapenem-resis-
tant isolates. In the present study, the susceptibility rates 
of IMP-R K. pneumoniae and IMP-R P. aeruginosa to 
ceftazidime-avibactam for this project isolate set (93.0% 
and 75.8%) were higher than those (81.6% and 72.7%) 
observed for global isolates from ATLAS program in 
2016 [20]. The change in susceptibility of imipenem resis-
tant K. pneumoniae and P. aeruginosa to ceftazidime avi-
bactam could be due to a change in regional molecular 
epidemiology. MBL type carbapenemase production was 
the main resistance mechanism of enterobacteriaceae 
against ceftazidime-avibactam. In carbapenem-non-
susceptible P. aeruginosa, only 14.18% isolates were posi-
tive for blaIMP or blaVIM [28]. And the isolation rates of 
organisms with MBL type carbapenemases in CRKP 
generally decreased from 2016 to 2020 [29], which might 
be a reason for the increased susceptibility rates to 
ceftazidime-avibactam.

Generally speaking, avibactam is active against Class 
A, C and some D β-lactamases but not against class B 
enzymes which were the main resistance mechanism 
in IMP-R E. coli [12, 30]. The reason why ceftazidime-
avibactam was generally much more active than ceftazi-
dime alone is likely due to the prevalence of Class A/C/D 
enzymes and low levels of Class B enzymes in the isolates 
tested. Consistent with this view, some studies showed 
that MBL genes were much more prevalent in CR-E. coli 
than CRKP [18, 30]. In our study, ceftazidime-avibactam 
was much more active against IMP-R KPN than IMP-R 
E. coli.

Ceftaroline displayed good activity against the major 
groups of Gram-positive pathogens. Most importantly, 
the biggest draw of ceftaroline is that it maintains activity 
against PBP2a of MRSA, although MRSA was 83.9% sus-
ceptible to ceftaroline while MSSA was 100% susceptible 
to ceftaroline. Furthermore, ceftaroline is generally active 
against non-ESBL producing Enterobacteriaceae.

The results of overall in vitro activity of ceftaroline 
against the Gram-positive species and ceftazidime-avi-
bactam against the Gram-negative species are, in general, 
similar to those of other surveillance programs in China 
[17], more broadly, in Asia [31] and in other parts of the 
globe such as in the United States [32–34] and Europe 
[35]. The present data are also supported by the AWARE 
surveillance program [36–38]. Nevertheless, some differ-
ences can be observed among the surveillance reports, 
but they might be due to the country of origin of the 
isolates and the change in susceptibility over time and 
among countries [32, 39–41].

This study has limitations. The data covered only one 
year (2018) and only one country (China). Therefore, the 
data presented here are more of a snapshot than a lon-
gitudinal study of resistance trends in China and cannot 
represent the evolution of antibiotic resistance over time. 

Other limitations are inherent to the ATLAS program, 
e.g., antimicrobials tested (notably, linezolid and vanco-
mycin were not tested against the Gram-positive sets), 
and a lack of genotypic analysis.

Conclusion
In conclusion, the 2018 ATLAS results for China sug-
gest that ceftaroline displayed good activity against most 
Gram-positive species. Ceftazidime-avibactam displayed 
potent activity against many Gram-negative species. 
These data confirm and extend previous resistance data 
reported on bacterial pathogens from China. Such data 
are important when the empirical selection of an antibi-
otic is necessary.

Materials and methods
Bacterial isolates
The study collected clinical isolates from 17 medi-
cal center laboratories located in 15 Chinese provinces 
participating in the ATLAS program in 2018. Each par-
ticipating center isolated and identified pathogens using 
routine clinical laboratory methods, stored them in tryp-
tic soy broth with glycerol at -70 °C, and delivered them 
to Peking Union Medical College Hospital for re-iden-
tification and antimicrobial susceptibility testing. Only 
the first isolated strain that was considered an infection-
related pathogen was included for the test. In the central 
lab, all isolates were identified by matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS, Vitek MS; bioMerieux, Lyon, France).

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was carried out by 
Peking Union Medical College Hospital by broth micro-
dilution method according to the Clinical and Labora-
tory Standards Institute (CLSI) using panels purchased 
from ThermoFisher Scientific (Cleveland, OH, USA). 
Minimum inhibitory concentrations (MICs) were inter-
preted using the CLSI breakpoints except for tigecycline, 
for which the US Food and Drug Administration (FDA) 
breakpoint were used [42]. In Gram-negative bacteria, 
ceftaroline, ceftazidime-avibactam, and the following 
comparator agents were tested: amoxicillin-clavulanic 
acid, ampicillin, ampicillin-sulbactam, cefepime, cefo-
perazone-sulbactam, ceftazidime, ciprofloxacin, colistin, 
imipenem, levofloxacin, meropenem, piperacillin-tazo-
bactam, and tigecycline. In Gram-positive bacteria, cef-
taroline and the following comparator agents were tested: 
ampicillin, ampicillin-sulbactam, penicillin, cefopera-
zone-sulbactam, levofloxacin, meropenem, piperacillin-
tazobactam, and tigecycline. The antibiotic ranges and 
concentration of inhibitors were added in the supple-
mentary file Table S1. Quality control strains were used 
throughout the whole testing process for each batch of 
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MIC tests, including Escherichia coli ATCC 25922, Kleb-
siella pneumoniae ATCC 700603, Pseudomonas aerugi-
nosa ATCC 27853, Staphylococcus aureus ATCC 29213, 
and Streptococcus pneumoniae ATCC 49619. Results 
were only included in the analysis when corresponding 
quality control isolate test results were in accordance 
with CLSI guidelines and therefore within an acceptable 
range.
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