
Clinton et al. BMC Microbiology          (2021) 21:313  
https://doi.org/10.1186/s12866-021-02374-0

RESEARCH

Sampling the fish gill microbiome: 
a comparison of tissue biopsies and swabs
Morag Clinton1,2*, Adam J. Wyness1,3, Samuel A. M. Martin4, Andrew S. Brierley1 and David E. K. Ferrier1* 

Abstract 

Background:  Understanding the influence of methodology on results is an essential consideration in experimental 
design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. 
This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing 
versus biopsy excision. Results demonstrate the variation introduced by altered sampling strategies and enhance the 
available knowledge of the fish gill microbiome.

Results:  The microbiome was sampled using swabs and biopsies from fish gills, with identical treatment of samples 
for 16S next generation Illumina sequencing. Results show a clear divergence in microbial communities obtained 
through the different sampling strategies, with swabbing consistently isolating a more diverse microbial consortia, 
and suffering less from the technical issue of host DNA contamination associated with biopsy use. Sequencing results 
from biopsy-derived extractions, however, hint at the potential for more cryptic localisation of some community 
members.

Conclusions:  Overall, results demonstrate a divergence in the obtained microbial community when different sam-
pling methodology is used. Swabbing appears a superior method for sampling the microbiota of mucosal surfaces 
for broad ecological research in fish, whilst biopsies might be best applied in exploration of communities beyond the 
reach of swabs, such as sub-surface and intracellular microbes, as well as in pathogen diagnosis. Most studies on the 
external microbial communities of aquatic organisms utilise swabbing for sample collection, likely due to conveni-
ence. Much of the ultrastructure of gill tissue in live fish is, however, potentially inaccessible to swabbing, meaning 
swabbing might fail to capture the full diversity of gill microbiota. This work therefore also provides valuable insight 
into partitioning of the gill microbiota, informing varied applications of different sampling methods in experimental 
design for future research.

Keywords:  Experimental design, Sampling methodology, Gill microbiota, Microbial assemblages, Aquaculture, 
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Introduction
The microbiome is considered critical to health in 
many aquatic organisms, which requires maintenance 
of a diverse microbial community [1]. Study of the 

microbiome therefore presents an exciting avenue of 
research in fish. There is a growing body of data on fish 
microbiomes, examining resident microbiota of differ-
ent tissues, and how communities respond to changes 
such as diet and environment. While only a small num-
ber of true mutualistic relationships have thus far been 
described in teleosts [2–6], many researchers propose a 
role for the resident microbiota of fish in immune func-
tion and disease resistance, as well as in nutrient uptake 
for enhanced growth [7–11]. Under ‘normal’ conditions, 
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the microbiota is in homeostasis, however, whenever this 
breaks down ‘dysbiosis’ is considered to occur; whereby 
a disrupted microbiome results as a consequence of, or 
predisposition to, disease [12–14]. Gill microbiota are 
hypothesised to assist in prevention of infectious dis-
ease through competition and production of commu-
nity modulatory compounds [15]. Shifts in community 
structure might therefore predispose the fish to pathol-
ogy through increased growth or ingress of undesirable 
microbes that might cause disease, or impair tissue func-
tion [16, 17]. An understanding of the microbial ecology 
of fish tissues is clearly essential in understanding the 
role bacteria might play in fish health, and for explor-
ing the existence of any mutualistic relationships. Of 
particular interest to researchers are the relationships 
between important aquaculture species such as Atlantic 
salmon (Salmo salar) and their microbial consortia [18, 
19]. Many critical uncertainties remain as yet in this area 
of research, particularly regarding the involvement of 
microbial communities and other factors that influence 
the complex suite of gill disorders experienced by these 
fish [20–23].

Gill health in farmed fish is fundamental to over-
all health and their performance. As such, research is 
beginning to examine the diversity and structure of the 
gill-specific microbial communities across a number of 
fish species [24, 25]. Gills are  important immunologi-
cally active mucosal tissues [26, 27], considered the site 
of much pathogen ingress due to their environmental 
exposure. Recent evidence has shown significant diver-
gence between the microbial community of gills and sur-
rounding water in numerous fish species [28–30]. It is 
considered that the microbiota of external epithelial tis-
sue, although influenced by external factors [31, 32], is 
distinct from environmental populations in part due to 
host factors, as well as existing microbial interactions [19, 
33, 34]. Although recent studies have explored the distri-
bution across the gill ultrastructure for specific micro-
bial taxa, such as the pathogen Yersinia ruckeri [35], the 
potential for varied population distribution of microbial 
assemblages across the topography of gill tissue remains 
to be resolved. Research on the Atlantic salmon gastro-
intestinal tract (GIT), however, suggests existence of a 
‘core’ microbiota for specific tissue regions; a population 
of consistently resident microbes suggested to be special-
ised to specific compartments, with utility in digestion 
or defence [11, 36, 37]. Such a community remains to be 
established for external epithelial tissues such as skin and 
gills.

Development of standard methods for exploration of 
different facets of the microbiome is essential to ensure 
representative, reproduceable research with recommen-
dations to avoid bias during the sampling and processing 

[38–40]. Variations in sampling and storage as well as 
DNA extraction protocol have all been shown to impact 
the final outputs of data in the study of terrestrial ver-
tebrates [41–44]. These early stages on the pipeline can 
have impacts on the high-throughput sequencing results 
of microbial communities. However, less information is 
available regarding protocol suitability for the study of 
aquatic organisms [39, 45, 46]. The existing fish-specific 
studies testing the impact of storage method [47] and 
extraction protocols [48] on surveys of community com-
position report variation in results with altered tech-
niques, but the impact of sampling methodology is as 
yet poorly understood. Whilst previous research has also 
demonstrated the importance of sample location in iso-
lation of particular compartment-specific subsets of GIT 
microbial communities [49, 50], there exists no published 
data regarding the impact of sampling methodology or 
localisation on gill communities. Traditional microbio-
logical culture techniques obtain microbiota from tissue 
sections directly, or by swabbing the gill surface [51], and 
remain important in pathogen diagnosis. Many marine 
microbiota are considered particularly difficult to cul-
ture however, and sequencing is often more successful in 
isolation of diverse communities. Existing publications 
in molecular isolation utilise a variety of sampling tech-
niques from gills including swabbing [24, 52], and biop-
sies [30, 53], but none so far have contrasted these two 
methodologies.

Biopsies are more invasive than swabbing, and there-
fore often less desirable in many contexts, however, their 
use can be warranted in specific circumstances. In the 
study of human epithelial tissue for example, although 
swabbing is considered a suitable proxy and preferable 
alternative to biopsy excision for isolation of epidermal 
microbiota in many clinical scenarios [54, 55], research in 
human health identifies a lack of comparability between 
swab and biopsy in sampling different human epithelial 
tissues in a number of instances [56, 57], necessitating the 
use of biopsies for microbial isolation  in some circum-
stances. Overall though, there remains a lack of consen-
sus within the human literature as to the comparability 
of these methods in the study of the GIT and healthy skin 
microbiota [42, 58–60]. Although the methodologies of 
swabs and biopsies have thus been compared in many 
different human medical scenarios, this information is 
lacking in the study of fish. Crucially, no information is 
available either regarding the distribution of any site-
specific microbiota of gill tissue that might inform best-
practice in sampling.

Here, we compare the utility of swabbing and biopsy 
sampling in Atlantic salmon, a commercially important 
finfish, and demonstrate that the two sampling tech-
niques provide very different profiles of the resident 
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microbiome. Swabbing provides a wider coverage of the 
diversity of microbes, presumably living on the swab-
accessible surfaces of the gill, whereas biopsies provide 
a more restricted coverage of diversity, but importantly 
seem to include swab-inaccessible taxa, many of which 
may be of relevance to gill pathogenesis. These results 
should inform future experimental design in the study 
of gill microbiota, as well as provide insight into any ana-
tomical influences on microbial community composition.

Results
Community level differences between swab 
and biopsy‑derived samples
A total of 24 samples were obtained, of  swab and 
biopsy samples from each  individual of Atlantic salmon 
as well as environmental microbial communities. Beyond 
different collection strategies, sampled material was 
treated identically to explore the impact of sampling 
methodology on results (Fig. 1). From swab sampling, fol-
lowing DNA extraction, amplification and sequencing, a 
total of 119,258 pre-processed reads were obtained, with 
an average of 11,435 quality-filtered reads per sample 
after processing. Corresponding biopsy samples resulted 

in a total of 80,111 pre-processed reads and an average 
of 2352 quality-filtered reads per sample after process-
ing. High frequency filtered reads (considered those 
where over 1000 reads where identified) were explored 
using BlastN and identified to be from  salmonid DNA 
in all cases. Filtration of reads removed a high number 
of these sequences from biopsy samples in particular 
(Additional  file  1). Rarefaction curves suggest adequate 
depth of sequencing was achieved based on sequencing 
plateaus (Additional file 1). From the swab-derived sam-
ples a total of 303 Amplicon Sequence Variants (ASVs) 
were identified. This equated to 260 genera, 164 families, 
99 orders, 51 classes and 24 phyla. For biopsy-derived 
samples, total counts of ASVs at different taxonomic lev-
els from the same individuals were overall lower. A total 
of 131 ASVs, representing 114 genera, 86 families, 57 
orders, 33 classes and 14 phyla were obtained.

Non-metric multi-dimensional scaling (nmMDS) of 
microbial community based on non-rarefied datasets 
[61] demonstrates an association of samples by sampling 
methodology (Fig.  2). Despite being obtained from the 
same fish, concurrently obtained swabs and biopsies do 
not show a close association, ordinating principally by 

Fig. 1  Sampling methodology. Biopsy excision and swab application was performed on the left and right sides of fish respectively. The first gill 
was sampled in situ for each methodology prior to fixation of samples. Biopsies were excised as full tissue thickness sections including supporting 
cartilage and filament tissue. Swabbing (A) was performed over a corresponding gill region to tissue excision (B). Samples were subsequently 
utilised in DNA extractions (C, D). Swabs were scraped using a sterile blade and extractions performed on this dislodged material as well as directly 
from the swab (C). A fraction (10 mg +/− 2 mg) of each biopsy tissue sample was processed for DNA extraction (D), with replication achieved 
through successive extractions from further biopsy sub-samples. This file was partially generated using BioRender
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Fig. 2  Beta diversity indices of swab and biopsy results. A. Hierarchical cluster analysis of square root transformed Bray-Curtis data (shown in panel 
B) demonstrates group average clustering of community results between swab and biopsy samples. Red lines group statistically indistinguishable 
samples, and black lines indicate statistically significant differences between samples (with significance set at 0.01 and performed using SIMPROF 
testing in Primer 7). C. non-metric multi-dimensional scaling plot of square root transformed Bray-Curtis data illustrates resemblance of microbial 
communities obtained by swabbing, biopsy excision and from surrounding environmental populations. Generated using Primer 7
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method of collection instead. Plotted variables demon-
strate no clear association of samples obtained from the 
same individual. Group average hierarchical cluster anal-
ysis of overall microbial community sequencing (using 
results of standardised Bray-Curtis similarity analysis) 
supports these results (Fig.  2). Hierarchical clustering 
demonstrates six statistically distinct clusters, with clus-
ters containing only swab or biopsy samples, never both. 
Statistically significant clusters can be grouped visually 
to two main clusters overall (subsequently referred to as 
Cluster 1 and Cluster 2). Cluster 1 is composed mainly 
of swab-derived isolates (90% swabs, 10% biopsies), and 
Cluster 2 is composed entirely of gill biopsy commu-
nities (100%). Statistical differences between samples 
were identified using the inbuilt SIMPROF testing of the 
Primer 7 cluster function, with significant (p = < 0.01) dif-
ferences highlighted in black, and samples with a lack of 
significant variation clustered with branches coloured 
red. Intra-individual differences in results are identi-
fied with sampling methodology, with no significant 

association of concurrently obtained swab and biopsy 
samples from any individual. Interestingly, swabs appear 
less distally removed from environmental microbial com-
munities than biopsy-derived samples in nmMDS, sug-
gesting a closer community structure.

Permutational multivariate analysis of variance (PER-
MANOVA) based on the standardised Bray-Curtis 
dissimilarity matrices and performed using Primer 7 sup-
ports significant influence of sampling methodology on 
composition of results (p = 0.01 and t = 2.689 with 979 
unique permutations), with a notable but less significant 
difference between the two sampling timepoints repre-
sented within the dataset (p = 0.021) (Additional  file  2). 
Use of a further PERMANOVA design based on Bray-
Curtis to compare variation of grouped swab and biopsy 
samples across individual fish found no significant differ-
ences (Additional file 3). Unweighted UNIFRAC analysis  
provided similar results (Additional file 4). Alpha diver-
sity indices of ASV richness, Pielou’s evenness, Shannon, 
and Simpson diversity from a rarefied dataset (Fig.  3) 

Fig. 3  Alpha diversity indices of swab and biopsy results. Richness (A), evenness (B), Shannon (C) and inverted Simpson (D) diversity plots illustrate 
variation between biopsy (left) and swab (right) derived results. Calculations for diversity, evenness and richness were performed using in-built 
functions of R software, with box plots generated using the same program
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also illustrate a clear difference in community richness 
and various measures of diversity between sampling 
methodologies.

Variation in isolated taxa with gill region sampled
When total identified ASVs were contrasted between 
swabs and corresponding gill biopsy samples, a subset 
of taxa were identified by both methodologies, but an 
overall greater number were not. A total of 73 ASVs were 
concurrently identified in both biopsy and swab-derived 
samples, whereas 45 were observed exclusively within 
the biopsy samples (but not in either swab or seawater 
samples), and a total of 230 ASVs were identified in swab-
derived samples that were not seen in the biopsy samples. 
These findings are illustrated in Additional  file  5, with 
supporting data in Additional files 6, 7, 8 and 9).

Variation in microbial predominance across taxonomic 
levels with varied sampling methodology
Predominant taxa were determined as those composing 
an average abundance of 0.5% or more within a com-
munity, when surveyed at phylum (Additional  file  10) 
and order (Additional file 11) level. The dominant phyla 
of swab-derived sampling were Proteobacteria (average 
abundance 72.8%), Bacteroidetes (22.3%), Chlamydiae 
(2.8%) and Verrucomicrobia (1.1%). The dominant phyla 
frequency of corresponding biopsy samples meanwhile 
were Proteobacteria (average abundance 87%), Bacteroi-
detes (5.7%), Chlamydiae (3.8%), Verrucomicrobia (0.7%), 
Firmicutes (0.7%) and Actinobacteria (0.5%). Although 
these abundances are relative within a compositional 
dataset, clear trends in dominant microbial taxa are seen. 
Relative abundance of Bacteroidetes is particularly vari-
able, and was identified by applying Analysis of Compo-
sition of Microbiomes (ANCOM) [62] testing through 
the Qiime pipeline as significantly divergent across sam-
pling methodologies. Varied relative abundance at order 
level between sampling methods was also detected using 
ANCOM testing for  Flavobacteriales, Pseudomonadales 
Sphingomonadales and Rhodobacterales.

Comparison of swab and biopsy-derived microbial 
populations from specific individuals also demonstrated 
a clear difference in community composition using dif-
ferent sampling methodologies (Fig.  4). Intra-individual 
comparisons at class level allow observation of general 
trends in community composition, including a tendency 
towards dominance of Betaproteobacteria within biopsy-
derived samples. Swab-derived results appear to contain 
a more even proportional abundance of observed taxa, 
with greater proportional composition of Flavobacteria, 
as well as Gamma- and Alphaproteobacteria (Fig. 4).

Differences in the relative compositional abundance of 
specific taxa were assessed using similarity percentage 

analysis (SIMPER) to determine the bacteria of greatest 
impact on observed variation between sampling meth-
odologies (Table 1). A total of 17 genus-level ASV’s were 
identified to account for 49.98% of observed variance 
between swab and biopsy samples. The microbes identi-
fied as having the greatest contribution to this dissimilar-
ity between groups were (in order); Procabacteriaceae; 
unclassified (8.23%), Psychrobacter (6.37%), Flavobac-
teriaceae; unclassified, (4.52%), Candidatus  Piscichla-
mydia  (2.93%), Rhodobacteraceae; unclassified (2.79%), 
Loktanella sp (2.79%), Chryseobacterium (2.68%) and 
Candidatus  Branchiomonas (2.56%). Of these, Procabac-
teriaceae, Candidatus  Branchiomonas  and Candidatus  
Piscichlamydia  demonstrate greater relative abundance 
within biopsy samples, and the remaining genera are 
generally of greater abundance in swab-derived samples 
(Table 1).

Discussion
Resident microbial external epithelial communities of 
fish can be influenced by many factors, including envi-
ronmental and host drivers of variation [63–65], and so 
every effort was made to minimise the impact of these 
factors on intra-individual methodological comparisons 
in this research. The influence of external variables in 
this research were considered to have been comparable 
within each fish at the time of sampling, with host fac-
tors such as physiological stress and nutritional status 
also having a consistent impact on gills [66, 67]. How-
ever, disease status and other contralateral impacts on 
community were identified as potential uncontrolled 
variables that might introduce intra-individual left-right 
variation in the microbial consortia of gills [12]. Every 
effort was therefore made to limit the impact of disease 
status on results. This was implemented by ensuring con-
tralateral gills presented identically in gross assessment, 
and by excluding fish considered to be suffering anything 
more than mild gross gill pathology [68]. No active bac-
terial infections, including epitheliocystis, were observed 
through histological assessment of the gills in this study, 
although these assessments were conducted using second 
gill arches, and not the first arches obtained for sequenc-
ing. Samples for comparison of swabs and biopsies were 
obtained from contralateral gills as it was considered that 
swabbing a tissue prior to biopsy excision might disrupt 
the community subsequently collected. Identical ana-
tomical regions of gills were, however, sampled from 
each first left and first right gill for swabbing and biopsies 
respectively (Fig. 1). As with any study of the microbiome, 
the influence of natural variation of microbiota across gill 
surfaces within an individual must be expected. How-
ever, results indicate consistent trends in communities 
obtained with varied sampling methodology, which is 
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likely not explainable by natural geographical variation 
across the gill surface. Thus, the sampling methodology 
significantly impacts assessments of community rich-
ness and diversity (Fig.  3) as well as producing signifi-
cant variation in the isolation of specific taxa at multiple 
taxonomic levels. Significant inter-individual variation 
of microbiota has been previously described in Atlantic 
salmon [69]. However, study of the microbiome in other 
species demonstrates fairly consistent intra-individual 
community structure when a consistent sampling meth-
odology is employed across bilaterally symmetrical, phys-
iologically comparable body sites, provided there is an 
absence of an on-going disease state and despite varied 
topographical sample collection [70, 71]. If a similar sce-
nario applies then in fish, we might expect similarity of 
microbial consortia obtained from identical gill anatomi-
cal regions, despite inter-individual variation. Although 
the results of this research do identify notable variation 
in relative abundance of specific taxa within sampling 
methods (Additional files 10 and 11) sampling methodol-
ogy does appear to be an important determinant factor in 

assessments of community composition, as evidenced by 
PERMANOVA analysis. Whilst individual variation was 
expected across left and right sampled gills, it was con-
sidered that the broad trends observed in bacterial rich-
ness and diversity of this research (Fig. 3) were unlikely to 
be due to a purely left/right sampling effect. Studies in the 
external epithelia and mucosal surfaces of humans find 
no significant left to right sampling differences unless 
clinical disease is present, although they do note subtle 
individual variation [72–74]. While a left right effect on 
these results cannot be excluded, disease is accounted for 
in this study by histopathology and gross scoring. Broad 
trends observed in bacterial richness and diversity of this 
research are therefore considered unlikely to be due to a 
purely left/right sampling effect, with sampling method-
ology the most likely driver of the variation in diversity 
observed.

Results therefore support a divergence in data obtained 
from identically treated swab and biopsy-derived high-
throughput sequencing, indicating different sampling 
methodology likely impacts the microbial genomic 

Fig. 4  Stacked bar plot of Class level taxa. Stacked bar figure illustrating relative abundance of identified taxa at Class level across individual 
sampled fish. Variation in community composition of gill tissue obtained from the same individual using swab or biopsy methodology is visualised 
with paired stacked bars. Plots were generated using the ggplot package for R software
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material obtainable from Atlantic salmon. Significant 
variation in richness between biopsies and swabs was 
identified using a Mann-Whitney non-normal two group 
test (P = 0.0006). Although inference of statistical sig-
nificance between diversity indices is not considered 
best practice [75–77] and so was not performed here, 
based on plotted results in Fig. 3, findings do suggest dif-
ferences between the diversity of swab and biopsy sam-
pling. Swabbing overall appears to collect a richer and 
more diverse microbiota, with apparent greater similar-
ity to environmental isolate community composition 
(Fig. 2). Read counts obtained from swabbing were con-
sistently higher both before and after filtration process-
ing (Additional file 1). Biopsy-derived communities were 
of lower diversity and overall lower read counts in gen-
eral. This trend is maintained across individuals, with 
varied microbial consortia obtained by altering sampling 
methodology and following a standard amplification and 
sequencing protocol. Biopsy-derived samples demon-
strated more intra-individual variation overall, but com-
munities were overall of lower richness and diversity.

An important influence on this study was the impact 
of host-DNA contamination in biopsy-derived samples. 
High presence of host genomic material can overwhelm 
low biomass microbial signals in sequencing reactions 
[78], resulting in artificially reduced community rich-
ness. Initial microbial biomass in DNA extractions is 

unknown for this study due to the sampling methodol-
ogy employed. High biopsy mass relative to tissue mass 
on swabs is confounded by the greater presence of host 
tissue in biopsy samples. All but two of the swab-derived 
samples yielded greater read numbers before and after 
filtration when compared to biopsy samples. In addi-
tion, analysis of the filtration datasets demonstrated 
that our filtration removed an average of 11.5% of reads 
from swab-derived samples, compared to an average of 
76.3% of total reads removed from biopsy-derived sam-
ples (Additional File 1). This is likely due to the negative 
impact of high levels of host-derived sequences within 
biopsy samples. Although rarefaction curves suggest suf-
ficient sequencing depth was achieved (Additional file 1) 
[79], these indicators are only useful in assessment of the 
success in capturing available diversity within a sample, 
not ‘true’, original diversity that may have been excluded 
due to high contaminant DNA inclusion and result-
ing low microbial inclusion [80] within PCR reactions. 
Degree of inhibition in final sequencing results is there-
fore an important concurrent influence on observed vari-
ation between sampling methodologies in assessment of 
the salmonid microbiome, and an important considera-
tion for study design. This impact is also demonstrated, 
for example, in the study of the human ileal pouch where, 
although mucosal-associated microbial communities that 
were isolated were compositionally similar, less invasive 

Table 1  Results of SIMPER analysis

Results of SIMPER analysis (performed using Primer 7) to determine the contribution of specific microbial taxa to overall dissimilarity between swabs and biopsy 
groups within square-root transformed Bray-Curtis resemblance dataset (Fig. 2). Average relative abundance (%) in both biopsy and swab datasets is presented 
alongside SIMPER analysis output

Genus Contrib% Av.Diss Diss/SD Cum.% Average proportional 
abundance biopsy

Average 
proportional 
abundance swabs

Procabacteriaceae; unclassified 8.23 5.66 1.72 8.23 69.8 19.5

Psychrobacter 6.37 4.38 2.09 14.6 1.7 14.2

Flavobacteriaceae; unclassified 4.52 3.11 1.82 19.12 2.8 10.2

Candidatus Piscichlamydia 2.93 2.02 1.47 22.05 3.8 2.7

Rhodobacteraceae; unclassified 2.79 1.92 2.21 24.84 0.3 3.2

Loktanella 2.79 1.92 1.8 27.63 0.2 3.1

Chryseobacterium 2.68 1.85 1.75 30.31 1.4 3.9

Candidatus Branchiomonas 2.56 1.76 0.88 32.87 4.3 1.3

Pseudoalteromonas 2.43 1.67 0.75 35.3 0.4 4.3

Sphingomonadaceae; unclassified 2.19 1.51 1.51 37.49 0.8 2.9

Flavobacterium 2.15 1.48 1.3 39.64 0.1 1.3

Photobacterium 2.05 1.41 0.62 41.69 0.1 1.1

Gelidibacter 2.04 1.41 2.03 43.73 0.3 1.6

Tenacibaculum 1.73 1.19 1.52 45.46 0.3 1.2

Shewanella 1.54 1.06 0.91 47 0.1 1.1

Vibrio 1.52 1.04 1 48.52 0.2 0.6

Aequorivita 1.46 1 1.92 49.98 0.1 0.9
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sampling yielded relatively more bacterial versus host 
DNA [81]. Our study was designed for identical treat-
ment of samples except for collection methodology, how-
ever, it seems likely that sequencing of biopsy-derived 
samples from Atlantic salmon gills would have benefitted 
from a modified sequencing protocol with techniques for 
reduction of host contaminants. Biopsy samples overall 
yielded lower sequence reads, with a high proportion fil-
tered as non-microbial (Additional file 1). To determine 
whether sub-surface and more cryptically located micro-
bial communities of gill tissue are of lower biomass, fur-
ther work might consider a equivolumetric comparison 
of different gill tissue locations [82]. For future studies 
that elect to utilise biopsies in analysis of the gill micro-
biome, use of PCR blockers, previously demonstrated as 
successful in marine diet studies [83, 84], or an altered 
protocol for low microbial biomass [85] would likely 
enhance the protocol.

Targeted molecular diagnostics for gill pathogens are 
often performed using tissue sections [86] with recent 
but as yet unpublished research exploring the use of 
gill clips from live fish to reduce the impact of sampling 
(through avoidance of euthanasia). However, swabbing 
is noted as having equivalence or even superiority in iso-
lation of some pathogens, such as gill surface amoeba 
associated with amoebic gill disease (AGD) [87]. Swab-
bing is often the method of choice for sample collec-
tion in exploration of aquatic microbial ecology in other 
contexts, such as from catch-and-release of endangered 
wild fishes. This is likely due to it being relatively cheap 
and simple to perform, as well as being less invasive [88]. 
Although the current study represents the first published 
contrast of microbial sampling methodology of salmo-
nids, many comparisons in human medical research 
assess the equivalence of swabs and biopsies in differ-
ent medical scenarios, with varied outcomes. Guidance 
in sampling the microbiome of production species such 
as Atlantic salmon will be of great interest to fish health 
professionals, as recent research suggests important links 
of gill microbiota with altered fish health [89], as well as 
in mitigation of emerging disease [90]. Much research is 
conducted in the study of the gill microbiome to under-
stand the influence of factors such as captive production 
facilities and how aging alters epithelial microbiota [91, 
92], and so future research in methodology for sampling 
must include additional taxa, age classes and produc-
tion systems to confirm the application of these findings 
across fish species and in varied contexts.

Overall, diversity and total read count results in this 
research seem to suggest that sampling the gill micro-
biota to answer broad ecological questions, such as for 
trends in microbial assemblage over time or across dif-
ferent populations, might best be answered using a 

swabbing methodology. Swabbing is non-destructive, 
with minimal tissue damage and relative repeatability 
[27] (except for any changes that might be introduced by 
removal of the gill mucus layers). Biopsies are considered 
the gold standard in many human and teleost micro-
bial diagnostics, however, they suffer from PCR inhibi-
tion and lack of sequencing depth, which might hinder 
research when full communities are to be surveyed.

Our results mirror studies of the microbiota of human 
skin that found varied diversity of microbiota using dif-
ferent sampling methodologies, with this variation pro-
posed to be due to the varied tissue depth sampled [42]. 
Clinical research in human health isolates significantly 
different microbial communities at varied healthy skin 
tissue sampling depth [81], suggesting a sub-dermal 
microbial community distinct from epithelial surface 
populations [42, 57]. Previous research in teleosts sug-
gests that microbiota of the GIT also varies across dif-
ferent regions and with tissue depths [36, 37, 49, 50]. 
The potential may exist then for components of the gill 
microbiome to be selectively localised within cryptic tis-
sue locations, such as beneath the surface epithelium. 
In other aquatic species, biopsies have been used suc-
cessfully for assessment of deep tissue bacteria as part 
of infections, or proposed sub-surface symbionts [93]. 
Gills are composed predominantly of epithelial, goblet 
and ionocyte cell layers above supportive cartilage with 
an extensive vascular supply [94] and so lack a dermis, 
however, they do have a highly specialised tissue surface 
structure, with a large surface area that includes various 
regions unlikely to be entirely accessible to swabbing. 
The potential exists then for microbes that were isolated 
exclusively by biopsy excision to represent a community 
that cannot be accessed by swabbing.

A distinct community, if it exists, sampled by full-
thickness tissue excision might reflect the microbiota 
of more ‘cryptic’ locations, possibly with lower aerobic 
demand, that can survive beneath the tissue surface or 
as part of hard-to-reach cartilaginous or intra-lamellar 
populations. Due to the complex ultrastructure of gills, 
it is problematic to quantify gill surface area sampled 
by swabbing and biopsies in this study. However, results 
replicate a realistic diversity survey of gills, where a sin-
gle aspect might be sampled by swabbing, and biopsies 
must sample a more focused area, but with greater access 
to regions of the complex three-dimensional structure 
of gills. Swabbing likely isolated microbiota from the 
lateral gill surface, whilst biopsies samples more of the 
three-dimensional gill structure. Specific isolates identi-
fied only from biopsy sampling included those classified 
using the SILVA database as Enterococcus, Peptoniphilus 
and Chryseobacterium, all genera known to survive in 
anaerobic conditions (Additional  file  7) [95]. Although 
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taxonomic assignation based on sequencing regions of 
16S fragments is error-prone due to similarity between 
related microbes, as well as due to the incomplete nature 
of the sequence databases, results identify the closest 
available taxonomic match for obtained sequences. These 
matches suggest that a number of the microbes identified 
exclusively by biopsy excision might be capable of anaer-
obic respiration and endospore formation. This trend 
might therefore suggest that bacterial isolates accessed by 
excision, which potentially reside in deeper tissue layers 
or more cryptic gill surface areas, vary in their properties 
from those with presumed greater environmental contact 
that are sampled by swabbing. Taxa identified as having 
the highest contribution to dissimilarity between results 
(Table 1) with greater average abundance in biopsy sam-
ples include Candidatus Piscichlamydia and C. Branchio-
monas, both isolates known to be intracellular microbes 
of the gill epithelium and associated with the gill dis-
eases epitheliocystis and complex gill disease [21, 96]. 
Interestingly, Chryseobacterium (of greater abundance 
in swabbing samples) and unclassified Procabacteriaceae 
(greater abundance in biopsy samples) are recognised 
intracellular bacteria of acanthamoeba [97]. There is cur-
rently no information available regarding the niche par-
titioning of variable microbial communities across the 
ultrastructure of gill tissue, but these results raise the 
interesting possibility of its existence. The greater simi-
larity of swab-derived samples to environmental isolates 
(Fig. 2, Additional file 4) might indicate a closer associa-
tion of swabbing-accessible communities to environmen-
tal populations, however this might also merely indicate 
greater incidental contamination of swab-derived isolates 
with environmental microbiota. Artificial similarity of 
community composition due to more diverse datasets 
derived from environmental and swab-derived samples, 
and lower diversity biopsy datasets, must also be con-
sidered. Overall, reduced diversity of biopsy samples 
presents an interesting novel question; might cryptic gill 
locations truly be of lower microbial diversity than sur-
face mucus gill communities? Further work with opti-
mised PCR conditions will assist in determining this. 
Regardless of this, our results demonstrate conclusively 
that sampling methodology impacts results.

Conclusion
Overall, our results show a clear divergence in the micro-
bial community composition that can be detected from 
fish when sampling method is altered. Use of varied 
methodology to collect microbiota, specifically biopsies 
and swabbing, impacts results. Although variation may 
be due in part to difficulties in processing biopsy-derived 
material, swabbing provided enhanced richness and 
diversity of gill microbiota relative to biopsies. Whilst our 

study details the gill microbiota of isogenic animals from 
a single location, results may also be applicable across 
important finfish species. Results therefore show that in 
addition to being a simple, non-destructive procedure, 
swabbing represents an effective methodology for col-
lection of microbiota from fish as part of future aquacul-
ture and ecological studies. Use of biopsies likely remains 
relevant though in the pursuit of specific research ques-
tions, including pathogen diagnostic studies, particularly 
for intracellular or more cryptically located microbes.

Methods
Sample collection
Atlantic salmon were sampled from a marine stage com-
mercial farm by food incentivised crowd-netting from a 
single pen at the Scottish Sea Farms (SSF) Loch Spelve 
facility (56.374760, − 5.768232). The fish were 2 years 
old, of identical genetic background, and had been in sea 
water for 9 months at the first sampling, and 11 months 
at the second. Hand-netted fish were euthanised imme-
diately by husbandry staff using immersion in 500 mg L− 1 
3-aminobenzoic acidethyl ester methanesulfonate (MS-
222) to facilitate sample collection and prevent gill tis-
sue disruption [98, 99]. This methodology was approved 
by the Animal Welfare and Ethics Committee at the 
University of St Andrews in line with European Union 
directive 2010/63UE. Brief post-mortem assessment of 
clinical gill pathology was performed for gross assess-
ment of gills as per industry standard practice, with any 
macroscopic lesions noted before microbial samples 
were obtained using sterile technique. The samples for 
this study were collected as part of a larger histopathol-
ogy study with multiple sampling time-points from the 
same population of fish. Fish for this study were obtained 
on samplings 8 and 9, which is reflected in the naming 
convention of samples. For example, 8F1 denotes Fish 
1, from Sampling 8. Tissue was excised as biopsies from 
the left-side first gill arch gill and swabs were obtained 
from the right-side first gill arch for consistency. Tissue 
sections were approximately 1 cm wide, full length and 
full thickness biopsies and included both cartilage and 
lamellar gill tissue (Fig.  1). No effort was made to wash 
or dry tissue prior to placing in fixative in order to avoid 
disruption of the mucus layer and its associated micro-
biome. Swabs were obtained from a representative area 
on the contralateral gill (Fig. 1). Samples were identically 
fixed in 25 ml RNAlater solution (ThermoFisher Scien-
tific). Fixed material was maintained at ambient tem-
perature for approximately 24 h in RNAlater before long 
term cold storage at − 20 °C. Extractions were performed 
in duplicate for each fixed sample with a maximum of 
two freeze-thaw cycles to tissue. This provided biological 
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replications of tissue biopsies and environmental con-
trols, along with technical replicates from swabs.

DNA extraction and quality control
DNA was extracted from fixed gill tissue using a modi-
fied protocol for DNeasy Blood and Tissue extraction 
kit (Qiagen). Tissue sections (10–12 mg) were mechani-
cally disrupted using scissors prior to addition of DNeasy 
blood and tissue reagents [100]. Samples were air-dried in 
a laminar flow hood before use based on published advice 
for enhanced DNA collection from swabs [101] and to 
better facilitate removal of adherent material. Other pro-
tocols recommend blotting dry to remove excess RNAl-
ater, but given the goals of this study, this was considered 
inappropriate for both swabs and tissue, and so air drying 
was instead employed. A sterile scalpel blade was used to 
scrape swab surfaces to collect adherent material. Extrac-
tions were then performed on both collect material and 
swab buds. Entire environmental samples were centri-
fuged at 3400 g for 10 min (Sigma 3–16 centrifuge with 
11,180 rotor) and the majority of supernatant removed 
before being vortexed and transferred to microcentri-
fuge tubes. These were centrifuged at 15,600 g for 10 min 
(Eppendorf Centrifuge 5424), the supernatant removed 
and discarded, and the remaining liquid evaporated from 
the sample by air-drying in a laminar-flow hood. Samples 
were treated according to the manufacturer’s protocol of 
the DNeasy blood and tissue kit (Qiagen), modified to 
include agitation by vortexing at 15 min intervals for the 
first hour of incubation at 56 °C, followed by an overnight 
(12 h) incubation at 56 °C without agitation [102]. Fol-
lowing digestion, samples were briefly vortexed to ensure 
complete digestion and mixing of sample, before addi-
tion of 2 μl RNAase enzyme (Ambion) and gently mixed 
by inverting. A phenol-chloroform extraction step was 
incorporated into the protocol for both swabs and biop-
sies in response to initially high protein contamination in 
the biopsy samples [100]. High protein might have been 
mitigated by bleeding fish following euthanasia, however, 
this would have introduced a delay in sampling critically 
time sensitive gill tissue for microbial analysis and histo-
pathology. Mass of biopsy tissue for extraction was mini-
mised in line with kit recommendations to 10–12 mg, to 
limit protein inclusion. It was considered use of lower 
tissue biomass might negatively impact study results 
through limitation of gill surface area inclusion. There-
fore, a phenol-chloroform step was introduced, rather 
than further reducing gill biopsy mass. Initial biomass 
of material from swabs is unknown, however, overall less 
host tissue was present in these samples. DNA extraction 
was then completed using the DNeasy Blood & Tissue 
kit (Qiagen) according to the manufacturer’s guidelines. 
Samples were eluted in 200 μl of buffer AE (Tris). DNA 

quality and quantity were analysed using a Nanodrop 
1000 spectrophotometer. DNA concentration was meas-
ured, with repetition of the extraction of any sample 
less than 80 ng mL− 1. Purity and integrity of DNA was 
checked by measuring absorbance at 260:280 nm (> 1.8) 
and 230:260 nm (> 1.8) as well as observance of the DNA 
smear in 1% agarose gels with ethidium bromide. Dupli-
cate DNA extractions were performed and DNA concen-
tration rechecked for all extractions prior to pooling to 
a final concentration of 45 ng μl− 1 for sequencing. Aver-
age concentration of biopsy extractions was 56.1 ng / μl 
(standard deviation 24.5) and average DNA concentra-
tion of swab extractions was 30.3 ng / μl (standard devia-
tion 13.4) prior to pooling.

Next generation sequencing
Amplicon generation and library preparation for high-
throughput sequencing was performed largely in accord-
ance with the Illumina Metagenomic sequencing library 
preparation protocol (Illumina, 2013). Small modifica-
tions, detailed below, were made to optimise data yield 
and quality for the sample type. Primers 341f (5′-TCG​
TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CCT​
ACGGGNGGC​WGC​AG) and 805r.

(5′-GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​
ACA​GGA​CTACHVGGG​TAT​CTA​ATC​C) [103, 104] 
(TruSeq) were used for the amplification of the 16S 
rRNA gene V3-V4 region. Amplicon PCR’s were per-
formed in triplicate for each sample as well as for con-
trols (total = 78), using 25 ng of pooled template DNA 
and 0.5 units of KAPA HiFi HotStart ReadyMix (Roche) 
with 5 pmol of each primer in a total volume of 25 μl. 
Thermocycler conditions were 95 °C, 3 min, followed 
by 27 cycles at 95 °C for 30 s, 55 °C for 30 s and 72 °C for 
30 s; final extension was 72 °C for 5 min, modified con-
ditions based on manufacturers recommendations 
(Illumina). PCR products were purified using AMPure 
beads according to the manufacturer’s protocol, utilis-
ing 20 μl of AMPure XP beads per sample (Agencourt, 
Beckmann Coulter), and duplicate 200 μl washes in 80% 
ethanol before resuspension in 25 μl of 10 mM Tris pH 8.5 
buffer to maximize genomic DNA yield and concentra-
tion. Quantified triplicate PCR products were normalised 
and pooled to a final DNA concentration of 1 ng μl− 1. 
Index PCR reactions were performed for attachment of 
Illumina sequencing adapters and dual indices (Nextera 
XT Index Kit, Illumina) using 5 μl of primer each from 
the Nextera XT kit’s A and D in a unique combination 
for each sample. Reactions were performed using 25 μl 
of 2x KAPA HiFi HotStart ReadyMix (Roche) and 15 ng 
total of pooled template DNA, instead of the recom-
mended 5 μl sample and 10 μl of PCR-grade water, in a 
total reaction volume of 45 μl. Thermocycler conditions 
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were 95 °C for 3 min, followed by 8 cycles at 95 °C for 
30 s, 55 °C for 30 s and 72 °C for 30 s; final extension was 
72 °C for 5 min. PCR products were cleaned using 56 μl 
AMPure XP beads (Agencourt, Beckmann Coulter) in 
accordance with the recommended protocol and eluted 
in 25 μl of 10 mM Tris pH 8.5 buffer according to the 
manufacturer’s protocol. DNA concentration of extrac-
tions, stocks and cleaned PCR reactions were obtained 
by use of the Qubit dsDNA BR Assay and Qubit dsDNA 
HS Assay kits (ThermoFisher Scientific) according to the 
manufacturer’s instructions with Qubit 4.0 Fluorometer 
(Invitrogen, ThermoFisher Scientific). Products from all 
samples were pooled in equimolar concentrations to a 
final library concentration of 4 nM. The resultant library 
was denatured and hybridised according to the manu-
facturer’s recommendations with a 20% PhiX spike-in. 
Pooled tagged amplicons were then sequenced using the 
2 × 300 bp MiSeq reagent kit v3 (Illumina) according to 
the manufacturer’s protocol.

16S microbiome workflow
Demultiplexed next generation data from the sequenc-
ing of prepared libraries was denoised and filtered using 
open source DADA2 [105] within Qiime2 v2019.2 [106, 
107] The following parameters were used for DADA2; 
trunc_len_f: 300; trunc_len_r: 279; trim_left_f: 27; trim_
left_r: 15; max_ee: 2; trunc_q: 2; chimera_method: con-
sensus; min_fold_parent_over_abundance: 1, to produce 
a table of amplicon sequence variants (ASVs) with total 
counts [39, 108]. Taxonomy was assigned to results using 
the SILVA 128 reference database (13.8 version) (Quast 
et  al., 2013) with additional BlastN checking of high 
prevalence ASVs. Sequences assigned to chloroplasts, 
archaea, mitochondria and reads unassigned below king-
dom level were removed for generation of the final data-
set. Abundance profiles were calculated based on total 
read counts in individual samples for assessment of beta 
diversity. Alpha-diversity metrics were calculated from 
treatment medians of a rarefied dataset (1200 reads) 
based on Qiime data and plateau of sequencing depth. 
Only isolates that reached the rarefaction curve plateau 
were included. Resemblance matrices, beta diversity met-
rics and multivariate analysis were performed using the 
programs Primer version 7 and Permanova+. Additional 
figure generation and statistical testing was performed 
using Vegan and Bioconductor packages in R 3.5.0 [109]. 
Figures were generated using Primer version 7 and R. 
Additional statistical testing was performed using in-
built features of R.
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Additional file 1. Rarefaction sequencing curves and total read counts. 
Rarefaction curves before (A) and following (B) filtration to remove taxo-
nomic assignation out-with desired 16S microbial SILVA results. Clear pla-
teaus are seen suggesting adequate sequencing depth was achieved at a 
depth of 1500 sequences from swab and biopsy samples. Accompanying 
table illustrates the total unfiltered read counts seen in curve A, as well as 
read counts as specific filtration steps towards final filtered read counts. 
Filtration steps were as follows 1) Removal of sequences unassigned to 
bacteria; 2) Removal of sequences assigned to archaea; 3) Removal of 
sequences assigned to mitochondria; 4) Removal of sequences assigned 
to chloroplasts; 5) Removal of sequences not taxonomically assigned 
below kingdom level.

Additional file 2. Results of PERMANOVA testing by sampling methodol-
ogy. Square-root transformed Bray-Curtis similarity data was utilized for 
PERMANOVA analysis with fixed effect for mixed terms and 999 permuta-
tions. Standard error 2.395 (biopsy) and 2.1556 (swabs).

Additional file 3. Results of PERMANOVA testing by individual fish. 
Square-root transformed Bray-Curtis similarity data was utilized for PER-
MANOVA analysis with fixed effect for mixed terms and 999 permutations 
for individual fish (swabs and biopsies).

Additional file 4. UNIFRAC nmMDS. Filtered sequences were aligned 
using MAFFT [110], and phylogenetic tree built using FASTTREE [111] 
using default parameters within the QIIME2 pipeline. The resultant 
UNIFRAC distance matrix was used in generation of non-metric multidi-
mensional scaling analysis as shown here. Results of PERMANOVA using 
unrestricted permutations for comparison of samples by sample type 
(swab;biopsy;environmental) shown in table indicate significant variation 
by sample type.

Additional file 5. Shared and unique taxa from different sampling 
methodologies. Euler (venn-type) diagram illustrates shared and uniquely 
identified taxa from specific sampling methodologies. This diagram was 
generated using the software eulerAPE.

Additional file 6. Taxa unique to biopsy sampling datasets. Uniquely 
identified ASV’s from biopsy sampling, including taxonomic assignation 
from SILVA database.

Additional file 7. Taxa unique to swabbing sampling datasets. Uniquely 
identified ASV’s from swab sampling, including taxonomic assignation 
from SILVA database.

Additional file 8. Taxa identified using both sampling methodologies. 
Shared ASV’s identified from both biopsy and swab sampling datasets, 
including taxonomic assignation from SILVA database.

Additional file 9. Summary table shared and unique taxa including 
environmental water data. Unique and shared ASV’s across entire dataset 
as accompaniment to Additional file 5.

Additional file 10. Phyla level box plot. Box plots illustrate the average 
community composition at phylum level obtained by swabbing (blue) 
and biopsy (pink) sampling methods. Significant (P < 0.01) differences 
in average relative abundance was detected using mann-whitney 
t-testing. Significant variation was detected between Bacteroidete results 
(p = 0.005).

Additional file 11. Order level box plot. Box plots illustrate the average 
community composition at order level obtained by swabbing (blue) 
and biopsy (pink) sampling methods. Significant (P < 0.01) differences in 
average relative abundance was detected using mann-whitney t-testing. 
At order level, significant variation was detected between swab and 
biopsy derived results for Flavobacteriales (0.005), Procabacteriales (0.001), 
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Pseudomonadales (0.001), Sphingomonadales (0.005), Rhodobacterales 
(0.001), and Vibrionales (0.019).
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