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Abstract

assist screening and diagnosis of AD.

Background: Gut microbiota (GMB) alteration has been reported to influence the Alzheimer's disease (AD)
pathogenesis through immune, endocrine, and metabolic pathways. This study aims to investigate metabolic
output of the dysbiosis of GMB in AD pathogenesis. In this study, the fecal microbiota and metabolome from 21 AD
participants and 44 cognitively normal control participants were measured. Untargeted GMB taxa was analyzed
through 16S ribosomal RNA gene profiling based on next-generation sequencing and fecal metabolites were
quantified by using ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS).

Results: Our analysis revealed that AD was characterized by 15 altered gut bacterial genera, of which 46.7% (7/15
general) was significantly associated with a series of metabolite markers. The predicted metabolic profile of altered
gut microbial composition included steroid hormone biosynthesis, N-Acyl amino acid metabolism and piperidine
metabolism. Moreover, a combination of 2 gut bacterial genera (Faecalibacterium and Pseudomonas) and 4 metabolites
(N-Docosahexaenoyl GABA, 19-Oxoandrost-4-ene-3,17-dione, Trigofoenoside F and 22-Angeloylbarringtogenol C) was
able to discriminate AD from NC with AUC of 0.955 in these 65 subjects.

Conclusions: These findings demonstrate that gut microbial alterations and related metabolic output changes may be
associated with pathogenesis of AD, and suggest that fecal markers might be used as a non-invasive examination to
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Background

Alzheimer’s disease (AD) is the most prevalent neurode-
generative disorder and is characterized by extracellular
plaques composed of amyloid-p (AP) peptide and intra-
cellular neurofibrillary tangles composed of hyperpho-
sphorylated tau protein [1]. Emerging evidences show
that dysbiosis and alterations of the intestinal microbiota
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contribute to the development of neurodegenerative dis-
eases, including Parkinson’ s disease, schizophrenia,
stroke, epilepsy and depression via the “microbiota-gut-
brain” axis [2-7]. A few studies have revealed the rela-
tionship between gut microbiota (GMB) and AD. De-
creased diversity in microbiota is reported in AD and
mild cognitive impairment (MCI) patients compared
with normal controls, and changes in intestinal micro-
biota could be used for early detection of AD [8-10].
Some populations of enterotype bacteria are differential
between demented and non-demented dementia [11]. A
recent study shows that the fecal and blood microbiota
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in MCI patients are similar to that of AD patients com-
pared with normal controls, suggesting the bacterial dys-
biosis preceded the onset of dementia [12]. Fecal
microbiota transplantation in mice also supports a pos-
sible connection between the GMB and AD [13, 14].

The clarification of the gut-brain axis in AD pathogen-
esis would provide accessible markers from feces. Hu-
man intestinal tract harbors a complex community of
microbes with the vast majority of the resident microbial
population [15], which plays an important role in the
maintenance of human health, including energy extrac-
tion, vitamin biosynthesis, prevention of pathogen over-
growth and education of the immune system [16].
Several studies suggest that GMB impact brain through
a bidirectional communication system that is connected
via neural, immune, endocrine, and metabolic pathways
[17-20]. Although 16S ribosomal RNA (rRNA) gene se-
quencing allows for profiling of complex microbial com-
position and indicating the microbial entities [21],
annotation and the actual microbial activity of GMB is
sparse as 16S rRNA gene sequence only provides a glo-
bal composition analysis but cannot distinguish alive
and dead microbes [22]. Fecal metabolites, served as the
metabolic output of both GMB and cellular metabolism
occurring inside the human intestinal tract, could com-
plement sequencing-based approaches with showing
functional readout of microbial activity [23]. Recent evi-
dence indicated that the compounds secreted or influ-
enced by bacteria may cause systemic inflammatory
reactions, and then damage the blood-brain barrier
(BBB) and promote neurodegeneration [3, 24, 25]. A re-
cent study reported that during AD progression, the al-
teration of GMB composition leads to the peripheral
accumulation of phenylalanine and isoleucine and the
increase of pro-inflammatory T helper 1 cell frequency
in the blood in AD mouse models, which were also ob-
served in MCI due to AD in human [26]. Based on these
findings, we sought to investigate potentially AD-
relevant gut microbes and their metabolic outputs [27],
which has rarely been reported in AD.

Therefore, in this study, we investigated the altered
GMB composition and metabolic changes in the fecal
samples that are relevant with AD, and examined their
correlation by integrating the two omics findings. Based
on the correlation analysis, we determined the poten-
tially functional microbiota and its metabolic output,
and further identified the potentially fecal markers of
AD. Considering that compounds influenced by bacteria
may cause systemic inflammatory reactions, and the al-
tered cytokine levels had been reported as potential hall-
mark of AD, we also analyzed the association between
differential fecal markers and peripheral inflammatory
cytokines that linked with AD to further understand the
function of altered GMB composition.

Page 2 of 13

Results

Characteristics of study subjects

The demographic and clinical information for 21 AD
participants and 44 cognitively normal control (NC) par-
ticipants was presented in Table 1. No statistically sig-
nificant difference in proportion of sex was found (P <
0.05) between AD group and NC group. AD and NC
groups also did not differ with respect to age at examin-
ation, education years and body mass index (BMI) (P <
0.05). The mean MMSE score was significantly lower in
AD participants (18.0) than in NC participants (29.0),
P <0.001. APOE &4 carrier rate was significantly higher
in AD participants (50.0%) than in NC participants
(11.9%), P < 0.001.

Genera of GMB between AD and NC participants

After quality filtering and trimming, sequencing of the
V3-V4 region of 16S rRNA gene generated 3.55 million
sequence reads from 65 fecal samples with an average
length of 419. At the 97% sequence similarity level, a
total of 1014 OTUs were obtained and matched to 13
phyla, 20 classes, 35 orders, 71 families and 251 genera.
The Venn diagram showed 53 unique OTUs in AD, 185
unique OTUs in NC and 776 shared OTUs between two
groups (Additional file 1: Fig. S1A).

The a-diversity did not differ between AD group and
NC group (Additional file 2: Table S1). With respect to
B-diversity, principal co-ordinates (PCoA) based on
Bray-Curtis dissimilarity showed the significant differ-
ences of GMB composition between the fecal samples
from AD participants and that from NC participants
(PERMANOVA, R?=0.025, P=0.027) (Fig. la). Mean-
while, control analyses were performed to determine
whether the potentially confounding variables influenced
this global microbial phenotype [28]. The results showed
that the AD participants or NC participants were not
clustered based on sex (Additional file 1: Fig. S1B), age

Table 1 Clinical characteristics of AD subjects and cognitively
normal control (NC) subjects

Baseline characteristic AD NC P value®
Participants, n 21 44

Age, years (IQR) 76.2 (99) 784 (6.6) 0262
Female, n (%) 8 (38.1) 24 (54.6) 0.215
Education, years (IQR) 12 3) 12 (7) 0.889
MMSE scores, mean (IQR) 18 (8) 29 (2) < 0.001
APOE €4, n (%) 10 (50.0)° 5(119¢ <0001
BMI, mean (IQR) 228 (3) 23.1 (5 0.388

Values are shown as median (interquartile range, IQR) or number (percent)
BMI Body mass index, AD Alzheimer’s disease, NC cognitively normal control
@ Mann-Whitney U test or x° test

® Missing data of APOE genotype (n=1)

€ Missing data of APOE genotype (n =2)
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Fig. 1 Gut microbial characteristics of Alzheimer's disease (AD). A Principal co-ordinates (PCoA) analysis of microbiota in AD and NC participants
(n=21, AD; n=44, NC, P=0.027). B Taxonomic differences of gut microbiota bacterial between AD and NC participants analyzed by Linear
discriminant analysis (LDA) effect size (LEfSe) (LDA > 2.5, P < 0.05). Histogram represents the LDA scores for differentially abundant genera. *P <
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(Additional file 1: Fig. S1C-D) or BMI (Additional file 1:
Fig. S1E-F).

Furthermore, LEfSe analysis (Fig. 1b) showed that 15
genera significantly differed between AD group and NC
group (LDA values >2.5, Wilcoxon rank-sum test, P <
0.05; Additional file 3: Table S2). Specifically, AD partici-
pants exhibited 13 increased genera compared to NC
participants, which belonged to bacterial families Lach-
nospiraceae (genera Agathobacter, unclassified_f Lach-
nospiraceae, Eubacterium_ventriosum_group,
Lachnospiraceae_ NC2004 and Coprococcus_1), Rumino-
coccaceae (genera Faecalibacterium and Ruminococca-
ceae_UCG-007), Prevotellaceae (genus Alloprevotella),
Atopobiaceae (genus Atopobium), Clostridiales (genus
Parvimonas), Synergistaceae (genus Cloacibacillus), Ery-
sipelotrichaceae (genus Solobacterium) and Pseudomona-
daceae (genus Pseudomonas). In contrast, AD
participants exhibited 2 decreased genera compared to
NC participants, which belonged to bacterial families
Lachnospiraceae (genus Tyzzerella) and Erysipelotricha-
ceae (genus Erysipelatoclostridium). At phyla level, these
15 differential bacterial genera were classified to Firmi-
cutes (11/15, 73.3%), Bacteroidetes (1/15, 6.7%), Actino-
bacteria (1/15, 6.7%), Proteobacteria (1/15, 6.7%) and
Synergistetes (1/15, 6.7%).

Fecal Metabolome between AD and NC participants

Fecal metabolites, served as the metabolic output of both
GMB and cellular metabolism occurring inside the hu-
man intestinal tract, is considered a functional readout
of the GMB. As show in Fig. 2a, the OPLS-DA scores
plot showed a clear variation between AD group and NC
group (Permutation test: R’Y =0.70, Q*Y =-0.28 for
positive ion, and R?Y =0.74, Q*Y = -0.15 for negative
ion). Metabolome of AD participants showed 15

differential fecal metabolites relative to the Control
group (P<0.05, VIP > 1, Table 2), with decreased levels
of 11 metabolites and increased level of 4 metabolites in
AD. The implicated metabolites belonged to organic
acids (3 metabolites: N-Docosahexaenoyl-GABA; Hypo-
glycin B and 12-Hydroxydodecanoic acid), lipids and
lipid-like molecules (7 metabolites: 19-Oxoandrost-4-
ene-3,17-dione; 5-Butyl-3,4-dimethyl-2-furanundecanoic
acid; Trigofoenoside F; Sagittariol; 22-
Angeloylbarringtogenol C; 1a,25-dihydroxy-3a-methyl-
3-deoxyvitamin D3 and PG(16:0/0:0)[U]), Benzenoids (2
metabolites:  (4E)-12-hydroxy-1-(4-hydroxy-3-methoxy-
phenyl)dodec-4-en-3-one and 5-3’, 5-Dihydroxyphenyl-
y-valerolactone), Organic nitrogen (N,N-Dimethylsphin-
gosine), Organoheterocyclic ((5a,883,9p)-5,9-Epoxy-3,6-
megastigmadien-8-ol) and Piperidine (1-ACETYLPIPER-
IDINE) (Table 2). KEGG pathway enrichment analysis
revealed that the differentially expressed metabolites
were involved in steroid hormone biosynthesis (19-
Oxoandrost-4-ene-3,17-dione), N-Acyl amino acid me-
tabolism (N-Docosahexaenoyl-GABA) and Piperidine
metabolism (1-ACETYLPIPERIDINE) (Table 2).

Relationship between altered gut microbial genera, fecal
metabolites, clinical characteristics and inflammatory
cytokines linked with AD

As shown in Fig. 2b, the Pearson correlation analyses in-
dicated that 46.7% (7/15 genera) of altered bacterial gen-
era were significantly associated with a series of altered
fecal metabolites (P < 0.05, > 0.30 or < — 0.30 [29], asso-
ciated with more than one metabolite), suggesting a gen-
eral correlation between gut bacterial file and
metabolites. The coefficient of correlation and the P
value between bacterial genera and fecal metabolites
were presented in Additional file 4: Table S3 and
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Fig. 2 Characteristics of metabolites between AD participants and NC participants and the correlation analyses. A The orthogonal partial least-
squares discriminant analysis (OPLS-DA) plot of fecal metabolites in comparisons of AD and NC groups (left: positive ion; right: negative ion). B
Pearson correlation between 15 most differential genera and 15 differential metabolites, inflammatory cytokines, clinical characteristics linked with
AD. The results were presented as a heatmap. Red squares indicate positive associations; blue squares indicate negative associations. *P < 0.05, **
P <001, *** P<0.001 denoted statistical significance. C Associations of fecal metabolites with inflammatory cytokines and clinical parameters. Red
squares indicate positive associations; blue squares indicate negative associations. *P < 0.05; ** P < 0.01

Additional file 5: Table S4, respectively. These genera
mainly belonged to Lachnospiraceae (Lachnospiraceae_
NC2004 and Agathobacter), Erysipelotrichaceae (Erysipe-
latoclostridium and Solobacterium), Ruminococcaceae
(Faecalibacterium), Pseudomonadaceae (Pseudomonas)
and Clostridiales (Parvimonas) at family level. Addition-
ally, significant correlations were observed between
some gut microbial genera and clinical parameters in-
cluding sex, BMI, MMSE score, APOE genotype and G-
CSF (Fig. 2b). These findings suggested that AD was

simultaneously distinguished by changes in GMB and
fecal metabolome.

As shown in Table 3, AD participants presented sig-
nificantly decreased expression of serum G-CSF and
IFN-y compared to NC participants (P =0.008 and P =
0.007, respectively) (Table 3). A significant negative cor-
relation of Trigofoenoside F metabolite with G-CSF (r =
-0.301, P=0.019) and a significant positive correlation
of 19-Oxoandrost-4-ene-3,17-dione metabolite with
IEN-y (r =0.339, P = 0.006) were observed (Fig. 2c, Add-
itional file 6: Table S5 and Additional file 7: Table S6).

Table 2 Alteration of Metabolites in AD subjects compared with cognitively normal controls

Compound Metabolite Predicted molecular pathways or biological VIP FC P
functions® (AD/
NC)
Lipids and lipid-like molecules
Androstane 19-Oxoandrost-4-ene-3,17-dione Steroid hormone biosynthesis 24 073 0.023
steroids
Fatty acids 5-Butyl-3,4-dimethyl-2-furanundecanoic acid Antixoxidants and radical scavengers 2.1 080 0.034
Steroidal Trigofoenoside F A compound isolated from fenugreek seeds 1.5 107 0.011
glycosides
Triterpenoids 22-Angeloylbarringtogenol C A constituent of C. sinensis 33 122 0.042
Diterpenoids Sagittariol - 26 087 0.042
Vitamin D 1a,25-dihydroxy-3a-methyl-3-deoxyvitamin D3 - 27 087 0.031
derivatives
- PG(16:0/0:0)[U] - 13 095 0.019
Organic acids and derivatives
Amino acids N-Docosahexaenoyl GABA N-Acyl amino acid metabolism 23 081 0.001
Hydroxy acids 12-Hydroxydodecanoic acid Substrate of glutathione-dependent formaldehyde 16 085 0.047
dehydrogenase
Amino acids Hypoglycin B Natural toxins 14 086 0.037
Benzenoids
(4E)-12-hydroxy-1-(4-hydroxy-3- A predicted metabolite generated by BioTransformer 2.1 067 0.020
Methoxyphenols methoxyphenyl)dodec-4-en-3-one
Benzenediols 5-(3",5"-Dihydroxyphenyl)-y-valerolactone ?l tga polyphenol metabolite detected in biological 2.3 0.73 0.041
uids
Organic nitrogen compounds
Amines N,N-Dimethylsphingosine Regulation of sphingolipid-mediated functions 39 135 0.032
Organoheterocyclic compounds
Benzopyrans (50,8B,9B)-5,9-Epoxy-3,6-megastigmadien-8-ol - 1.8 123 0.045
Piperidine
Piperidine 1-ACETYLPIPERIDINE Piperidine metabolism 19 080 0.041

AD Alzheimer’s disease, NC cognitively normal control, VIP variable importance in the projection, FC fold change

@ Information referencing KEGG pathway database and HDBM database
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Table 3 Association of peripheral inflammatory cytokines and
Alzheimer's disease risk

Cytokines Number of subjects Mean Median P
AD/NC AD NC AD NC VA€

IL-6 18/41 357 275 144 163 0792
IL-8 18/43 738 6.77 6.09 599 0794
IL-10 18/43 1.08 1.85 1.01 118 0315
G-CSF 19/43 128 184 127 159 0.008
IL-7 19/43 214 222 205 205 0667
IL-8 19/43 317 329 240 315 0113
IL-12 19/42 132 150 095 095 0849
IFN-y 19/42 097 175 066 140 0.007
MCP-1 19/43 687 827 685 772 0172
MIP-18 19/43 833 1095 645 828 0.1%
TNF-a 19/39 227 267 161 212 0314

AD Alzheimer's disease, NC cognitively normal control
@ Comparison between AD group and NC group of median, using Mann-

Whitney U test

These findings suggested that some fecal metabolites
might affect systemic inflammatory reactions during AD
development.

Potential contribution of fecal markers of AD

Among the newly implicated 17 fecal markers in our
study, including of differential 7 fecal genera and their 8
significantly correlated fecal metabolites, and 2 fecal me-
tabolites that were correlated with differential inflamma-
tory cytokines in AD, combination of 6 fecal markers,
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Pseudomonas) and 4 metabolites (N-Docosahexaenoyl
GABA, 19-Oxoandrost-4-ene-3,17-dione, Trigofoenoside
F and 22-Angeloylbarringtogenol C), was able to dis-
criminate AD from NC with an AUC of 0.955 in these
65 subjects. The AUC of each separate microbial
(AUC =0.798) or metabolic markers (AUC = 0.873) was
significantly lower than that of combination of microbial
and metabolic markers, P < 0.001 and P = 0.033, respect-
ively (Fig. 3). Addition of inflammatory cytokines did not
significantly improve the discriminative power of the
combined model (P = 0.857).

Discussion

This study demonstrated that AD exhibited the disorder
in microbial ecology, which may affect both metabolism
and subsequent peripheral inflammatory cytokine in hu-
man subjects. Importantly, our study showed that the
AUC for discriminating AD from NC was 0.955 for
combination of fecal microbial markers and correlated
metabolites (a total of six fecal markers), suggesting the
potential of fecal markers as a non-invasive tool for
screening or assistant diagnosis of AD. Further studies
in large scale and longitudinal analysis can be justified to
validate and improve the clinical utility of this fecal
marker panel.

In our study, AD was characterized by increased 13
genera, of which 5 genera belonged to family Lachnos-
piraceae. Our results confirmed the previous report by
chi et al. that the higher abundance of family Lachnos-
piraceae (general Fusicatenibacter, Blautia, and Dorea)

including of 2 genera (Faecalibacterium and was negatively associated with MMSE score [30]. In
N
Receiver Operating Characteristic Curve
3
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Fig. 3 Diagnostic markers for AD. Receiver operating characteristic curves for genetic models among Chinese subjects in the testing set. Genus
group represents 2 microbial (Faecalibacterium and Pseudomonas). Metabolite group represents 4 metabolites (N-Docosahexaenoyl GABA, 19-
Oxoandrost-4-ene-3,17-dione, 22-Angeloylbarringtogenol C and Trigofoenoside F). Cytokine group represents G-CSF and IFN-y
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addition, a metagenomic study indicated the association
of the family Lachnospiraceae with Type 2 diabetes and
the intestinal colonization by the Lachnospiraceae con-
tributes to the development of diabetes [31]. It is well
known that diabetes and insulin resistance were risk fac-
tors of AD [32-34], therefore, a potential mechanism by
which gut Lachnospiraceae influences AD development
might be resulted from promoting the development of
diabetes.

Our results showed that the abundance of genera
Pseudomonas and Faecalibacterium increased in AD
participants and these two genera contributed to fecal
marker panel for effectively discrimination of AD from
NC (Fig. 3). The genus Pseudomonas was found to be a
possible risk factor of AD, as it increased both in fecal
sample (our study results) and blood sample [12] from
AD subjects, compared with that in cognitive normal
controls. Functional studies reported that P. aeruginosa
infection could increase endothelial tau phosphorylation
and permeability [35, 36], which is a common patho-
physiological mechanism in AD pathogenesis. In
addition to the pathogenic P. aeruginosa strain, the
genus Pseudomonas also comprises non-pahtogenic
strains, such as P. syringae strain [37]. So far, little is
known about how interactions between different patho-
genic and non-pathogenic Pseudomonas strains within
the host impact. Future studies should furtherly identify
the specific pathogenic strain responsible to AD and ex-
plore the interaction between pathogenic and non-
pathogenic strains on the occurrence of AD. With re-
gard to Faecalibacterium, F. prausnitzii (F. prausnitzii)
is the founding strain and has been studied extensively.
F. prausnitzii plays a beneficial role in anti-inflammatory
and promoting gut health [38, 39]. Several studies re-
ported lower abundance of F. prausnitzii in patients with
inflammatory bowel diseases [40, 41], type 2 diabetes
[42] and colon cancer [43]. However, higher abundance
in F. prausnitzii was reported in pediatric patients with
Crohn’s Disease compared with controls [44, 45], indi-
cating the detrimental role of F. prausnitzii, at least in
some contexts. Lopez-Siles et al. [46] has found that pa-
tients with Crohn’s Disease may harbor a unique set of
F. prausnitzii OTUs, as compared with controls. A study
with deep metaproteomics approach has defined five
available strain proteomes of F. prausnitzii. Therefore,
inconsistent role of F. prausnitzii may be due to the dif-
ferent function of different strains of Faecalibacterium
genera, which might be the potential confounders for
the ROC curves evaluated in our study. Future research
is needed to determine the specific strains that relevant
to AD. Our results reported a higher abundance of gut
Faecalibacterium in AD than NC group, providing add-
itional evidence of detrimental role of Faecalibacterium.
One explanation of may be that Faecalibacterium could
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reduce secretion of proinflammatory cytokines IFN-y
[38]. Then, reduced IFN-y causes increase of Ap de-
posits [47]. In fact, we also found the lower peripheral
IFN-y expression in AD compared with NC group,
which supports this hypothetical explanation.

AD participants in our study showed alteration of fecal
metabolome compared to NC participants. Correlation
analysis provided a significant association of altered bac-
terial genera with altered metabolites. Furthermore,
pathway analysis linked the alteration of metabolites to
three metabolic pathways including Steroid hormone
biosynthesis, N-Acyl amino acid metabolism and Piperi-
dine metabolism. Together, these findings suggest the
potential mechanism of GMB affecting occurrence or
development of AD. Future functional studies are justi-
fied to formally verify that if and how these metabolic
pathways participate in the occurrence or development
of AD. Notably, among 15 altered metabolites in AD, 7
metabolites belong to lipid or lipid-like molecules, sug-
gesting that lipid-mediated metabolic or synthetic pro-
cesses in gut are linked with AD. The 19-Oxoandrost-4-
ene-3, 17-dione, a decreased lipid-like molecular in AD
compared with NC group in our study, was involved in
estrogen biosynthesis. Estrogen is a potent factor that
not only prevents vascular disease but also plays an im-
portant role in the preservation of neurons and repar-
ation of neurons damaged by the disease [48]. A
population-based study indicated higher frequency of es-
trogen use in non-patients compared with Alzheimer’s
disease patients [49]. Thus, decreased 19-Oxoandrost-4-
ene-3, 17-dione in gut may influence the AD pathology
by downregulating the estrogen. 5-Butyl-3, 4-dimethyl-
2-furanundecanoic acid, another decreased lipid-like me-
tabolite in AD, is a furan fatty acid (F-acid). F-acids play
an protective role for Alzheimer’s disease progression
mainly by preventing lipid peroxidation [50, 51] and pro-
tecting polyunsaturated fatty acids (PUFAs) [52], sug-
gesting possible mechanism for lower level of 5-Butyl-3,
4-dimethyl-2-furanundecanoic acid in AD than NC
group. Regarding to amino acid metabolism, all three
metabolites belonging to organic acids showed decreased
level in AD, among which N-Docosahexaenoyl GABA
was annotated to be involved in N-Acyl amino acid me-
tabolism. Consistent with our results, N-acyl amino
acids have anti-inflammatory and neuroprotective effects
[53], but their biosynthesis and catabolism have not been
fully elucidated [54].

Additionally, we observed decreased serum G-CSF and
IEN-y level in AD participants compared with NC par-
ticipants. The consistent results were also observed in
previous clinical and animal studies. Decreased plasma
levels of G-CSF were previously reported in patients
with early AD in comparison with healthy controls [55].
Moreover, in AD participants, G-CSF levels showed a
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significant inverse correlation with amyloid-p (A1 - 42)
levels in cerebrospinal fluid [55]. Mouse model experi-
ment proved that subcutaneous administration of G-CSF
into two different Ap—induced AD mouse models could
substantially rescue their cognitive/memory functions
[56]. Additionally, in the stroke mouse model, adminis-
tration of G-CSF could lead to neurogenesis near the in-
jured area and the neurological and functional recovery
[57-59]. With respect to IFN-y, although the relation-
ship between IFN-y level and AD has not been reported,
IFN-y overexpression was found to reduce AP deposits
and peripheral monocytes infiltration in amyloid precur-
sor protein (APP) transgenic mice [47]. Additionally, in
both 5XFAD and APP/PS1 mice model at intermediate
stage of AD, reversion of decreased IFN-y level by tran-
sient depletion of Treg cells could increase infiltration
and recruitment of leukocyte to A plaques and then al-
leviate the AD pathology [60]. The findings of these
functional studies support our observation that IFN-y is
decreased in AD compared with NC group.

By integrating the correlation analyses of three groups
of markers (GMB, fecal metabolites and peripheral in-
flammatory cytokines), we found two potential mechan-
istic pathways for the activity and function of GMB in
AD pathogenesis. One pathway was that decrease of 19-
Oxoandrost-4-ene-(3,17)-dione metabolite caused by
low abundance of gut Erysipelatoclostridium might lead
to reduction of peripheral IFN-y level, which subse-
quently influenced AD pathogenesis. There are some ev-
idences supporting the potential of this mechanism.19-
Oxoandrost-4-ene-(3,17)-dione was involved in estrogen
biosynthesis as we discussed above, besides, administra-
tion of estrogen to mouse could enhance the secretion
of IFN-y by mouse spleen cells [61] and by CD4+ hu-
man T cell clones [62]. The second pathway was that in-
crease of Trigofoenoside F metabolite caused by high
abundance of gut Cloacibacillus might lead to reduction
of peripheral G-CSF level and then influenced AD
pathogenesis. Though there are no other references sup-
porting this mechanism for now, our findings have pro-
vided evidences for better understanding the role of
microbiota in AD pathogenesis. It should be admitted
that whether and how these mechanisms are involved in
the occurrence or development of AD is still unclear,
and further researches are needed.

There are several limitations to this study. First, it was
a preliminary study with small sample size, and studies
of larger population with different groups across Asia or
with different ethnicity would give a better picture of the
connection between GMB, metabolites and inflamma-
tory cytokines, and also validate the predictive perform-
ance using fecal marker penal. Second, although our
study suggests that the GMB and relative metabolic may
be associated with the pathogenesis of AD, future
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intervention study and animal experiments are needed
to identify whether this relationship connected by a
causal relationship or is a simple incidental association.
Third, functional study should be carried out to clarify
the “bacterial-metabolite-cytokine” mechanism in AD
pathogenesis and define the specific and effective targets
for AD intervention and therapy. Fourth, the diagnosis
of AD in this study was based on symptoms without dis-
ease severity information, and the neuroimaging markers
should be included in further confirmatory studies for
accurate diagnosis. Fifth, although we used LEfSe to
identify the key bacterial taxa that altered between AD
group and NC group, there are other methods to screen
different bacterial taxa, such as PLS-DA VIP plot [63] or
Random Forest analysis [64]. Future researches with
follow-up data should be conducted to determine which
method is better in determining key bacterial taxa re-
sponsible for AD risk. Finally, we performed the binary
logistic regression analysis with the ROC curves to select
and quantify which combination of fecal markers were
best relevant to AD. Larger studies with cross-validation
are justified to formally test the hypothesis and assess its
predictive performance.

Conclusions

In conclusion, our study provides preliminary evidence
that AD exhibited changes in fecal microbial compos-
ition and its metabolic output, and these identified fecal
markers enabled discriminating AD from NC with high
accuracy. These findings improve our understanding of
the role of GMB in AD pathogenesis, and provide a
non-invasive way for early-stage clinical screening or as-
sistant diagnosis of AD.

Methods

Study participants

From April 2018 to July 2019, 21 patients with AD from
memory clinic at the Department of Neurology of Hua-
shan Hospital and 44 cognitively normal controls (NC)
from community participants with normal cognition
from the Shanghai Aging Study [65] were recruited.
These two groups did not differ in age, sex, and educa-
tion years (P > 0.05, Table 1).

All participants recruited in study had similar diet
habit. Exclusion criteria in this study included: use of an-
tibiotics, probiotics, or prebiotics within a month before
sampling; corticosteroid use, immune stimulating medi-
cations and immunosuppressive agents; use of anti-
depressant; gastrointestinal surgery in past 5 years;
human immunodeficiency virus or serious bacterial in-
fection in the medical history; inflammatory bowel dis-
ease, persistent, infectious gastroenteritis, colitis or
gastritis; diarrhea or constipation at sampling.
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The study protocol was approved by the Medical Eth-
ics Committee of Huashan Hospital at Fudan University
(IRB#2009-195) and the Ethics Committee of the De-
partment of Public Health at Fudan University
(IRB#2019-04-0739), Shanghai, China. All participants
or participants’ legally acceptable representatives pro-
vided written informed consent to participate in this
study. Subjects in this study were recruited based on the
Shanghai Aging Study.

Clinical interview and diagnosis of cognition

Neurologists conducted face-to-face interview for AD
participants and controls to collect the clinical and
demographic data. Neurologists and neuropsychologists
reviewed the clinical and neuropsychological data and
reached a consensus diagnosis of AD based on the
DSM-IV and NINCDS-ADRDA criteria [66, 67]. The de-
tailed information of clinical and neuropsychological as-
sessment and diagnosis procedures were described
elsewhere [68]. The genotypes of APOE were determined
using the TagMan SNP Genotyping assay [69]. APOE &4
positive was defined as participants who have at least
one &4 allele.

Sample collection

First morning fecal samples were collected in sterile fecal
collection containers from each participant at home and
packaged with frozen gel packs. Participants returned
the fecal collection containers to Huashan hospital
within 2 h. Upon receipt, samples were immediately sub-
sampled into prepared sterile tube sand frozen at — 80 °C
until further analysis. In the morning of the same day
with fecal sample collection, the overnight fasting blood
sample was collected from each participant by research
nurses at Huashan Hospital. After centrifugation, serum
were subsampled (300ul) into prepared sterile tubes and
frozen at — 80 °C until analysis.

DNA extraction and 16S rRNA gene sequencing

The E.ZN.A.® Stool DNA Kit (Omega Bio-Tek, Nor-
cross, GA, USA) was used for microbial DNA extraction
of fecal samples and extracted DNA samples were stored
in elution buffer (Tris-HCL) provided in kit at — 80°C
until sequencing. The NanoDrop 2000 UV-vis spectro-
photometer (Thermo Scientific, Wilmington, USA) was
used for measuring DNA concentration. DNA integrity
were shown and assessed by 1% agarose gel electrophor-
esis. The V3-V4 region of the 16S rRNA gene was amp-
lified using the 6-bp barcoded universal primers: 338
forward (5'-ACTCCTACGGGAGGCAGCAG-3') and
806 reverse (5'-GGACTACHVGGGTWTCTAAT-3).
PCR reaction was carried out in a 20 pL reaction vol-
umes containing 5 x FastPfu Buffer (4pL), 2.5mM
dNTPs (2pL), each of 5pM primer (0.8 uL), FastPfu
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Polymerase (0.4 pL) and 10ng of template DNA. The
PCR amplicons were then purified by the AxyPrep DNA
Gel Extraction Kit (Axygen Biosciences, USA) and quan-
tified by the QuantiFluor™-ST fluorometer (Promega
Corporation, USA). The final equimolar pool was se-
quenced (paired end, 2 x 300-bp) using Illumina Miseq
sequencing technology (Illumina, San Diego, USA).

Bioinformatics processing and analysis of 16S rRNA gene
sequence

Raw FastQ files were demultiplexed, quality-filtered by
Trimmomatic, and merged using FLASH. The following
standards were applied in data processing: 1) Reads were
trimmed with an quality score lower than 20 over a 50-
bp sliding window; 2) The primers were completely
matched, but 2 mismatched nucleotides were allowed
[70], and sequence reads with ambiguous bases were ex-
cluded from downstream analysis; 3) Sequences contain-
ing overlaps of > 10 bp were merged in accordance with
their overlaps. Finally, remaining sequences were clus-
tered into operational taxonomic units (OTUs) at 97%
similarity level using UPARSE (version 7.1, http://drive5.
com/uparse/). The Taxonomies of each 16S rRNA gene
sequence was analyzed using the RDP Classifier Algo-
rithm (http://rdp.cme.msu.edu/) at a confidence thresh-
old of 70% [71] against the Silva (SSU132) 16S rRNA
database (Release132 http://www.arb-silva.de).

OTUs counts were normalized before testing group-
significant taxa and rarified to an equal number of
28,277 sequencing reads per each sample before cal-
culating diversity indices. Sequence data were ana-
lyzed using the Quantitative Insights Into Microbial
Ecology platform (QIIME; V1.9.1) [72] and R pack-
ages (v3.2.0), and the free online Majorbio I-Sanger
Cloud Platform (www.i-sanger.com). a-diversity were
measured using the Ace and Chao indices for rich-
ness and using the Shannon and Invsimpson for di-
versity by Wilcoxon test on the rarefied OTU data. -
diversity (between-habitat diversity) shows the shared
diversity between bacterial population in terms of
ecological distance. [-diversity were calculated by
Bray-Curtis dissimilarity algorithms on the rarefied
OTU data, and reported according to PCoA with 95%
confidence interval (CI) ellipses. Statistical differences
in B-diversity metrics between AD group and NC
group were detected using permutational multivariate
analysis of variance (PERMANOVA) [73] by the R
“vegan” package. Statistically significant differences in
specific bacterial taxa between AD group and NC
group were analyzed using linear discriminant analysis
(LDA) effect size (LEfSe) [74]. LDA scores were cal-
culated by LDA effect size. Difference with LDA
values >2.5 at P value <0.05 were considered
significant.
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Metabolomics profiling based on UPLC-MS

Fecal samples (50mg) were added with 400 pL
methanol-water (4:1, v/v) and the supernatant was ob-
tained according to the following procedure: 6 min for
homogenization, 30 min for ultrasonically extraction on
ice, 30 min for keeping at — 20 °C and 15 min for centri-
fugation at 13000 rpm at 4 °C. Next, 200 pL. supernatant
was used for UPLC-MS analysis and a mixture of all ex-
traction aliquots was used as a quality control (QC) sam-
ple. LC-MS-based fecal metabolic profiling were
performed on an Ethylene Bridged Hybrid C18 column
(100 mm x 2.1 mm .id., 1.7 um internal diameter, Waters
Corp., Milford, USA), coupled to a Triple TOF™ 5600
mass spectrometer system (AB SICEX, USA). The col-
umn temperature was 40°C. Injection volume of the
prepared sample was 20 pL. The mobile phase included
solvent A (water containing 0.1% (v/v) formic acid) and
solvent B (acetonitrile/isopropanol (1:1) containing 0.1%
(v/v) formic acid) and the flow rate was 0.40 mL/min.
The elution gradient was 5% B—20% B from 0 to 3 min,
20% B-95% B from 3 to 9 min, holding at 95% B till
13.0 min, then decreased to 5% B in 0.1 min, and holding
at 5% B over13.1-16 min. Both positive and negative ion
scanning modes were implemented for MS signal acqui-
sition. To obtain information regarding system repeat-
ability, QC samples were injected at every 8 analytical
samples throughout the analytical run.

Metabolomics data analysis and metabolite identification

The raw MS data were processed by Progenesis QI data
analysis software (Waters Corp, Milford, MA, USA).
Data matrix including peak intensity, retention time of
compounds and mass-to-charge ratio were obtained.
The detail of data matrix processing procedure was de-
scribed in our previous published paper [75]. The Data
matrix were logl0O transformed for subsequent analysis.
Data analysis were performed at Majorbio I-Sanger
Cloud platform (www.i-sanger.com). The orthogonal
partial least-squares discriminant analysis (OPLS-DA)
was applied to detect variation between AD group and
NC group. Although the significant FDR-adjusted P
value for metabolites between two groups were not ob-
served (data not shown), we combined univariate
methods that analyze each metabolite separately and
multivariate OPLS-DA methods to reduce false positive
results and improve the reliability of the results [76].
Based on the OPLS-DA analysis, metabolites with vari-
able importance in the projection (VIP) > 1.0, P values of
< 0.05 (Student’s t-test) referring to published paper [77]
were considered to be significantly differed between the
AD and NC groups. Fold-change (FC) of metabolite in
AD group compared with NC group were analyzed using
the data before logl0 transformation. Metabolites were
identified using the METLIN online database (https://
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metlin.scripps.edu/) and HDBM database. The molecular
pathways and biological functions of differential metabo-
lites were predicted by KEGG pathway database and
HDBM database.

Cytokine assay

IL-6, IL-8, IL-10, and G-CSF were detected using the
CBA Human Cytokine Kit (BD Biosciences, San Jose,
CA) and IL-7, IL-8, IL- 12p70, IEN-y, MCP-1, MIP-1§,
TNF-a were detected using Bio-Plex Pro Human Cyto-
kine kit (Bio-Rad, Hercules, California). CBA kit assay
was performed on BD Accuri C6 flow cytometer (BD
Biosciences) according to the manufacturer’s instruc-
tions and the data analysis was done by using BD CBA
Software to generate graphical and tabular formats. The
set of calibrators was applied to create the standard
curves, and the results were obtained from test samples.
For Bio-Plex kit assay, serum samples were diluted 1:1
for measurement, and 50 puL. of the diluted samples was
added to each well. Data were obtained by a Bio-Plex
200 system (Bio-Rad) and analyzed with the Bio-Plex
Manager Software Version 5.0.

Statistical analysis

For comparisons of demographic and clinical data be-
tween groups, continuous variables are described with
median or interquartile range (IQR), and compared be-
tween groups using Mann-Whitney U test. Categorical
variables were analyzed by Chi-square test. Serum con-
centrations of cytokines were compared between AD
group and NC group, using the Mann—Whitney U test.
All these statistical analyses were performed using SPSS
version 21.0 (SPSS, Chicago, IL, US). A two-sided P-
value of <0.05 was considered to be statistically signifi-
cant. For correlation analysis, Pearson correlation test
using the R package was performed to calculate the
exact correlation coefficient and the corresponding P
value (set to 0.05) and the Heatmap plots were generated
using the R packages. A binary logistic regression with
backward selection was performed to determine which
combination of fecal markers were best relevant to pre-
dict AD. Receiver operating characteristic (ROC) ana-
lyses were performed using STATA version 15.0. The
sensitivity, specificity and the area under the ROC curve
(AUC) were calculated to evaluate the usefulness of the
model for identification of the presence of AD.
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