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Effects of rhizosphere fungi on the
chemical composition of fruits of the
medicinal plant Cinnamomum migao
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Abstract

Background: This study examined how rhizosphere fungi influence the accumulation of chemical components in
fruits of a small population species of Cinnamomum migao.

Results: Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao.
Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was
associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal
populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria,
Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol
accumulation.

Conclusion: The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main
driver of the chemical composition of C. migao fruit. The control of the production of biologically active
compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and
medicinal value of the fruit of C. migao.
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Background
The rhizosphere represents the interface of plant-soil in-
teractions and was first proposed by Hiltner in 1904.
The rhizosphere includes the microenvironment 0 ~ 2
mm between the root surface and soil [24] and repre-
sents the node of energy exchange between plant and
soil. Interactions in the rhizosphere alter the physical,
chemical, and biological characteristics of the soil [31].
The diversity and function of rhizosphere fungi are often
related to root exudates (proteins and sugars), and many

organic compounds secreted by plant roots provide en-
ergy for and induce greater densities of rhizosphere
fungi [50]. Under natural conditions, rhizosphere fungi
form a beneficial symbiotic relationship with most
plants, the rhizosphere fungal providing nitrogen and
phosphorus in return for their hosts, and can signifi-
cantly promote the utilization efficiency of soil nutrients
by plants [53]. The influence of rhizosphere fungi on
plant growth and development has been widely studied,
particularly in the context of improving plant productiv-
ity and crop yields [51]. Many studies have shown the
influence of rhizosphere fungi on the chemical compos-
ition of medicinal plants [11, 77]. Indeed, fungal com-
munities in the rhizosphere promote the accumulation
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of beneficial substances in medicinal parts, with some
fungi directly secreting plant growth hormones or other
important metabolites [4, 27, 32].
C. migao is a large evergreen of the Lauraceae family

and is endemic in southwest China. It is only distributed
in the dry and hot valleys formed by the Yujiang, Pan-
jiang, and Hongshui Rivers at the border of the prov-
inces of southwestern Yunnan, Guizhou, and Guangxi
[39]. C. migao fruit is rich in metabolites such as sugar,
crude fat, and volatile oils [69, 78]. Among the Miao and
Zhuang populations in southwestern China, C. migao
fruit is used as a seasoning and as traditional herbal
medicine [76]. Pharmacological studies have shown that
C. migao fruit effectively treats gastrointestinal tract and
cardiovascular diseases [38, 70, 71, 74]. Indeed, four pa-
tent medicines in China contain C. migao fruit as the
main ingredient and have achieved sales of hundreds of
millions of RMB. C. migao fruit is only distributed in the
narrow region on the borders of the Panjiang, Yujiang,
and Hongshui Rivers with an area of about 160,000 km2

in southwestern China and is cataloged in the List of Red
Species of Biodiversity in China-Volume of Higher Plants
as near-endangered [47]. Studies have confirmed the
considerable geographical variation in the chemical com-
position of C. migao fruit despite the narrow regional
distribution, and the variety is not genetically derived.
Researchers have suggested that the chemical compo-
nents of C. migao fruit may be closely related to the cli-
mate of the small watershed in the plant’s distribution
region [9, 79]. Karst landforms characterize the geog-
raphy of southwest China; this special geomorphic dis-
continuity has formed many small watersheds with
different climates [19]. The climate differences formed
by this special geographic area also promoted species
differentiation and rich species diversity, including the
ecological differentiation of fungal populations to form
special ecologically functional populations [42, 62]. Ex-
tensive studies confirmed that environmental differences
affect the feedback mechanism between plants and
rhizosphere fungi, which then influence plant growth
and chemical characteristics [37, 54, 70, 71]. We aimed
to understand how climatic differences between small
watersheds affect the composition and function of the
rhizosphere fungal community of C. migao and the
chemical composition of the fruit. This study was con-
ducted with the aim of answering the following research
questions: How do environmental differences in small
watersheds and different fruiting periods affect the com-
position and function of the fungal community in the
rhizosphere of C. migao? How do differences in the
community composition and function of C. migao rhizo-
sphere fungi affect the feedback mechanism between C.
migao and rhizosphere fungi and further affect the accu-
mulation of fruit chemical components?

In order to explore the influence of special rhizosphere
fungal communities on the chemical composition of C.
migao in a small watershed climate, we studied the dis-
tribution of C. migao in small watersheds (Yujiang, Pan-
jiang, and Hongshui Rivers) and different fruiting
periods (young fruit period, closed immature period, ma-
turity period). We also explored changes in the rhizo-
sphere fungal community and the relationship between
the climate of the small watershed and the chemical
properties of the rhizosphere soil. We used high-
throughput sequencing to characterize the fungal com-
munities and measured the dynamic changes in the
chemical composition of C. migao fruit. The results
showed that the rhizosphere fungi affected the C. migao
fruit content of carbohydrate, crude fat, α-terpineol, and
sabinene. The fungal communities significantly differed
between watershed areas but not between fruiting pe-
riods. We observed correlations and dynamic models
that explain to a certain extent that the microclimate-
dependent rhizosphere fungal community may be the
cause of the geographic variation in the chemical com-
position of the fruit. These findings provide a feasible
strategy for improving the medicinal value of the fruit of
C. migao by controlling the rhizosphere microbiome.

Results
Alpha diversity and fungal composition of rhizosphere
soil fungi
The fungal communities included Ascomycota, Basidio-
mycota, and Zygomycota (Fig. 1a). The Zygomycota
(37.99%) was most abundant in the Yujiang River,
followed by Basidiomycota (35.14%). The Ascomycota
(38.11%) and Basidiomycota (33.24%) were most abun-
dant in the Hengshui River. The Basidiomycota (38.15%)
group is the most abundant, followed by Ascomycota
(25.14%) in the Panjiang River. In different fruiting pe-
riods, the Ascomycota, Basidiomycota, and Mortierello-
mycota were the main groups. Ascomycota was the most
abundant (48.70% in the young fruit period, 34.96% in
the closed immature period, and 34.66% in the mature
period), followed by Basidiomycota (14.47% in the young
fruit period, 26.07% in the closed immature period,
23.43% in the mature period) (Fig. 1b). All samples con-
tained a large number of unidentified fungal groups, and
it may be necessary to strengthen the sequencing depth
in order to identify them. A total of 2,059,189 sequences
were obtained from the soil samples, which were divided
into 2112 OTUs. The OTU and Shannon index dilution
curves of each sample gradually flattened (Figure S1).
The quantity can reflect the vast majority of microbial
diversity information in the sample. The student t-test
showed that the Shannon index of alpha diversity varies
significantly between the Yujiang and Hongshui River
watersheds, and the diversity was highest in the
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Hongshui River (P < 0.01, Fig. 1c). The Shannon index of
different fruiting periods was highest in the mature
period (mid-October), but there was no significant dif-
ference between periods (Fig. 1d).

Fungal community variation among sampling
compartments
Different watersheds and fruiting periods were used as
observation objects to analyze fungal community com-
position based on OTU levels. The watershed PLS-DA
analysis divided the samples from Panjiang, Yujiang, and
Hongshui into three categories, demonstrating the feasi-
bility of the watershed as the unit of observation (Fig. 2a).
The PLS-DA data also indirectly shows that the water-
shed may affect the niche differentiation of the fungal
community in the rhizosphere of C. migao. Community
composition was affected by the fruiting period (Fig. 2b).
On the Beta diversity scale, PCoA and non-metric multi-
dimensional scaling (NMDS) analysis was performed on
the two observation samples using Bray-Curtis distance
to evaluate the correlation of fungal community com-
position. The PCoA analysis of the small watershed (Fig.
2c) scale was highly correlated between the Yujiang and
Hongshui River samples, and the Panjiang River water-
shed was poorly correlated (PC1 22.41%, PC2 18.54%).
The correlation between different fruiting periods was
poor (Fig. 2d), perhaps due to the large differences

between observation points (PC1 37.31%, PC2 16.47%).
NMDS analysis showed that the stress of different small
watersheds is 0.052 (Fig. 2e), and the ranking results are
good. The results show that the observation samples of
the Hongshui River Basin are relatively similar and dis-
tributed, while the observation groups of the Yujiang
River Basin and Panjiang River Basin are more scattered
and the distance is larger. According to the results of
different fruit period analysis (Fig. 2f), the stress is 0.063,
and the ranking result is also good, but the observation
points in the three periods are relatively scattered.

The stability and recruitment of root rhizosphere fungi
Due to the differences between watersheds and fruiting
periods, CCA based on the Bray-Curtis distance was
conducted to explore the potential relationship between
fungal community diversity, soil chemical properties,
small watershed climate, and fruiting period. The results
of CCA (Fig. 3a) in different small watersheds show that
soil K (r2 = 52.45%, P = 0.091) and pH (r2 = 54.81%, P =
0.072) have significant effects on the formation of fungal
communities. The influence of the small watershed cli-
mate (Table S3) on the rhizosphere fungal community is
also greater, among which annual average temperature
(AAT) (r2 = 85.92%, P = 0.005) and Min-T (r2 = 63.68%,
P = 0.034) are more important for the formation of flora
(Fig. 3b). The CCA of different fruiting periods (Fig. 3c)

Fig. 1 The fungal rhizosphere community during different fruiting periods and small watersheds. a relative abundance at the phylum level of a
small watersheds, and b different fruiting period. The boxplot of Shannon–Weiner index of c small watersheds and d different fruiting
periods. **P < 0.01
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shows that S-UE has a greater influence on the seasonal
dynamic change of fungal communities (r2 = 58.94%, P =
0.083). In the class results, the samples of the Hongshui
River Basin are well clustered, but the samples of the

Panjiang and Yujiang River basins are not clustered
(Fig. 4a and Figure S2). Likewise, the samples from three
observation sites in different fruit periods did not
gather into a single branch in the same season.

Fig. 2 Partial Least Squares Discriminant Analysis (PLS-DA) to classify the objects of study according to the observed or measured values of
several variables. The principal coordinates analysis (PCoA) and non-metric multidimensional scaling (NMDS) of all samples using Bray-Curtis
distance. a PLS-DA small watersheds; b PLS-DA fruit period; c PCoA small watersheds; d PCoA fruit period; e NMDS small watersheds; f NMDS
fruit period. It is generally believed that stress < 0.2 can be represented by 2d NMDS point graph, which has certain explanatory significance.
When stress < 0.1, it can be considered a good ranking. When stress < 0.05, it is the most representative

Chen et al. BMC Microbiology          (2021) 21:206 Page 4 of 14



However, the samples from different observation
points are not clustered into one group (Fig. 4b).
These data indicate that the fungal community in the
rhizosphere of C. migao is relatively stable, and the
community composition may be mainly due to AK,
PH, S-UE, AAT, and other factors.

Associations between root-associated microbes and
environmental variables
Why is fungal community composition affected by micro-
climate and soil properties, and how does this relate to the
nutritional type and ecological functions of the fungi? The
FUNGuild is a powerful tool for understanding fungal func-
tion classification. Functional analysis of different small
watersheds shows that the rhizosphere fungi of C. migao
can be divided into 12 ecological functional groups
(Fig. 5a). The functional group of Fungal Parasite-
Undefined Saprotroph is the most abundant in the

Hongshui River Basin. The functional group Ectomy-
corrhizal in the Panjiang River Basin is the most
abundant, followed by Endophyte-Litter Saprotroph-Soil
Saprotroph-Undefined Saprotroph. In the Yujiang River
Basin, Endophyte-Litter Saprotroph-Soil Saprotroph-
Undefined Saprotroph is the most abundant, followed by
Undefined Saprotroph. Rhizosphere fungi can also be
divided into 12 ecological functional groups at different
fruiting periods (Fig. 5b). In June, the Animal Pathogen-
Plant Pathogen-Undefined Saprotroph group is the most
abundant, followed by Undefined Saprotroph. In August,
the most abundant Undefined Saprotroph group, followed
by Fungal Parasite-Undefined Saprotroph. In October,
the Undefined Saprotroph group is the most abundant,
followed by Endophyte-Litter Saprotroph-Soil Saprotroph-
Undefined Saprotroph. Rhizosphere fungi of C. migao
are predominantly comprised of saprophytic fungi and
ectomycorrhizal fungi, perhaps because there are more

Fig. 3 Canonical Correlation Analysis (CCA). a CCA, small watersheds of soil; b CCA, small watersheds of climate, maximum temperature (Max-T),
minimum temperature (Min-T), annual average temperature (AAT), average relative humidity (ARH), annual rainfall (AR); c CCA fruit periods. The
red arrows represent quantitative environmental factors. Arrow length represents the degree of influence of environmental factors on species
data. The distance from the projection point to the origin represents the relative influence of environmental factors on the distribution of the
sample community
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sludge residues at the contact interface between roots and
soil to promote the colonization of fungi with saprophytic
functions.

Relationships between the rhizosphere fungi microbiome
and the contents of bioactive components in C. migao fruit
We analyzed the relationship between the relevant
fungal community and the chemical composition based
on Spearman correlation (the top 30% relative genera).
In different small watersheds (Figure S2A), α-Terpineol
was positively correlated with Pestalotiopsis, unclassified

Trichocomaceae, Cladophialophora, and Stilbella (P <
0.05), and negatively correlated with Hypholoma (P <
0.05). Sabinene was positively correlated with unclassi-
fied Thelephoraceae and negatively correlated with
Gibellulopsis. Crude fat was positively correlated with
Gibellulopsis and unclassified Ceratobasidiaceae. Sabi-
nene was negatively correlated with unclassified Leotio-
mycetes. Reducing sugar is positively correlated with
unclassified Basidiomycota and negatively correlated
with unclassified Venturiales. Total sugar is negatively
related to Cylindrocladiella. However, soluble

Fig. 4 Heatmap of fungal in Rhizosphere Soil of C.migao (genus); a, different minor watershed; b, different fruit period (exclude “unclassifired” taxa)

Fig. 5 FUNGuild function predicts results. a small watersheds; b fruiting periods
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polysaccharides and crude polysaccharides were not sig-
nificantly related to a certain fungus. In different fruiting
periods (Figure S2B), total sugar was negatively corre-
lated with Vanrija, and α-Terpineol was positively corre-
lated with Clitocybula. Crude fat was positively
correlated with unclassified Hysteriale, unclassified Sor-
dariomycetes, and unclassified Ceratobasidiaceae. Crude
fat was negatively correlated with unclassified Eurotio-
mycetes. Sabinene was positively correlated with unclas-
sified Hypocreales and unclassified Pleosporales and
negatively correlated with Beltraniella and unclassified
Clavariaceae. Reducing sugar was negatively correlated

with unclassified Pleosporales. These results suggest
rhizosphere fungi have potential functions in the forma-
tion of the chemical components of C. migao fruit.
The relationship between fungi and C. migao fruit

composition variability in small watersheds and fruiting
periods was assessed by MaAslin analysis (Fig. 6). Total
sugar content gradually decreased with an increasing
abundance of Paecilomyces, Mycoarthris, and Cylindro-
cladiella, and increased with a growing abundance of
unclassified Basidiomycota, and soluble polysaccharides
decreased with increasing abundance of Scytalidium.
The content of α-terpineol increased with an increasing

Fig. 6 Multivariate Association with Linear Models (MaAslin). a-e, (small watersheds); f-n, (Different fruit period); P < 0.01
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abundance of Clitocybula, and sabinene was directly cor-
related with the abundance of unclassified Hysteriales,
unclassified Bionectriaceae, Gibberella, Ilyonectria,
Micropsalliota, and Geminibasidium.

Discussion
The relative of climate and rhizosphere fungi niche
The border of Yunnan, Guizhou, and Guangxi lies in the
Guizhou Karma-Fenglin Mountain region. A large num-
ber of soluble rocks on the inner surface are exposed,
and some insoluble rocks are exposed locally, causing
non-karst landforms to be scattered throughout the re-
gion. C. migao is usually scattered in these non-karst
landforms [80]. The transitional folds of the karst out-
crop divide these non-karst areas into discontinuous
geographical units. In this isolated geographical unit,
small watersheds such as the Yujiang, Panjiang, and
Hongshui Rivers are formed. This discontinuous geo-
graphical distribution pattern forms a unique heteroge-
neous microenvironment, creating variations in climate
between basins at smaller geographic scales and different
seasons, profoundly affecting the species distribution in
the region [73, 81]. The climate pattern formed in small
watersheds also has an important influence on the
chemical composition of C. migao fruits (Table S3), but
the driving force behind this relationship has been un-
known. This study shows that the climate differences be-
tween small watersheds promote differentiation of the C.
migao fungal community (Figure S5A). The reason for
this may be that there are relatively large differences in
soil moisture and temperature between the various wa-
tersheds [1] (Tables S1 and S2). Similar effects have been
described in Mussaenda kwangtungensis interleaf fungus
communities, as the Mussaenda kwangtungensis popula-
tions on islands and the mainland had different niches
due to differences in light radiation, which promotes the
differentiation of radiation-resistant fungal groups in the
two habitats [52]. The difference in rainfall in the upper
and lower reaches of the Tarim River in Xinjiang, China,
promotes differentiation of related flora and influences
plant distribution patterns [8]. Between the edge of the
forest and the forest also experience environmental dif-
ferences, and the fungal biomass and composition also
significantly differ in the two small environments [12].
C.migao distribution in small watersheds is mainly af-
fected by the southwest monsoon, but due to the influ-
ence of karst topography, temperature and rainfall are
unevenly distributed [15]. The distribution of C. migao
in the vertical altitude ranges from about 300 m in
Wangmo County, Guizhou Province to 1200m in Mal-
ipo County, Yunnan Province. The river valley region
has high perennial temperatures and the air is dry; how-
ever, far from the river valley, the temperature gradually
decreases, and the humidity increases with the uplift of

karst terrain [76], which also becomes an important
driving force for the differences of rhizosphere fungal
communities. Boletus edulis and Lactarius deliciosus
abound in late autumn and early winter, while Tuber
magnatum and Lactarius vinosus increase in spring. In
addition to the life history characteristics of the species,
the biggest driving force in fungal community variability
is the seasonal changes in soil temperature and humidity
[34, 43]. Although there were some fluctuations in the
rhizosphere fungi of C. migao in different fruit periods
(seasons), Mortierella, Saitozyma, and Fusarium with
higher abundance in different fruit periods (seasons) did
not show obvious changes with fruit periods (season)
(Fig. 1b) but were closely related to S-UE and AP. In
contrast, other studies have suggested that seasonal
changes in soil temperature, humidity, and available
water indirectly affect the seasonal dynamics of fungal
communities. However, other studies have confirmed
that the negative feedback adjustment between some soil
pathogens and their hosts is not affected by abiotic en-
vironmental conditions such as temperature and soil
moisture [25]. Pathogenic fungi accounted for 7.35–12%
of the rhizosphere soil population of C. migao in differ-
ent fruiting periods (Fig. 4b). Mortierella, Saitozyma,
and Fusarium all have pathogenic characteristics. A large
number of pathogenic fungi in the rhizosphere fungi
group of C. migao explained the reason why the rhizo-
sphere fungi did not show regular changes with seasonal
shifts [3, 61, 63]. In general, the unique climate formed
in the small watershed greatly promoted the differenti-
ation of the fungal community in the rhizosphere of C.
migao. It is generally believed that the fungi in the dry-
hot valleys, mainly thermophilic fungi, are more sensitive
to temperature changes [54]. Although the distribution
of C. migao is located on both banks of the dry and hot
valley, because some populations are distributed at
higher altitudes, the environmental temperature is rela-
tively low; many transitional fungi may also be distrib-
uted. The response of C. migao rhizosphere fungi and
fruit chemical components to this small watershed cli-
mate provides a perspective that host plants and rhizo-
sphere fungi may have special responses to climate
change, potentially changing carbon and nutrient cycles
and plant-fungi relationship further affects the chemical
composition of the fruit [5].

Different response of rhizosphere fungal to soil factors
In this study, we not only observed that the climatic dif-
ferences in the small watershed have a significant impact
on the community structure of C. migao rhizosphere
fungi but also found that the soil chemistry has an im-
portant influence on the community structure of C.
migao rhizosphere fungi (Figure S4). As an important
part of the soil food chain, fungi are important
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decomposers of organic matter such as rhizosphere lit-
ter. The composition of organic matter in the rhizo-
sphere affects the composition of the fungal community
[33, 36]. CCA (Fig. 3) and Spearman correlation analysis
(Figure S4) revealed that pH, S-CAT, AN are closely re-
lated to some fungal communities in different water-
sheds and different fruit periods. The site conditions of
all C. migao populations are yellow soil acidic soil is suit-
able for the colonization of acid-loving fungi (Table S1).
Studies have shown that the close relationship between
mycorrhizal fungi and pH is the dominant factor in fun-
gal community composition and diversity [55, 56]. The
analysis results also show that many species of the Chae-
tothyriales belong to mycorrhizal fungi, which are closely
related to pH, thus explaining the close relationship be-
tween the rhizosphere fungi of C.migao [30]. Soil en-
zyme activity is closely related to the abundance of
fungal populations, such as S-CAT can reduce the dam-
age of peroxide to fungi and significantly related to S-
CAT in the rhizosphere of C. migao. Many species in
the genus Cladosporium and Trichoderma can produce
CAT enzymes to resist the damage caused by peroxides
in the environment [6, 64], Saitozyma and Penicillium,
which are also closely related with strong antagonistic
effects on peroxides [17]. The existence of these species
can effectively reduce the damage of peroxides to the
rhizosphere of C. migao, and help build a stable rhizo-
sphere micro-ecosystem. The close relationship between
both AN and C. migao rhizosphere fungi may be related
to the availability of nitrogen resources. It is generally
believed that when resources are limited, the abundance
of fungal populations through plant symbiosis will in-
crease to enhance the use of soil resources. Improve the
restriction of resources on plant growth, and the AN-
related Chaetosphaer of FUNGuild analysis shows that
some of the species tend to have a symbiotic relationship
with plants. We used Spearman analysis (Table S8) and
found that there was a maximum temperature correl-
ation with S-UE, AK, AAT, and S-ACP. Several studies
have revealed that changes in climate alter the structure
of the fungal community and thus affect the chemical
properties of the soil ([41]; Rousk et al. 2009 [75];).
The chemical properties also have very important sig-
nificance [16]. Among the rhizosphere fungi, the
more abundant Ascomycetes, Blastomycetes, and Chy-
tridomycetes are saprophytic, decomposing animal
and plant residues. This fungus was very important
for the material circulation of the rhizosphere of C.
migao and the improvement of soil chemical proper-
ties [16]. The FUNGuild evidence that most fungal
groups of C.migao rhizosphere are saprophytic, which
is very important to promote the mineralization of
organic litter and establish a complete feedback loop
between soil, fungi, and plants.

The relationships between the rhizosphere microbes and
C. migao fruit composition
Beneficial fungi are very important to maintain the
healthy growth of plants and improve plant productivity,
a concept applied to many agricultural practices [18, 26,
35]. The effects of rhizosphere fungi on plant growth
and productivity are direct or indirect. For example, to-
mato inoculated with fungi could significantly reduce
the disease of Verticillium dahliae and Verticillium
Alboatrum and significantly increase the fruit yield [14];
The interaction between Salvia miltiorrhiza and rhizo-
sphere fungi can improve the biomass production of Sal-
via miltiorrhiza and affect the metabolic pathway for
tanshinone production. Colletotrichum fioriniae, an
endophytic fungus from Mahonia fortunei, produces in-
dole alkaloids similar to the active components in the
bark of M. fortunei [21]. On the other hand, although
some fungal populations are not directly involved in
plant growth and function, they can enhance plant adap-
tation to changes in water and nutrient availability and
salinity, thereby regulating photosynthesis and fruit com-
position [23, 29, 44]. Most studies of the interaction be-
tween plants and rhizosphere fungi are focused on crops
and herbal medicinal plants; few studies have explored
the interaction mechanism of arbor-type medicinal
plants [27]. The rhizosphere fungi associated with the
chemical components of C. migao fruit can be classified
into three categories. The first category is the plant path-
ogens: Pestalotiopsis causes grape and olive fruit spoilage
[10, 13, 45], and Ilyonectria causes root rot in Persea
americana and Laurus nobilis, which belong to the same
family as C. migao [7, 68], while Gibberella causes rhizo-
sphere death in wheat and maize [59, 46]. This study
provides evidence that sabinene is positively correlated
with Ilyonectria and Gibberella, and α-Terpineol is posi-
tively correlated with Pestalotiopsis. α-Terpineol and
sabinene, both volatile oils with strong antibacterial ac-
tivity, are relatively abundant in the roots and fruits of
C. migao. The population abundances of these three
pathogens increased in the rhizosphere of C. migao,
exhibiting a positive feedback effect and reducing disease
in C. migao by synthesizing large amounts of antibacter-
ial α-Terpineol. Cylindrocladiella was closely related to
root rot, which can cause root rot of avocado, in which
the biomass of healthy roots will gradually decrease, and
the plant height will be reduced. Our results show that
there is negative feedback between population abun-
dance and the total sugar of fruit, perhaps because
Cylindrocladiella can reduce the plant biomass and thus
plant yield [67]. Scytalidium causes fruit decay, especially
for pitaya [48]. It also has a negative feedback regulation
mechanism with reducing sugar, which may be related
to its promoting decay function. The second category
belongs to the type of plant growth-promoting fungi:
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Cladophialophora has excellent growth-promoting activ-
ity and significantly increased plant growth (including
bud and root dry weight, chlorophyll content, flower
bud germination, and fruit number) [22], which can pro-
mote the accumulation of α-Terpineol, and thus also
promotes the growth of C. migao fruits. Vanrija belongs
to the basidiomycetes and can decompose soil to pro-
duce sugars and D-aspartate oxidase [28]. Although
Vanrija was identified in the rhizosphere of C. migao, it
is Jujube (Ziziphus jujuba), and Ficus carica and Pistacia
vera are widely distributed on the fruit surface. Paecilo-
myces are believed to have a certain antibacterial effect
and can delay spoilage after fruit harvest [20, 58, 60].
The third category belongs to the saprophytic fungi,
which secrete sesquiterpenes and typically colonize the
litter, which may protect against pathogens in the C.
migao rhizosphere [2]. Beltraniella mainly exists in the
deciduous layer, promoting decomposition and produ-
cing enzymes to promote fruit rot [65]. However, this
type of fungus is not directly related to the chemical
components of C. migao fruits, but at nutrient return,
material circulation, and supply of C. migao resources.
Most of these fungal groups are closely related to C.
migao production of carbohydrates, as sugars are the
primary metabolites of plant fruits, and their content is
often closely related to the availability of environmental
resources. Rhizosphere fungi are an important part of
rhizosphere microorganisms, interacting with plants in a
complex relationship that is especially important for me-
dicinal plants. First, although some fungal groups are
unfavorable to plant growth, they also stimulate the
plant body to produce secondary metabolites to cope
with the adverse environment, and these secondary me-
tabolites are often the medically active ingredients of
medicinal plants [57]. Secondly, although a few florae
significantly influence the chemical components of C.
migao fruits, the features of the fruit may be the result
of the coordination of many fungal groups, including
those that remain unidentified. Some scholars have pro-
posed the concept of a “core microbiome” of multiple
key groups rather than a single group [66]. Future work
will strengthen the sequencing depth of C. migao rhizo-
sphere fungi and explore the core microbiome that af-
fects the chemical components of C. migao fruit to
reveal the feedback mechanism between rhizosphere
fungi and fruit chemical components.

Conclusions
Here, we investigated the community composition of the
rhizosphere and the chemical composition of C. migao
fruit in different small watersheds and fruiting periods.
We explored the relationship between the chemical
properties of the rhizosphere soil, the climate of the
small watershed, the rhizosphere fungi, and the

composition of sugar and crude fat in C. migao fruit.
There were significant differences in the rhizosphere
communities between watersheds, but no significant dif-
ferences between fruiting periods, indicating that the
unique climate of the small watershed promotes the dif-
ferentiation of the C. migao rhizosphere community.
There was a close relationship between the community
composition of the C. migao rhizosphere and S-UE, AP,
and AAT. Clitocybula may promote the accumulation of
α-terpineol in C. migao fruit. Gibberella, Ilyonectria,
Micropsalliota, and Geminibasidium may promote the
accumulation of sabinene. In summary, this study re-
veals the complex network among rhizosphere fungi,
small watershed climate, soil chemistry, and plant fruit
metabolites, and provides a feasible foundation for a
strategy to improve the industrial and pharmacological
value of C. migao fruit.

Methods
Experimental materials
Soil samples
In mid-October 2018, non-disease-carrying C. migao
plants with a breast diameter of about 32–38 cm were
randomly selected five plants from 9 populations of
C. migao in the watersheds of the Panjiang, Hongshui,
and Yujiang rivers. From the three populations of
Luodian and Wangmo Counties in Guizhou Province,
five plants were randomly selected from each of three
growth periods: young fruit (June), closed immature
(August), and mature (October). Rhizosphere soil
samples were collected around each tree. The humus
and topsoil were removed before sampling. A section
of 80 cm was vertically excavated along the base of
the C. migao tree with a sterile shovel to obtain
healthy plant roots. Find the fibrous root part along
the lateral roots then cut off the branches, shake gen-
tly to remove the excess soil, gently shake off the soil
within 2 mm of the root system, and then brush the
soil still attached to the fibrous roots. After collection,
put rhizosphere soil into a sterile plastic, quickly put
it in an ice box and bring it back to the laboratory.
The soil samples were divided into two parts: one
was dried at room temperature (25 °C) for the deter-
mination of soil chemical properties, and the other
was stored at − 80 °C for genomic extraction of rhizo-
sphere soil fungi. Overall, 90 soil samples were col-
lected, then mix the 5 samples collected from each
population evenly (Fig. 7).

Fruit samples
Fruit samples were collected from the plants corre-
sponding to the rhizosphere soil of C. migao. The
fruits were collected from the same small watersheds
and fruiting periods, mixed and brought back to the

Chen et al. BMC Microbiology          (2021) 21:206 Page 10 of 14



laboratory for drying at low temperature to constant
weight. The dried fruit samples were crushed with a
grinder and passed through a 40-mesh sieve. All the
fruits were collected from the wild because they were
not protected species and did not require permission
from the Chinese forestry authorities. Overall, 90 fruit
samples were collected, then mix the 5 samples collected
from each population evenly. All the specimens were
identified by Professor Qingwen Sun of Guizhou University
of traditional Chinese medicine and preserved in the
ecological Laboratory of Guizhou University.

Experimental method
Soil chemistry properties
Analysis of soil properties was performed by conven-
tional methods according to manufacturer protocols, in-
cluding pH, total nitrogen (TN), total phosphorus (TN),
total potassium (TK), alkali hydrolyzed nitrogen (AN),
available phosphorus (AP), available potassium (AK)
[72], soil acid phosphatase (S-ACP), soil urease (S-UE),
and soil catalase (S-CAT) (China, Beijing Solaibao Bio-
science Technology). The comparative analysis included
analysis of variance (ANOVA) and Tukey t-test using
SPSS 18.0 (SPSS, Chicago).

Extraction of fungal genome
The FastDNA SPINKit for Soil was used to extract fungal
genomic DNA according to manufacturer instructions.
DNA quality was assessed by 1% agarose gel electrophor-
esis (5 V·cm− 1, 20min) and UV-1700 spectrophotometry.

Amplification primers: ITS1F (CTTGGTCATTTAGAGG
AAGTAA) and ITS2R (GCTGCGTTCTTCATCGATGC)
were published previously [49]. PCR was performed with
TaKaRa rTaq DNA Polymerase in a 20-μl reactio-n con-
taining 10× Buffer (2 μl), 2.5 mM dNTPs (2 μl), Forward
and Reverse Primers (5 μM) (0.8 μl), r-Taq Polymerase
(0.2 μl), BSA (0.2 μl), and template DNA (10 ng). Cycling
conditions: 1 cycle of 95 °C for 3 min, 5 cycles of 95 °C for
30 s, 55 °C for 30 s, and 72 °C 45 s, 72 °C for 10min, hold
at 10 °C (ABI GeneAmp 9700). The PCR products were
sequenced using Meiji Biomedical Technology reagents
on an Illumina Hiseq platform.

Determination of fruit chemical components
The measurement index was selected according to previ-
ously published methods. Total sugar, crude polysac-
charide, soluble polysaccharide, and reducing sugar were
determined by UV-visible spectrophotometry, and crude
fat was extracted by the Soxhlet method [40]. HPLC was
used to measure α-terpineol and sabinene (Chengdu
Desite, purity ≥98%, ThermoFisher Ultimate-3000),
using a Hypersil-C18 chromatography column (4.6 mm ×
50mm, 2.6 μm, Thermo Fisher), detection wavelength is
220 nm, column temperature 31 °C, 10 μL injection vol-
ume, and 1ml·min− 1 flow rate. Mobile phase: methanol
(A)-acetonitrile (B)-0.1% phosphoric acid (C) for gradi-
ent elution (elution procedure Table S3). ANOVA and
Tukey t-test were used to assess differences in fruit
chemical composition (SPSS 22.0). The results are
shown in Tables S4 and S5.

Fig. 7 Distribution of C. migao sampling points. (The map comes from the standard map service system of the Ministry of natural resources, PRC .
The map is authorized for free. http://bzdt.ch.mnr.gov.cn/)
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Climate data
Meteorological observation records of Yunnan, Guizhou,
and Guizhou for 2018, including temperature and days
of sunshine, rainfall, humidity, air pressure, wind speed,
and other related data were collected using the inverse-
distance weight-interpolation method. This method is
commonly used in Acrgis10.2, which is interpolated by
the principle of spatial auto correlation [74]. The climate
data for each sampling point was extracted from this
data (Table S6).

Data analysis
The sliding window method was used to scan the se-
quence using Trimmomatic software to eliminate low-
quality raw data sequences. When the quality was less
than 20 or sequence length less than 50 bp, the sequence
was cut.vFlash software was used to splice the qualified
double-end raw data. The maximum overlap for se-
quence splicing was 200 bp, producing the complete
paired-end sequence. Split_librarie software in QIIME
was used to remove the N bases from the paired-end se-
quences. Sequences with a single base repeat > 8 were
removed, as were sequences < 200 bp to obtain the clean
tagged sequence. UCHIME software was used to remove
the trim the sequences for operational taxonomic unit
(OTU) division; principal coordinate analysis (PCoA),
canonical correspondence analysis (CCA), Wilcoxon
rank-sum tests, and linear regression based on weighted
UniFrac distance (WUF) using the I-Sanger cloud soft-
ware (http://www.i-sanger.com/).
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average temperature; ARH: Average relative humidity; AR: Annual rainfall
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