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Abstract

Background: The comparisons of molecular characterization and antibiotic resistance of Klebsiella pneumoniae (KP)
isolates from humans and other animal hosts are not well studied. Our goal was to compare the molecular epidemiology
of KP strains that were isolated from urban rodents, shrews, and healthy people.

Results: K. pneumoniae (KP) isolates were isolated from fecal samples of rodents, shrews and healthy adults in 2015 in
southern China. In total, 465 fecal samples were collected, of which 85 from rodents, 105 from shrews, and 275 from
healthy adults. Antimicrobial susceptibility and production of extended-spectrum β-lactamases (ESBL) of the isolates were
tested. PCR-based methods were used to detect specific genes, including ESBL genes (blaTEM, blaSHV, and blaCTX-M) in
ESBL-producing isolates, capsular serotypes (K1, K2, K5, K20, K54, and K57) in hypervirulent KPs (hvKPs), and virulence
genes (magA, wcaG, rmpA, uge, kfu, and aerobactin) in hvKP isolates. Multilocus sequence type (MLST) and pulsed-field gel
electrophoresis (PFGE) were performed to exclude the homology of these isolates. The carriage rate of KP in urban
rodents and shrews (78.42%) was higher than that in healthy adults (66.18%) (χ2 = 8.206, P = 0.004). The prevalence rates
of ESBL-producing isolates among rodents, shrews, and humans were 7.94, 12.79, and 17.03%, respectively. The positive
rates of CTX-M, TEM and SHV types in ESBL-producing isolates were 29.79, 27.66, and 17.02%, respectively. Serotype K1, K5,
K20, and K57 were detected in both small mammals and humans. PFGE typing revealed thirty-six clusters. PFGE cluster A
was clustered by samples of shrews and healthy adult, with a similarity of 88.4%. MLST typing revealed thirty-eight types.
ST23 and ST35 were detected in samples of shrews and healthy adults. ST37 was detected in samples of 2 rodents and a
healthy adult.

Conclusions: Overlapping serotypes of hvKP were observed in both the animals and humans. The same PFGE or MLST
types were also found in isolates derived humans, rodents and shrews. Therefore, urban rodents and shrews might play a
certain role in the transmission of drug-resistant and hypervirulent KP.
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Background
Klebsiella pneumoniae (KP) is ubiquitous in humans, ani-
mals, sewage, soil, and polluted waters [1]. KP is consid-
ered an important cause of community-acquired (CA)
pneumonia infections. Since the early 1970s, KP has been
detected in hospital environments and has become a lead-
ing cause of hospital-acquired (HA) infections, such as
nosocomial pneumonia, wound, soft tissue, or urinary
tract infections in neonates, the elderly, and immuno-
deficient patients [2–4]. Recently, life-threatening cases of
CA infections, including pyogenic liver abscesses, menin-
gitis, and endophthalmitis, caused by KP have been re-
ported in the general population [5].
Efficiency of colonization and the ability to acquire

resistance to antibiotics enables KP to spread rapidly in
healthcare centers [4]. With the emergence of multidrug-
resistant (MDR) strains associated with hospital outbreaks,
MDR KP is becoming an urgent threat to public health [6].
The main molecular mechanism of drug resistance in KP is
the production of extended-spectrum β-lactamases (ESBL)
[7]. In the early 1980s, ESBL were first identified in KP and
Serratia marcescens strains in Europe [8]. Since then, ESBL-
producing KP has become widespread to a lager extent [9].
ESBL are plasmid-mediated enzymes that hydrolyze
oxyimino-β lactam agents, such as third-generation cephalo-
sporins and aztreonam [10]. These plasmids can also carry
resistance genes to other antibiotics including fluoroquino-
lones, cotrimoxazole, and aminoglycosides [7].
In addition, a new type of virulent variant KP, known

as hypervirulent KP (hvKP), which is associated with
community-acquired infections, has emerged worldwide
over the past three decades. HvKP infects both the
healthy and non-immuno-compromised people more
easily, and has more significant morbidity and mortality
than the “classic” KP [5]. Infections caused by KP have
also been described in cases from various animals in vet-
erinary studies, including companion animals, horses,
cattle, birds, monkeys, elephants, seals, guinea pigs, and
rats [11, 12].
Urban rodents and shrews have long share living envi-

ronments with humans. These small mammals may play
a role as reservoirs of causative agents for various bac-
terial, viral, and parasitic zoonoses because of their per-
vasiveness and their propensity toward close contact
with humans [13]. Rats have been previously reported to
carry multidrug-resistant bacteria such as Escherichia
coli [14, 15], Staphylococcus aureus [16], and Salmonella
spp. [17]. Additionally, some species of shrews in urban
areas have been found to carry several bacterial patho-
gens of zoonotic diseases, such as Bartonella spp. [18]
and Leptospira spp. [19]. Thus, urban rodents and
shrews are important reservoirs of rodent-borne diseases
in cities. Increasing urbanization and poverty have re-
sulted in the emergence or re-emergence of rodent-
associated diseases in urban areas [13]. Therefore, it is
necessary to understand the prevalence and microbio-
logical characteristics of zoonotic pathogens circulating
among these small mammals in urban environments. To
the best of our knowledge, there has yet to be studies on
the prevalence and microbiological characteristics of KP
carried by urban rodents and shrews.
The objectives of this study were to understand the

carriage rate of KP in urban rodents and shrews, and to
characterize antimicrobial resistance and hyper virulence
of KP in these small mammals from a community in
southern China. Meanwhile, KP isolates from healthy
adults in the community were compared with those
from small mammals. Based on these results, we
assessed the potential transmission among urban ro-
dents, shrews, and humans in a community.

Results
Sample collection and bacterial isolation
Between May and September of 2015, a total of 190 rodents
and shrews, including 80 Rattus norvegicus, 3 Mus musculus,
2 Rattus flavipectus, and 105 Suncus murinus (Asian house
shrews), were captured. The seasonal distribution of the cap-
ture rates was mainly in June and July (Additional file 1: Fig-
ure S1). Among the 190 small mammals, KP was isolated
from 149 (78.42%) individuals, including 63 Rattus norvegicus
and 86 Asian house shrews. None ofMus musculus and Rat-
tus flavipectus was positive for KP. There was no significant
difference in KP carriage rates between Rattus norvegicus
(74.12%) and house shrews (81.90%) (χ2 = 0.288, P= 0.591)
(Additional file 2: Table S4).
A total of 275 stool samples from healthy adults were

collected during the same period. The detection rate for
KP was 66.18% (182/275). The carriage rate of KP in the
small mammals was higher than that in healthy adults
(78.42% vs. 66.18%, χ2 = 8.206, P = 0.004) (Additional file
2: Table S4).

Antimicrobial susceptibility
As shown in Table 1, the antimicrobial susceptibility
patterns of 331 KP isolates from the small mammals and
healthy adults were similar. All isolates had a low level
of susceptibility to penicillin and cephalosporin antibi-
otics. Susceptibility rates to piperacillin for rodents,
shrews, and healthy adults were 6.35, 13.95, and 19.23%,
respectively. All isolates had low susceptibility to cefazo-
lin, which were less than 5%. For the third-generation
cephalosporin, susceptibility rates to cefotaxime were
34.92, 37.21, and 35.16%, respectively; susceptibility rates
to ceftazidime were 66.67, 63.95, and 65.38%, respect-
ively. Susceptibility rates to cefepime, which is one of
the fourth-generation antibiotics, were 79.37, 59.30, and
54.40% for rodents, shrews, and healthy adults,
respectively.



Table 1 Antibiotic susceptibility patterns of KP isolates from urban rodents, shrews, and healthy people in 2015

Antibiotics Rodents (n = 63) Shrews (n = 86) Healthy adults (n = 182)

S (%) I (%) R (%) S (%) I (%) R (%) S (%) I (%) R (%)

piperacillin 6.35 52.38 41.27 13.95 48.84 37.21 19.23 40.66 40.11

cefazolin 3.17 46.03 50.79 3.49 45.35 51.16 2.20 46.70 51.10

cefuroxime 6.35 90.48 3.17 4.65 93.02 2.33 4.95 92.31 2.75

cefotetan 0 3.21 96.79 1.20 4.70 94.20 1.58 2.22 96.20

cefotaxime 34.92 50.79 14.29 37.21 39.53 23.26 35.16 36.81 28.02

ceftazidime 66.67 25.40 7.94 63.95 29.07 6.98 65.38 23.08 11.54

cefepime 79.37 19.05 1.59 59.30 38.37 2.33 54.40 44.51 1.10

aztreonam 95.24 1.59 3.17 93.02 1.16 5.81 92.31 5.49 2.20

meropenem 1.63 26.93 71.44 0 23.30 76.70 0 13.20 86.80

norfloxacin 100.00 0.00 0.00 98.84 0.00 1.16 96.70 1.10 2.20

ciprofloxacin 92.06 6.35 1.59 95.35 3.49 1.16 91.76 5.49 2.75

amikacin 98.41 1.59 0.00 100.00 0.00 0.00 98.90 0.55 0.55

gentamicin 96.83 0.00 3.17 95.35 1.16 3.49 96.15 0.00 3.85

chloramphenicol 84.13 4.76 11.11 94.19 0.00 5.81 89.01 0.55 10.44

tetracycline 79.37 3.17 17.46 84.88 4.65 10.47 75.82 1.65 22.53

trimethoprim-sulfamethoxazole 84.13 1.59 14.29 84.88 5.81 9.30 72.53 13.19 14.29

amoxicillin-clavulanate 87.30 9.52 3.17 88.37 8.14 3.49 80.22 18.68 1.10

S Susceptible, I Intermediate, R Resistant
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ESBL-producing and multidrug-resistant KP
The positive rates of ESBL-producing isolates were 7.94,
12.79, and 17.03% in rodents, shrews, and healthy adults,
respectively. The multi-drug resistance rates for rodents,
shrews, and healthy adults were 49.21, 36.04, and 47.80%,
respectively. There was no statistically significant difference
among rodents, shrews, and healthy adults (Additional file
2: Table S5).
Among all ESBL-producing isolates, the prevalence of

CTX-M, TEM and SHV types were 29.78% (14/47),
27.65% (13/47) and 17.02% (8/47), respectively (Additional
file 2: Table S5).

Capsular serotyping and virulence genes
As shown in Additional file 2: Table S6, 20 hvKP isolates
of 6 common serotypes were identified among 331 KP
isolates. All six serotypes were detected in isolates from
healthy adults. Serotype K1, K5, K20, and K57 were de-
tected in both the small mammals and the healthy
adults. Among all hypervirulent isolates, the magA gene
was only present in K1 isolates, whereas the uge gene
was detectable in all serotypes. All K1 isolates and some
K20, K54, and K57 isolates carried the wcaG gene. The
Aerobactin gene was identified among all rmpA-positive
isolates. All K2 isolates lacked the kfu gene while the
other five serotypes were positive for the kfu gene. As
shown in Additional file 2: Table S6, K1, K2, K20, and
K57 isolates carried more of these six virulence genes
than did the K5 and K54 isolates.
ESBL-producing KP fingerprinting
Forty-seven ESBL-producing KP isolates which were no
direct epidemiological association showed 36 PFGE types.
PFGE type A clustered by samples of a shrew(S1644) and
a healthy adult(T202–2). Whose similarity of the PFGE
pattern was up to 88.4% (Fig. 1). The ESBL-producing KP
isolates demonstrated 38 MLST types. ST23 was detected
in samples of a shrew(S1644) and a healthy adult(T202–
2). Likewise, ST35 were detected in samples of a
shrew(S1633) and a healthy adult(T144). ST37 belonged
to samples of rodents (R148, R150) and a healthy
adult(T156) (Fig. 1).
Among them, because of the isolates being not col-

lected in an outbreak investigation of KP, PFGE profile
only showed partial similarity of the sample sets. Inter-
estingly, the similarity of isolates of T48 and T47, R148
and R243, R150 and R211 were more than 85%, respect-
ively (Fig. 1). But each two samples of which were the
same type of host that collected during the different time
period, suggesting that the potential transmission may
be exist among urban rodents, shrews, and humans in a
community.

Discussion
Carriage prevalence
K. pneumoniae can be asymptomatically present in the
gastrointestinal tract, eyes, respiratory tract, and genito-
urinary tract of healthy humans [3]. In most infections
with KP, colonization in the gastrointestinal tract seems



Fig. 1 Relationships of the ESBL-producing KP isolates based on Pulsed Field Gel Electrophoresis (PFGE). A PFGE pattern with more than 80% DNA bands that
are different from the others is taken to be a unique PFGE pattern (S for samples of shrews; R for samples of rodents; T for samples of healthy adults; For MLST
type, uncertain means lacking of one housekeeping gene data, new type means no matched MLST type from the website)
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to be a prerequisite for the establishment of infections
[20]. Carriage rates of KP varied considerably among dif-
ferent populations. In European populations, the carrier
rate of KP in fecal samples from healthy people ranged
from 10.1 to 35.7% [21, 22]. In Asian countries, the car-
riage rates of KP from fecal specimens varied, which was
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from 18.8 to 75.0% [23, 24]. In our study, the fecal car-
riage rate of KP from healthy adults (66.18%) was similar
to that of healthy Chinese residents in Asian countries,
except Japan. Rats and shrews are known as a source of
zoonotic pathogens responsible for significant human
morbidity and mortality. Their feces are considered an
important pathway for disseminating common bacteria
through direct or indirect interactions with humans,
food, water or sewage systems [13]. In our study, the
fecal carriage rate of KP among these small mammals
was significantly higher than that of healthy adults.

Antibiotic resistance
The emergence of KP antibiotic susceptibility, especially
to third and fourth generation cephalosporins, is a crit-
ical concern for the development of treatments against
bacterial infection [25]. A recent global surveillance
database collected from Europe, North and South Amer-
ica, and Asia, showed that the detection rates for ESBL-
producing KP were 7.5–44% [26]. In China, 30.1–39.3%
of the total isolates collected from hospital or commu-
nity acquired infections during 2003–2013 period were
ESBL-positive [27]. In our study, we identified 7.94 and
12.79% of KP isolated from rodents and shrews to be
ESBL-producers, the ESBL-positive rate among healthy
adults was higher than that in studies conducted in
Hungary [28, 29]. Notably, there was no significant dif-
ference in the ESBL-positive rate among urban rodents,
shrews, and healthy adults.

Capsular serotypes
Six serotypes of KP, including K1, K2, K5, K20, K54, and
K57, are frequently considered important hypervirulent
serotypes, which have been not only associated with
nosocomial infections in immunocompromised patients,
but also the cause of life-threatening community-
acquired infections, such as liver abscess in healthy indi-
viduals, especially in Asian countries [30–32]. The re-
sults of our study showed that all six serotypes of hvKP
were identified among healthy adults, and K1, K2, and
K57 serotypes were predominant. This finding is consist-
ent with the previous investigation that K1 and K2 sero-
types were the predominant types of hvKP among
healthy Chinese in Asian countries [24]. Serotype K57
has emerged as frequent cause of septic arthritis, blood
infection, urinary tract infections, and respiratory tract
infection, but was rarely reported among healthy adults
[30, 33]. However, we had observed the high prevalence
of K57 serotype isolates among healthy adults. Data on
the serotype distribution of hvKP in fecal samples from
urban rodents and shrews have rarely been reported pre-
viously. Among all hypervirulent isolates from these
small mammals, the current study showed high preva-
lence of serotype K5 and K57, which were prevalent
among community onset infections, including commu-
nity acquired pneumonia, nasopharynx, urinary tract
infection, blood infection, pyogenic liver abscess and so
on [30, 34–36].
Several cases of multidrug-resistant hvKP-related

hospital-acquired infections have been reported [37–39].
In our study, we found resistance to penicillin and ceph-
alosporin antibiotics among hvKP isolates, especially in
the K5, K20, and K57 serotype isolates from healthy
adults and small mammals. The antimicrobial resistance
patterns of KP isolates from urban rodents, shrews, and
healthy adults were similar. Furthermore, three serotypes
of hvKP (K5, K20, and K57) implicated in community-
acquired human infections were also detected in urban
rodents and shrews.

Genotypes
Our samples were all ESBL-positive isolates, and PFGE
profiles demonstrated high clonal dissemination of
which in the humans and rodent animals. The higher
discriminatory power of PFGE is consistent with the re-
sults of previous clinical isolates in the NICU or PICU
and environmental samples [40, 41]. In our study, two
isolates from shrews and healthy people, respectively,
were clustered in a PFGE clustering tree. These two iso-
lates were high-virulence of serotype K1 and ST23. The
similarity of the two isolates was 88.4%. In the report by
Lu, et. al, ST23 was a common type of detection, which
22 KP isolates were all from stool specimens of outpa-
tients with diarrhea in Beijing [42]. ST23 and ST35 were
detected from shrews and healthy adults in our study. In
a previous study, ST37 type could be detected in the
sputum and stool samples of diarrhea children [43].
ST37 genotype had the highest detection rate in rodent
and human stool samples in our study. It might suggest
that ST23, ST35 and ST37 KP isolates were on a wide
range of hosts.
We observed that the resistance rate to cefotaxime

was significantly higher than that to ceftazidime among
ESBL-producing KP isolates both from small mammals
and healthy adults. In analysis of ESBL genotypes, TEM,
SHV, and CTX-M types were predominantly observed
among KP isolates from HA- and CA-infections [25].
Researchers in China have previously identified that the
predominant ESBL genotype in Beijing, Guangdong, and
Hangzhou was the CTX-M type [44, 45], which prefer-
entially exhibited powerful hydrolysis of cefotaxime
compared to ceftazidime [46]. This may be a result of
different hydrolysis effects with diverse ESBL genotypes.

Conclusions
To the best of our knowledge, this is the first study in-
vestigating fecal carriage of KP in urban rodents and
shrews worldwide. It is also the first report on the
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potential relationships among KP isolates from urban ro-
dents, shrews, and healthy adults in the community. It is
meaningful to pay attention to the high prevalence and
antibiotic resistance of fecal KP from urban rodents and
shrews and their impact on community-acquired infec-
tions. However, due to a small size of sample in our
study, bigger sample size should be needed to provide
more powerful evidence in the future study.

Methods
Ethics statement
The study protocol was approved by the Animal Ethics
and Welfare Committee of the School of Public Health,
Southern Medical University and adhered to the guide-
lines for the Rules for the Implementation of Laboratory
Animal Medicine (1998) from the Ministry of Health,
China. All surgical procedures were performed under
anesthesia with diethyl ether in efforts to minimize suf-
fering. Endangered or protected species were not in-
volved in this study. Healthy adults participated after
signing an informed consent form. After samples were
collected, the animals were sent to the animal experi-
mental center of southern medical university for con-
ducting harmless treatment.

Collection of samples, identification and antimicrobial
susceptibility testing of K. pneumoniae clinical isolates
Small mammals were captured alive around houses and
buildings monthly using rat-trap cages (Yue-zong Co
Ltd.) in a community in Baiyun District of Guangzhou
city in southern China, between May and September
2015. Some faecal samples were collected from the ani-
mals and others from healthy adults were consecutively
collected in the Physical Examination Center of the third
affiliated hospital of Southern Medical University in
Guangzhou from May to September 2015. All stool sam-
ples were transported to the lab in transport medium at
4 °C. Subsequently, stool samples were soaked in 5 mL
of the nutrient broth (Land Bridge, Beijing, China) and
incubated overnight at 37 ± 1 °C for bacterial enrich-
ment. The presumptive isolates were confirmed as KP
using microbiological tests combined with amplification
of the species-specific khe gene. Microbiological tests of
the purified colonies included gram staining and bio-
chemical testing. The khe gene was identified using PCR
as described previously [47]. KP ATCC® 700603 and E.
coli ATCC® 25922 were used as positive and negative
controls, respectively, in each test protocol.
Antibiotic susceptibility testing of KP was conducted

using the Kirby-Bauer disc diffusion method according to
Clinical and Laboratory Standards Institute; 2018 guide-
lines (CLSI). A panel of 17 representative antimicrobial
agents belonging to 11 different classes of antibiotics was
used. Screening and phenotypic confirmatory tests for
ESBL in KP were conducted according to CLSI guidelines,
2018. Results were interpreted according to CLSI. KP
(ATCC® 700603) and E. coli (ATCC® 25922) were used as
quality control strains.

Capsular serotyping, detection of resistance genes and
hypervirulent genes
PCR was used to detect the six common capsular serotype
genes (including K1, K2, K5, K20, K54, and K57) [34, 48].
The reaction mixture was kept at 95 °C for 3min, followed
by 30 cycles of 94 °C for 40s, 58 °C for 40s, 72 °C for 1 min,
and 72 °C for 7min. The PCR products were visualized
and analyzed by agarose gel electrophoresis and sequen-
cing. All ESBL-producing KP isolates were screened for
antimicrobial resistance genes (blaTEM, blaSHV, and
blaCTX-M) by PCR as described previously [49–51]. Viru-
lence genes, including magA, rmpA, uge, kfu, wcaG, and
aerobactin among all hvKP isolates were screened by PCR
using previously described methods [43, 52–56]. PCR
primers and conditions have been described elsewhere
(Additional file 2: Table S1, S2). All the positive products
were sequenced and analyzed using the BLAST website
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) and the CARD
website (https://card.mcmaster.ca/home).

Molecular epidemiology
Genetic relatedness among the ESBL-producing KP iso-
lates was determined by pulsed-field gel electrophoresis
(PFGE). In brief, the cell suspension of K. pneumoniae,
placed in plugs, which were made by adding an equal
volume of molten 1.0% SeaKem Gold. Slices of K. pneu-
moniae plugs were digested with 45 U/slice XbaI
(TaKaRa, Dalian, China) and incubated at 37 °C for 2 h.
Electrophoresis was run on the CHEF-DRIII system
(120° angle, 6 V/cm, switch times of 6 and 36 s). PFGE
patterns were analyzed using the BioNumerics software
package (version 5.10, Applied Maths, Inc., Austin, TX,
USA). The similarity analysis was performed by Dice co-
efficient. A similarity of > 80% upon dendrogram analysis
were considered to represent PFGE pattern subtypes
[40]. A subset of isolates that represented the different
PFGE clusters were further studied by multilocus se-
quence typing (MLST). Seven housekeeping genes (rpoB,
gapA, mdh, pgi, phoE, infB, tonB) were detected accord-
ing to the MLST official website (http://bigsdb.web.pas-
teur.fr/). Primer sequences, the annealing temperature,
and amplified fragment sizes were shown in Additional
file 2: Table S3. The reaction mixture was kept at 94 °C
for 2 min, followed by 35 cycles of 94 °C for 20s, anneal-
ing for 30s, 72 °C for 30s, and 72 °C for 5 min.

Statistical analysis
Statistical analysis was carried out by using SPSS 20.0
software. The chi-square test was used to evaluate if the

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://card.mcmaster.ca/home
http://bigsdb.web.pasteur.fr/
http://bigsdb.web.pasteur.fr/
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prevalence of KP was significantly different among
groups. A two-sided p-value of < 0.05 was considered to
be statistically significant. EBURST v3.0 software was
used to analyze our MLST results and database data.
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