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Abstract

Background: Bacterial blight of cotton (BBC), which is caused by the bacterium Xanthomonas citri pv. malvacearum
(Xcm), is a destructive disease in cotton. Transcription activator-like effectors (TALEs), encoded by tal-genes, play
critical roles in the pathogenesis of xanthomonads. Characterized strains of cotton pathogenic Xcm harbor 8-12
different tal genes and only one of them is functionally decoded. Further identification of novel tal genes in Xcm
strains with virulence contributions are prerequisite to decipher the Xcm-cotton interactions.

Results: In this study, we identified six tal genes in Xss-V,—18, a highly-virulent strain of Xcm from China, and
assessed their role in BBC. RFLP-based Southern hybridization assays indicated that Xss-V,—18 harbors the six tal
genes on a plasmid. The plasmid-encoded tal genes were isolated by cloning BamHI fragments and screening
clones by colony hybridization. The tal genes were sequenced by inserting a Tn5 transposon in the DNA encoding
the central repeat region (CRR) of each tal gene. Xcm TALome evolutionary relationship based on TALEs CRR
revealed relatedness of Xss-V>—-18 to MSCT1 and MS14003 from the United States. However, Tal2 of Xss-V,—18
differs at two repeat variable diresidues (RVDs) from Tal6 and Tal26 in MSCT1 and MS14003, respectively, inferred
functional dissimilarity. The suicide vector pKMS1 was then used to construct tal deletion mutants in Xcm Xss-V,—
18. The mutants were evaluated for pathogenicity in cotton based on symptomology and growth in planta. Four
mutants showed attenuated virulence and all contained mutations in tal2. One tal2 mutant designated M2 was
further investigated in complementation assays. When tal2 was introduced into Xcm M2 and expressed in trans, the
mutant was complemented for both symptoms and growth in planta, thus indicating that tal2 functions as a
virulence factor in Xcm Xss-V,-18.

Conclusions: Overall, the results demonstrated that Tal2 is a major pathogenicity factor in Xcm strain Xss-V,—18
that contributes significantly in BBC. This study provides a foundation for future efforts aimed at identifying
susceptibility genes in cotton that are targeted by Tal2.
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Background

Cotton (Gossypium spp.) is an economically-important
crop worldwide and is a significant source of fiber, feed,
oil and biofuel [1]. The primary cotton production areas
are located in the southern United States (USA), Central
America, western Africa, and central and eastern Asia. Ac-
cording to the 2017/18 world ranking, China leads the
world in cotton production followed by India, the USA
and Pakistan [2]. Gossypium spp. contains over 50 species,
including G. arboreum, G. herbaceum, G. hirsutum and G.
barbadense. G. arboretum and G. herbaceum are diploid
(2n =26), whereas G. hirsutum and G. barbadense are
tetraploid (4n = 52) [3, 4]. G. hirsutum is the predominant
species and produces with 90% of the world’s cotton fiber
production [5]. This species is impacted by a devastating
bacterial disease known as bacterial blight of cotton
(BBC), which is caused by Xanthomonas citri pv. malva-
cearum. The first detailed description of BBC was re-
ported in the USA [6]. However, this disease currently
occurs in all cotton production areas and causes signifi-
cant yield losses (5-35%) either by injury to the plant or
direct damage to the boll [7].

Xcm is able to infects all above-ground parts of cotton
at any developmental stage starting with seedlings [8].
Typical BBC symptoms include cotyledon/seedling
blight, angular leaf spots, water-soaked lesions, black
arm of petioles and stems, boll rot and boll shedding [8,
9]. The main virulence factors that contribute to the
pathogenicity and adaptation of bacterial pathogens in-
clude exopolysaccharides, lipopolysaccharides, adhesins,
protein secretion systems, siderophores, quorum sensing,
biofilms, chemotactic sensors and degradative enzymes
[10-13]. Particularly, type III secreted effector (T3SE)
proteins play an important role in bacterial pathogenicity
[10-12, 14] and have been identified in Xanthomonas
spp- [14—20]. One of the most studied groups of T3SEs
are the transcriptional-activator like (tal) effector
(TALE) proteins [21-28].

TALE proteins, functionally resemble eukaryotic
transcription factors, are localized to the host plant
nucleus where they bind to specific promoter se-
quences known as effector-binding elements (EBEs),
thus regulating host gene expression [29-31]. TALEs
belong to the avrBs3/pthA gene family [26], which is
highly conserved among different Xanthomonas spp.
TALEs contain an N-terminal T3S signal domain, a
central repeat region (CRR), C-terminal nuclear
localization signals (NLS), and an acid activation do-
main (AD) [30, 31]. CRRs contain tandem repeats of
33-35 amino acids that differ only at residues 12 and
13; these are designated repeat variable di-residues
(RVDs) and determine the specificity of DNA binding
[30-32]. TALE-mediated activation of EBEs can in-
duce host susceptibility (S) or resistance (R) genes
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[29, 30]. For example, the TALEs PthXol and PthXo2
from X. oryzae pv. oryzae (Xoo) were shown to en-
hance the expression of rice genes OsSWEET11 and
OsSWEET13, which are required for susceptibility to
bacterial leaf blight [33, 34]. However, rice cultivars
were resistant to Xoo when they contained OsS-
WEET11 and OsSWEET13 alleles lacking PthXol and
PthXo2 EBEs [35-37]. Recently, a new rice S gene
(OsERF#123) was shown to be targeted by TalB in
African strains of Xoo [38]. Other examples of TALEs
include AvrBs3 that targets the pepper resistance gene
Bs3 and AvrXalO, AvrXa23 and AvrXa27 that interact
with rice R genes Xal0, Xa23 and Xa27, respectively
[29, 39-41]. Recently, Cai et al. [21] reported that
Tal7 from Xoo binds and activates the expression of
the rice gene Os09¢29100, an interaction that sup-
presses avrXa7-Xa7-mediated resistance in rice. A
number of truncated TALEs (truncTALEs) and inter-
fering TALEs (iTALEs) have also been reported in
Xoo that function as suppressors of Xal-mediated
defense in rice [42, 43].

Resistance to Xcm has been identified primarily in
G. hirsutum. The genetic nature of resistance to BBC
was first revealed in 1939, and efforts to breed cotton
plants for resistance ensued shortly thereafter [44].
About 20 major R genes or polygene complexes (B
genes) participate in resistance to BBC in cotton [7,
8]. Based on their virulence phenotype in differential
cotton hosts, Xcm strains have been classified into 22
races that are named 1-22 [7]. Race 18 is the most
common variant and was first isolated in 1973 [45,
46]. In some cases, the outcome of interactions be-
tween Xcm strains and differential cotton varieties is
dependent on the avrBs3/pthA gene family in Xcm,
which indicates that Xcm-cotton interactions follow
the gene-for-gene model for host plant resistance [7,
10, 47, 48].

The number and diversity of tal effector genes varies
among different species, pathovars and strains of
Xanthomonas. For example, Xoo strains harbor 8-26
TALEs [49-53], Xoc strains contain 19-28 [49, 54, 55],
Xtt strains contains 5—12 [56], Xtu strains contains 7—8
[56-58] and Xcm strains harbor 8-12 genes encoding
tal effectors [27, 46, 59]. Some Xanthomonas spp. lack
tal effector genes, such as X. citri pv. raphani strain
756C [54]. To date, at least 20 TALEs have been cloned
and characterized from Xcm strains [25, 26, 28, 48].
Among these, Avrb6 was the first Xcrm TALE shown to
be important for virulence [25]. Cox et al. [27] demon-
strated that Avrb6 induced the expression of the cotton
S gene, GhSWEET10, thus enhancing bacterial virulence
and adaptation to the host.

The aim of the current study is to identify a novel
virulent tal-gene encoding TALE protein in a highly
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virulent cotton pathogen, Xcm strain Xss-V,—18 (from
China).

Results

TALEs of Xss-V,-18

Restriction fragment length polymorphism (RFLP) ana-
lysis was conducted to estimate the number and size of
tal genes in Xcm Xss-V,—18. Since most tal genes retain
two BamHI sites, Xcm Xss-V,—18 plasmid and genomic
DNAs were digested with BamHI and analyzed by
Southern blotting as described above. Six bands hybrid-
ized to the probe in BamHI-digested genomic and plas-
mid DNA, indicating that Xss-V,—18 contained six
plasmid-encoded tal genes (Fig. 1a).

The six tal genes were cloned in pBluescript as BamH]I
fragments, giving rise to pB-tall, pB-tal2, pB-tal3, pB-
tal4, pB-tal5 and pB-tal6 (Fig. 1b) and confirmed by col-
ony hybridization and sequence analysis. To obtain the
complete DNA sequence of each tal gene, we inserted
the Tn5 transposon into the CRR region and used
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primer sets tal-F/RP and FP/tal-R to obtain the se-
quences (Fig. 1c). The tal gene sequences have been de-
posited in GenBank under the following accession
numbers: MK654746  (tall), MK654747  (tal2),
MK654748 (tal3), MK654749 (tal4), MK654750 (tals)
and MK654751 (tal6). Each tal gene encodes various
numbers of RVDs, which are tandemly arranged and
encoded within 102-bp direct repeats. There were 27.5,
102-bp repeat units in tall, 25.5 in tal2, 21.5 in tal3,
18.5 in tal4, 15.5 in tal5 and 13.5 in tal6 (Fig. 2a).

To better understand the features of Xss-V,—18
TALEs, we compared them with TALEs in Xcm strains
MSCT1, H1005, N1003, MS14003 and AR81009 [27, 46,
59]. Phylogenetic tree of TALEs from Xcm strains were
constructed by aligning TALE-CRR with DisTAL v1.1.
All 53 TALEs (Xss-V,—18 =6, MSCT1 =8, H1005 = 12,
N1003 =9, MS14003 = 8 and AR81009 = 12) were classi-
fied into 6 major groups and 33 sub-groups. Tal2 of
Xss-V,—18, TAL6 of MCST and Tal26 of MS14003 fall
in same group (Fig. 2b).

2690bp— 2690bp——H
C
Tn5 Transposon
RP FP
BamHI  Sphl <—' —'>| Sphl BamHI
—
e—
Primer tal-F Repeat domain Primer tal-R

Fig. 1 Southern blotting, and Isolation and sequencing of Xss-V,—18 tal-genes. a Southern blot analysis of BamHI-digested genomic (gDNA) and
plasmid DNA (pDNA) of Xcm strain Xss-V,—18. A 2.9-kb Sphl fragment of pthXo! (from Xoo) was labeled with digoxygenin (DIG) and used as a
probe to detect tal genes in Xcm Xss-V,—18. b Plasmid DNA of Xss-V,—18 was digested with BamHI, and fragments were gel-purified and ligated
into BamHI-digested and CIP-treated pBluescript Il SK(=). Southern blot analysis was performed by the using internal Sphl fragment of pthXo! as a
probe to confirm each clone (pB-tall - pB-tal6). ¢ Schematic diagram of strategy used to sequence tal genes. After cloning into pBluescript Il
SK(=), the EZ-Tn5™ < KAN-2 > Tnp Transposome™ Kit was used to insert Tn5 into each tal gene. Clones with Tn5 insertions in the middle of the
CRR were selected by Sphl digestion and sequenced using primer pairs tal-F/RP and FP/tal-R
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Fig. 2 Alignment of TALE RVDs and TALEs Phylogeny. a Alignment of TALE RVDs from Xcm strains Xss-V,—18, MSCT1, H1005, MS14003 and
AR81009 with AnnoTALE (version 1.4.1). Letters in red font indicate RVDs that differ between the two strains. The asterisk represents a missing
amino acid residue b Construction of phylogenetic tree based on central repeat amino acid sequences of TALEs. A set of 53 TAL effector
sequences from 6 different Xcm strains were used to construct tree with DisTAL program using default parameters. TALEs were classified into 6
major groups and 33 sub-groups showing the relationship of Xcm Xss-V,—18 to other Xcm strains published previously. Tal2 of Xss-V,-18, TAL6 of
MCST and Tal26 (M26) of MS14003 fall in same group. Scale is shown below the tree

Nearly identical RVD sequences were observed for the
six TALEs in Xss-V,—18, MSCT1, H1005, MS14003 and
AR81009 (Fig. 2a). Differences of two RVDs between
Tal2 of Xss-V2-18 and TAL6 of MSCT1, Tal26 of

MS14003 indicate that they are functionally different
from each other and may target a different EBE. The
predicted theoretical EBE box for Tal2, Tal6 and Tal26
of Xss-V,—18, MSCT1 and MS14003, respectively, are
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mentioned in Fig. S1. RVDs in Xcm strains included NI,
NG, NS, HD and NN; the latter RVD was absent in
Tall, Tal2, Tal3 and Tal4.

Xss-V,—-18 tal deletion mutants

To assess the role of tal genes in the virulence of Xss-V,—18,
we generated tal deletion mutants by homologous recombin-
ation using the suicide vector pKMS1 [60]. Fragments a
(580 bp) and b (350 bp) were amplified on the left and right
sides of DNA encoding the CRR, respectively, and cloned as
a fused fragment in pKMSA1l (Fig. 3a, b). Construct
pKMSA1 was introduced into Xcm Xss-V,—18; after hom-
ologous recombination, 41 putative mutants were selected
for PCR amplification using primers pKMSA1-5F/pKMSA1-
3R (Table S1). Four putative mutants designated M1, M2,
M3 and M4 contained a 930-bp PCR product, which is con-
sistent with the size of the insert in pKMSA1 (Table 1, Fig.
3c). Southern hybridization indicated that one or more tal
genes were deleted in the four mutants (Fig. 3d). M1 and M2
were lacking tal3 and tal2, respectively, M3 was missing tal2
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and tal4, and M4 lacked tal2, tal4, tal5, and tal6. These re-
sults indicated that four tal loci underwent homologous ex-
change via pKMSA1, and copies of the plasmid pKMSA1
functioned to delete multiple fa/ genes simultaneously in M3
and M4.

A second round of deletion mutagenesis was con-
ducted with plasmid pKMSA2, which contains a fusion
of fragments ¢ (150 bp) and 4 (300 bp) on the left and
right sides of the DNA encoding the CRR, respectively
(Fig. 3a). Construct pKMSA2 was used to generate new
deletions in the M4 mutant, and potential new mutants
were analyzed by PCR with primer pairs pKMSA2-5F/
pKMSA2-3R (Table S1). Two mutants designated M5
and M6 contained a 450-bp PCR product that is consist-
ent with the size of the insert in pKMSA2 (Fig. 3e). In
addition to tal2, tald4, tal5, and tal6, Southern
hybridization indicated that mutant M5 contained a
deletion in tal3. M6 was lacking both tall and tal3 (Fig.
3f); thus, M6 lacked all six tal genes and can be consid-
ered a tal-free mutant of Xss-V,—18.

A
B S CRR S B
] — pkmsat —— [BE]
580 bp 350 bp
g — rkMsA2 —@]
150 bp 300 bp

M1 M2 M3

@

tal2 -

tal3

tals |

tals

tal6

fragment of pthXo! was used a hybridization probe to detect tal genes

Fig. 3 Deletion mutagenesis of Xss-V,—18 tal genes. a Schematic diagram of suicide plasmids pKMSAT and pKMSA2. Fragments a (580 bp) and b
(350 bp) were amplified on the left and right sides of the CRR, respectively, and cloned as a fused fragment in pKMSA1. Fragments ¢ (580 bp) and
d (150 bp) were amplified on the left and right sides of the CRR, respectively, and cloned as a fused fragment in pKMSA2. Constructs pKMSAT and
pKMSA2 were introduced into Xcm strain Xss- V,—18 by electroporation, and deletion of the CRR region was conducted as described in Methods.
b Confirmation of 930- and 450- bp inserts in pKMSAT and pKMSA2, respectively, by digestion with Xbal and Smal. ¢ PCR analysis of 41 putative
mutants with primers pKMSA1-5F and pKMSA1-3R. A 930-bp fragment was amplified in M1, M2, M3, and M4, indicating that these four mutants
underwent a homologous recombination and potential deletion of the CRR region. pKMSAT was included as a control. d Southern hybridization
analysis of Xss-V,—18 and mutant strains M1-M4. Plasmid DNA of WT Xss-V,—-18 and mutants were isolated and digested with BamHI. The internal
Sphl fragment of pthXo! (from Xoo) was used as a hybridization probe to detect tal genes. e PCR screening for putative mutants using primers
pKMSA2-5F and pKMSA2-3R. pKMSA2 was included and used as a positive control. f Southern hybridization analysis of mutant M4 (used for
second round of mutagenesis), M5 and M6. Plasmid DNA of M4, M5 and M6 were isolated and digested with BamH|, and the internal Sphl
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Table 1 List of strains and plasmids used in this study

Strain or Relevant characteristics Source
plasmid

Escherichia coli

DH5a F~ 80 lacZAM15A(lacZYA-argF)U169 deoR  Clontech

recAl endAT1 hsdR17(rk-, mk+) phoA supE44
A- thi-1 gyrA96 relAl

X citri pv. malvacearum

MSCT1 Wild-type, causes bacterial blight of cotton [59]

XcmH1005  Spontaneous Rif" derivative of XcmN [27]

XcmH1003  Sp', Rif" derivative of XcmN 271

Xcc049 Wild-type Xcc strain, used for construction  This lab
of pKMSA1/A2

Xss-V,—18  Wild-type, causes bacterial blight of cotton Hainan

University,
China

M1 tal3 deletion mutant of Xss-V,-18 This study

M2 tal2 deletion mutant of Xss-V,-18 This study

M3 tal? tal4 deletion mutant of Xss-V,-18 This study

M4 tal2 tal tal5 talé deletion mutant of Xss-  This study
V,—18

M5 tal? tal3 tal4 tal5 tal6 deletion mutant of  This study
Xss-V,—18

M6 tal-free mutant of Xss-V,-18 This study

Plasmids

pBluescript  Ap', phagemid, pUC derivative Lab collection

Il SK(=)

pMD18-T Ap', pUC18 derivative, TA cloning vector,  TaKaRa
2692 bp

pKMS1 Km', sacB mob lacZ oriV, 6475 bp [60]

pHM1 Broad-spectrum cosmid vector, cos, parA,  [61]
IncW, Sp'

PKMSA1 pKMS1 containing a 930-bp Xbal/ Smal This study
fragment; insert contains a fusion of a and
b fragments that encode the N- and C-
terminal sides of the tal CRR; Km"

PKMSA2 pKMS1 containing a 450-bp Xbal/ Smal This study
fragment; insert contains a fusion of the ¢
and d fragments that encode the N- and
C-terminal sides of the tal CRR; Km"

pB-tall pBluescriptlISK(=) containing tall of Xss- This study
V,-18

pB-tal2 pBluescript Il SK(—) containing tal2 of Xss-  This study
V,-18

pB-tal3 pBluescript Il SK(—) containing tal3 of Xss-  This study
V,-18

pB-tal4 pBluescript Il SK(—) containing tal4 of Xss-  This study
V,-18

pB-tals pBluescript Il SK(—) containing tal5 of Xss-  This study
V18

pB-tal6 pBluescript Il SK(-) containing tal6 of Xss-  This study

V,-18

pZWavrXa7 avrXa/ in pBluescript Il KS+, contains FLAG  [62]
epitope immediately downstream of the
second Sphl site in the C-terminus of
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Table 1 List of strains and plasmids used in this study

(Continued)
Strain or Relevant characteristics Source
plasmid

AvrXa7, Ap'
pZW-tal2  Sphl fragment of tal2 in pZWavrXa7, Ap' This study
pHZW-tal2  pHM1 fused with pZW-tal2 at Hindlll, lacZ ~ This study

promoter upstream of tal2, Ap', Sp’

Virulence assays

Xss-V,—18 and mutants M1-M6 were inoculated into
cotton leaves and phenotypes were observed 3-5 days
post-inoculation (Fig. 4a). Xss-V,—18, M1, and M4 pro-
duced substantial water-soaked lesions in the inoculation
sites; however, water-soaking was reduced in leaves inoc-
ulated with M2, M3, and M5 (Fig. 4a). In contrast, the
region inoculated with the tal-free mutant M6 showed
cell death and necrosis (Fig. 4a) signifying that the loss
of tal genes affect the virulence of Xss-V,-18. On the
second day post-inoculation, the populations of the M2
and M6 mutants were significantly lower than Xss-V,—
18, M1, M3, M4 and M5 (Fig. 4b). On days 4 and 6
post-inoculation, the growth of Xss-V,—18 was signifi-
cantly higher than mutants M1-M6 with no significant
difference among the mutants. These results indicated
that some of the tal genes are involved in Xss-V,-18
virulence, and the absence of selected tal genes impacted
growth of the pathogen in planta.

Mutant M2, which lacks tal2, exhibited reduced symp-
tomology and bacterial growth when compared to wild-
type Xss-V,—18 (Fig. 44, b). Based on these observations,
we speculated that ta/2 might be involved in virulence;
this was addressed by constructing pHZW-tal2 (Table
1) for complementation analysis. The pHZW-tal2 con-
struct was introduced into Xcm M2, and the empty vec-
tor (ev, pHM1) was used as a negative control. Western
blot analysis indicated that the Tal2 protein was pro-
duced in Xem M2 (Fig. 4c). The wild-type Xss-V,—18,
mutant M2, M2(ev), and M2(tal2) were inoculated into
cotton leaves; phenotypes were observed at 5-7 days
post-inoculation (Fig. 4d), and bacterial growth was
measured at 0, 2, 4, and 6 days post-inoculation (Fig. 4e).
Both water-soaking and bacterial growth in planta were
restored to wild-type levels in Xcm M2 containing
pHZW-tal2 (Fig. 4d, e). Based on results shown in Fig.
4, we conclude that Tal2 is major virulence factor in
Xss-V,—18.

Discussion

Until recently, BBC has been effectively controlled using
classical R genes [63—65]; however, in 2011 the disease
re-emerged with a vengeance [46]. A known virulence
factors, transcription activator-like effectors (TALEs), in
Xcm are important for BBC. In previous studies, 8—12
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tal genes were reported in Xcm [26-28, 48, 59]. Some
Xcm tal genes, notably avrB101, avrB102 and avrBln,
are known to cause an hypersensitive response (HR) on
cotton [28], whereas avrb6 elicits water-soaking [48]. In
this study, RFLP-based Southern hybridizations indi-
cated that the highly-virulent Xcm strain Xss-V,-18,
which was originally isolated from Hainan, China, har-
bors six plasmid-borne tal genes (Fig. 1). In the genus
Xanthomonas, the location and number of tal genes var-
ies among species, pathovars and strains [55, 66]. For ex-
ample, strains of X. oryzae pv. oryzicola (Xoc) encode
over 250 chromosomally-borne tal genes [55]; however,
plasmid-encoded tal genes are common in other
Xanthomonas spp. Examples include the tal genes in X.
citri pv. citri, X. citri pv. aurantifolii and X. axonopodis
pv. manihotis, which were identified on plasmids
pXAC66, pXcB and pXam46, respectively [67-69]. Fey-
ter and Gabriel [28] and Showmaker et al. [59] reported
the existence of plasmid-borne tal genes in Xcm
strains XcmH and MSCT]1, respectively. A draft gen-
ome sequence of the Xanthomonas translucens pv.
cerealis strain CFBP 2541 also indicate a plasmid
borne tal-gene [70].

The presence of highly repetitive sequences in tal
genes complicates efforts to obtain their nucleotide se-
quence; therefore, we used a TnS insertion method as a
sequencing strategy. This sequencing strategy for tal-
genes was also used by others previously [21, 71]. Nor-
mally the number of repeats in tal genes varies between
1.5 and 33.5, and each repeat encodes 33-34 amino
acids that vary only at positions 12 and 13 (RVDs) [30].
In Xcm Xss-V,—18, we identified 27.5, 25.5, 21.5, 18.5,
15.5 and 13.5 tandemly arranged 102-bp direct repeats
(encoding 34 amino acids) in tall, tal2, tal3, tal4, tal5
and tal6, respectively. In order to understand how Xcm
TALome differ from each other within and between
strains, DisTAL and AnnoTALE were used to character-
ized [50, 72]. Xcm encodes very diverse TAL effectors
that were classified exclusively into 6 major groups and
33 sub-groups. TALE phylogenetic tree of Xcm strains
showed that Tal2 of Xss-V,—18, TAL6 of MCST and
Tal26 (M26) of MS14003 fall in same group. Further-
more, RVDs based analysis showed that the six TALEs
in Xss-V,—18 were identical or nearly identical to
plasmid-borne TALEs in Xcm MSCT1, MS14003, H1005
and AR81009 which suggests that these genes may have
been horizontally transferred [67, 73, 74]. The number
and location of tal genes varied in the six Xcm strains;
MSCT1 possess eight (seven plasmid-borne) [59],
XcemH1005 has 12 (six plasmid- and six chromosomally-
encoded) [27], XcmN1003 has nine (four plasmid-
encoded) [27], MS14003 has 8 (7 plasmid-encoded) [46],
AR81009 has 12 (six plasmid-encode) [46] and Xss-V,—
18 has six plasmid-encoded tal genes (Figs. 1, 2). The

Page 8 of 13

variation in number, location and RVD sequence in Xcm
TALEs could be important for maintaining virulence in
cotton cultivars grown in different geographical regions.

To assess the role of tal genes in Xss-V,—18, we gen-
erated deletions in Xss-V,—18 by homologous recombin-
ation with pKMS1 [60], which was previously used to
generate deletion mutants in the rice pathogen, Xoc
[75-77]. This is the first report where pKMS1 was used
to generate tal deletion mutants in Xcm, and the basic
strategy was to replace the CRR (encoded by 102-bp re-
peat units) with up-and downstream fragments flanking
the tal genes. Using construct pKMSA1, we obtained
four mutants; M1 and M2 lacked tal3 and tal2, M3 had
deletions in ta/2 and tal4, and M4 lacked tal2, tal4, tal5
and tal6. We speculate that tal5 and tal6 might be lo-
cated in the same gene cluster. The second knockout
was obtained using pKMSA2 where up- and downstream
flanking fragments (homology arms) were located closer
to the CRR. Mutant M4 was used as a parental strain for
the deletions generated with pKMSA2, and we recovered
two new mutants designated M5 and M6. In addition to
tal2, tald, tal5 and tal6, mutant M5 also lacks tal3,
whereas M6 contains deletions in all six fal genes (Fig.
3). The symptoms induced by M2, M3, M5 and M6 were
significantly reduced relative to the wild-type, thus indi-
cating that one or more tal genes contribute to symp-
tom development in Xss-V,—18. Mutants M2, M3, M5
and M6 all lack the tal2 gene; thus the potential contri-
bution of tal2 to symptom development was further in-
vestigated. Expression of tal2 in trans restored
symptoms and growth in planta to the M2 mutant, thus
confirming that Tal2 is a virulence factor (Fig. 4). Al-
though the TALE repertoire of Xcm Xss-V,—18, MSCT1,
MS14003, H1005 and AR81009 is somewhat identical,
Tal2 of Xss-V,—18 differs at two repeat variable diresi-
dues (RVDs) from Tal6 in MSCT1 and Tal26 in
MS14003, inferred functional dissimilarity.

TALEs functionally resemble eukaryotic transcription
factors that target and regulate the expression of host
genes by binding to their promoter sequences. TALE-
triggered susceptibility has been well-studied, and the
contribution of TALEs to virulence has been evaluated
in many Xanthomonas spp. [21-23, 27, 57, 78-81]. For
example, the TALEs PthXol and PthXo2 from Xoo were
shown to enhance the expression of rice genes OsS-
WEETI11 and OsSWEET13, which are required for sus-
ceptibility to bacterial leaf blight in rice [33, 34].
However, rice cultivars were resistant to Xoo when they
contained OsSWEET11 and OsSWEETI3 alleles lacking
PthXol and PthXo2 EBEs [35-37]. A recent study by
Peng et al. [82] reported that Tal8 from Xtu target and
induce the expression of host gene Ta-NCED-5BS, en-
code enzyme required for rate-limiting step in ABA bio-
synthesis, to promote disease susceptibility. In another
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new study, Wu et al. [83] shown that TAL-effector
Brgll from Ralstonia solanacearum enhance the expres-
sion of 5-truncated ADC (arginine decarboxylase) tran-
scripts that subvert translational control and thereby
inhibit competing pathogens. In Xcm, Avrb6 was the
first TALE shown to be important for virulence [25]. Re-
cently, the Xcm effector Avrb6 was shown to target and
induce the expression of the cotton S gene,
GhSWEET10, thus enhancing virulence and promoting
disease [27]. The present study provides an important
foundation for identifying potential S genes that interact
with Tal2, which will ultimately help us develop better
control strategies for BBC.

Conclusions

In this study, we identified genes encoding TALEs in the
highly-virulent Xcm strain, Xss-V,—18 (from China), and
assessed TALE roles in BBC. We found that Xss-V,—18
encodes six plasmid-borne tal genes. Knockout muta-
genesis of Xss-V,—18 tal genes and complementation
analysis demonstrated that Tal2 is required for full viru-
lence of Xss-V,—18 on cotton. The identification of the
Tal2 target in cotton will ultimately provide new avenues
for developing BBC-resistant varieties.

Methods

Bacterial strains, growth conditions, and plasmids

The bacterial strains and plasmids used in this study are
listed in Table 1. Escherichia coli strains were grown in
Luria-Bertani (LB) medium (5 g yeast extract, 10 g NaCl,
10 g tryptone/L) or LB with agar at 37°C. Xcm strains
were grown in nutrient broth (NB) (1 g yeast extract, 3 g
beef extract, 5 g polypeptone and 10 g sucrose/L) or NB
with agar at 28°C. Xcm transformants containing the
first crossover event were grown on NAN (nutrient agar
without sucrose) or NBN (NAN without agar) medium.
For the second crossover event, transformants were
plated on NAS agar (NAN with 10% sucrose) [60].
When appropriate, antibiotics were added at the follow-
ing concentrations (pg/mL): ampicillin, 100; kanamycin,
20; spectinomycin, 25; and rifampicin, 50. The pH of
both solid and liquid media was adjusted to 7.0-7.2.

DNA preparation

Total genomic DNA of Xss-V,—18 was isolated using
the Bacterial Genomic DNA Extraction Kit (TaKaRa,
China). The isolated gDNA pellet was re-suspended in
double-distilled water. Bacterial plasmid DNA was iso-
lated using the Plasmid Miniprep Kit (Omega, USA).
The quality and quantity of genomic DNA and plasmid
DNA were checked with NanoDrop spectrophotometer
(Eppendorf). Routine plasmids isolation from E. coli was
carried out by using the plasmid DNA Mini Kit (GBS
Biotechnology, China).
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Isolating, cloning and sequencing of Xss-V,-18 tal genes
The isolation and cloning of tal genes from Xcm strain
Xcc-V,—18 followed a previously described procedure
[21, 71, 79, 84] with minor modifications. Plasmid DNA
and genomic DNA (50 pug) were isolated from Xcm,
digested with BamHI, and separated on 1.2% agarose
gels. Specific tal DNA fragments were then gel-purified
and ligated into pBluescriptll SK(-) that was digested
with BamHI and treated with calf intestinal phosphatase
(CIP). The ligated products were introduced into com-
petent E. coli cells by the heat shock method according
to the manufacturer’s protocol (Bio-Rad, USA). The suc-
cessful cloning of tal genes in pBluescript II was vali-
dated by restriction digestion, colony hybridization and
sequence analysis.

The repeat units in fal genes complicate abilities to se-
quence the genes using conventional approaches. Thus,
after cloning into pBluescript II SK(-), we used the EZ-
Tn5" < KAN-2 > Tnp Transposome™ Kit to insert Tn5
into each tal gene as recommended by the manufacturer
(Epicentre, Madison, WI). Clones with TnS insertions in
the middle of the repeat region were selected by Sphl di-
gestion and sequenced using primers pair tal-F/RP and
FP/tal-R (Table S1).

TALEs phylogenetic tree construction and RVDs
comparison

For TALEs phylogeny, available genome sequences of
Xcm  strains MSCT1, H1005, N1003, MS14003 and
AR81009 were obtained from the NCBI. TALE genes
were predicted and analyzed in each genome using
AnnoTALE v1.4.1 [50]. DisTAL v1.1 were used to align
and classify TALEs based on their central repeat region
[72].

For the TALE RVDs analysis, we used AnnoTALE ver-
sion 1.4.1. The TALEs are grouped into classes based on
the RVDs that shows possible functional and evolution-
ary relationship [50, 85].

Construction of Xss-V,-18 tal deletion mutants

The tal genes in Xcm Xss-V,—18 were deleted by homolo-
gous recombination using the suicide vector pKMS1 [60].
The 5" and 3’ fragments that flank the CRR repeat in tal
genes are conserved [66] and were used as sites for hom-
ologous recombination. The left- and right-flanking frag-
ments of each tal gene were PCR-amplified using
genomic DNA of Xcc strain Xcc049 (Table 1) as the tem-
plate, and ligated into the MCS of pKMS1 [4], resulting in
constructs pKMSA1 and pKMSA2, respectively. The new
constructs were verified by restriction digestion and se-
quence analysis (TaKaRa, China). Constructs pKMSA1
and pKMSAZ2 were introduced into Xcm strain Xss-V,—18
by electroporation; cells were then plated on NAN
medium supplemented with kanamycin and incubated at
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28°C for 4 days. Single colonies were then cultured in
NBN broth at 28°C to ODgop< 0.2 (~3 x 10® cells/mL),
inoculated to NAS agar medium, and incubated for 2 days
at 28°C. Single colonies that grew on NAS were then
transferred to NA and NA containing kanamycin. Col-
onies that grew on NA, but not on NA®™, were selected
as potential deletion mutants. The mutants were then
analyzed by Southern blot hybridization and PCR with
primer pairs pKMSA1-5F/pKMSA1-3R and pKMSA2-5F/
pKMSA2-3R (Table S1).

Southern hybridizations

Xcm plasmid and genomic DNA were extracted as de-
scribed above. After BamHI digestion, DNA was sepa-
rated on 1.2% agarose gels and then transferred onto
Hybond N* nylon membranes (Roche, Germany). The
2898-bp internal Sphl fragment of pthXol (GenBank ac-
cession no: AY495676) from Xoo [86] was labeled with
digoxigenin (DIG) and used as a hybridization probe to
detect the tal genes. Probe labeling and Southern blot-
ting were performed using the DIG Probe Synthesis Kit
as recommended by the manufacturer’s instructions
(Roche, Sweden).

Virulence assays

Cotton cultivar TM-1 (G. hirsutum) was used in this
study. Plants were grown in a greenhouse at 23 °C with a
12-h light/dark photoperiod and ~ 80% RH. Two-week-
old plants were used in virulence assays. Single colonies
of Xcm were inoculated to 4 mL NB and cultured over-
night at 28 °C. Bacterial cells were harvested by centrifu-
gation (5000 rpm, 3 min); pellets were washed twice in
sterile 10 mM MgCl, and then re-suspended in 10 mM
MgCl, buffer to ODggo=0.1 (~2 x 10% cells/mL). The
suspensions were inoculated to the abaxial surface of
leaves by infiltration with a sterile needleless syringe. In-
oculation with simply 10 mM MgCl, buffer served as a
mock. Leaf phenotypes were examined 4-5 days after in-
oculation. Three independent plants were used, and the
experiments were repeated three times with similar re-
sults. For the quantification of bacterial growth in cot-
ton, triplicate leaf samples (lcm” in diameter) were
collected for each inoculated strain and washed with
70% ethanol and double-distilled water (ddw). Samples
were macerated in 1 mL ddw and incubated for 30 min
at room temperature. Serial dilutions were then plated
on NB agar medium with appropriate antibiotics for col-
ony counts. The experiment was repeated three times,
and the significant differences were determined by using
student’s ¢-test.

Expression of tal2 gene in Xcm M2
The plasmid pZWavrXa7 (supplied by Dr. Bing Yang)
was used to construct the plasmid for expression of tal2
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in Xss-V,—18 strain. Plasmid pZWavrXa7 contains a
FLAG-tag epitope immediately downstream of the sec-
ond Sphl site in the C-terminus of AvrXa7. The central
Sphl fragment of avrXa7 was replaced with the Sphl
fragment of Xss-V,—18 tal2 gene to generate pZW-tal2
(Table 1). The recombinant plasmid was then fused with
broad-host-range vector pHM1 at the HindlII site giving
rise to pHZW-tal2. The constructs were transformed
into Xem M2 (Atal2 strain, see below) by electropor-
ation (2.5 kv, 4 ms).

The expression of tal2 in M2 was confirmed by west-
ern blotting with flag-labelled antisera. Briefly, the M2
strain containing pHZW-tal2 was cultured in NB to the
logarithmic phase and harvested by centrifugation. The
pellets were washed twice, and re-suspended in 1X PBS
buffer to ODggo=1.0 (~ 3 x 10° cells/mL). SDS loading
buffer (5X) was added to the bacterial suspensions and
boiled in a water bath for 10 min. Proteins were sepa-
rated on 8% SDS-PAGE gels and transferred to polyviny-
lidene difluoride membranes for immunoblotting using
anti-FLAG (TransGene, Beijing, China) as the primary
antibody. Primary antibodies were detected using goat
anti-mouse IgG (H + L) (TransGen) and visualized with
the EasySee Western Kit (TransGen). E. coli RNA poly-
merase subunit a (RNAP) was used as a loading control.
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