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Abstract

farms in Denmark.

treatment-course with antibiotic.

Background: The majority of antimicrobials given during the production of pigs are given to nursery pigs. The
influence of antimicrobial use on the levels of antimicrobial resistant (AMR) genes is important to quantify to be
able to assess the impact of resistance on the food chain and risk to human and animal health.

Results: This study investigated the response on the levels of nine AMR genes to five different treatment strategies
with oxytetracycline, and the dynamics of gene abundance over time by following 1167 pigs from five different

The results showed no significant difference between treatments and an increase in abundance for the efflux pump
encoding tet(A) gene and the genes encoding the ribosomal protection proteins tet(O) and tet(W) tetracycline
resistant genes following treatment, while tet(M) showed no response to treatment. However, it was also observed
that the levels of tet(Q), tet(W), and ermB in some farms would drift more over time compared to a single

Conclusion: This study underlines the large variation in AMR levels under natural conditions and the need for
increased investigation of the complex interactions of antimicrobial treatment and other environmental and
managerial practices in swine production on AMR gene abundance.
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Background

Antimicrobial resistance (AMR) in bacteria is a growing
global health concern that threatens to decrease the ef-
fectiveness of infectious disease treatment both in
humans and animals [1-5]. Resistance towards antibi-
otics is an ancient characteristic that presumably co-
evolved with the evolution of antibiotic producing
organisms and is widespread in nature [6-10]. The in-
tensive use of antibiotics in society in general, and in the
food production systems in particular, may increase the
chance of transmission of antibiotic resistant microor-
ganisms to humans from livestock or the environment
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through the consumption of food products of animal
origin or through water and soil [11-14].

The effect of antimicrobial use in food production on
AMR in humans has been difficult to quantify [15-20]
and routes and the rates of AMR transmission are not
well characterized [21]. Moreover, the impact of AMR
on animal health and food production is even less eluci-
dated. A reason for this could be the reliance on culture
based methods for detection of pathogens and indicator
organisms, since such methods are unable to quantify
the AMR gene prevalence in the commensal microflora
[21]. Recent technological developments in molecular
biology, however, have increased our ability to investi-
gate and quantify the gene content of microbial commu-
nities without cultivation. This has enabled us to study
to what extent the normal flora is affected by the use of
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antimicrobials, and to detail the molecular ecology of
AMR genes [21-26].

Gastrointestinal bacterial infection is a common dis-
ease in many animal production systems and an import-
ant incentive for antimicrobial treatment [27-30]. Oral
administration of antimicrobials is widely used to con-
trol such infections in the pig industry [31-33]. In
Denmark, tetracycline has been the most commonly
used antimicrobial for oral treatment of gastrointestinal
disorders in pigs, such as Lawsonia intracellularis
(L.intracellularis) infections [34].

The world organisation for animal health (OIE) recom-
mends clinical trials to evaluate the validity of therapeutic
indications and dosage regimens, to protect both animal
and human health as well as the environment [35]. The ef-
fect of oxytetracycline treatment on faecal shedding of L.
intracellularis and weight gain in nursery pigs suffering
from diarrhoea has recently been investigated in a clinical
field trial in Denmark, where the effect of different dosage
regimens and administration routes were studied [33, 36].
Here, we study the impact of these different treatment
regimens on the prevalence and levels of nine AMR genes
(ermB, ermF, sull, sulll, tet(A), tet(B), tet(M), tet(O) and
tet(W)) which are frequently present in pigs on Danish pig
farms [37, 38] The aim of the present study was to deter-
mine the effect of five different oxytetracycline treatment
regimens on a selection of AMR genes in the normal flora
in nursery pigs in a randomized clinical field trial.

Results

Sample collection

A total of five farms were included in the study, and sam-
ples were collected from a total of 1167 ear marked pigs.
240 pigs received batch treatment with High Dose (HD),
241 with Normal Dose (ND) and 224 with Low Dose (LD)
of oxytetracycline (OTC). 241 pigs were included in the
pen wise treatment group (PW), and 221 in the injection
treatment group (IM). Of the 241 pigs in the PW group,
204 received treatment with OTC, and of the 221 pigs in
the IM group, 124 received treatment with OTC. The pigs
where sampled before treatment with oxytetracycline (T1),
two days after end of treatment (T2), and when exiting the
nursery stable (T3). Each farm was assigned a stratified
random treatment group in sequential batches, where an
entire section would be treated in the same way. After a
completed batch a new batch would randomly be assigned
to the same or a different treatment. Typically, each farm
were assigned to every treatment regime three times (ran-
ging from two to four).

Enrichment of tetracycline resistance genes after
tetracycline treatment

We analysed the relative abundance and prevalence of
nine individual antibiotic resistance genes in the samples
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collected at three time points from the five different
treatment groups; ermB, ermF, that confers macrolide
resistance; sull, sulll conferring resistance towards sul-
phonamides and tet(A), tet(B), tet(M), tet(O), and tet(W)
that confers increased resistance towards tetracycline.
Five genes ermB, ermF, tet(M), tet(O), and tet(W) were
always present and was quantified relative to the number
of 16 s RNA genes in the same sample, while four genes,
sull, sulll, tet(A), and tet(B), were only sporadically
present and were analysed based on prevalence. Relative
quantities and prevalence of genes are presented in Add-
itional file 1: Figure S1, Additional file 2: Figure S2, Add-
itional file 3: Figure S3, Additional file 4: Figure S4,
Additional file 5: Figure S5, Additional file 6: Figure S6,
Additional file 7: Figure S7.

Figure 1 shows the changes in levels of genes from be-
fore treatment to after treatment (T1 to T2), from after
treatment to exit of the nursery unit (T2 to T3), and
over the entire stay in the nursery unit (T1 to T3). Gen-
erally, two genes, ermF and tetM showed the largest
variation in how pigs responded to the different treat-
ments, however, no differences were observed in changes
for any of the five genes analysed depending on the
treatment (dose variation and variation in application).

Furthermore, all pigs originating from one farm were
aggregated to visually inspect for changes of each gene
in the five different farms (Fig. 2). Again, ermF and tetM
showed the largest variation. As there was generally
large variation in the degree of changes within and be-
tween the farms (Fig. 2) univariate statistics on the
changes following different treatments, as shown in Fig.
1, may not be appropriate, and is therefore not reported.

Test including all variables affecting gene abundance

To account for the impact of both farm and treatment, a
mixed effect model including the random effect of batch
was employed for all genes on all combinations of times
(T1 to T3, T1 to T2, and T2 to T3). All tests had farm
as a significant factor. After employing backwards elim-
ination with an alpha level of 0.05, the model for tet(W)
from T1 to T3 also had treatment strategy as a signifi-
cant effect, but when applying a Bonferroni correction
for multiple comparisons (alpha = 0.05/4, four tests are
done on each AAC, per gene per time pair), this effect
disappeared for tet(W). Thus, the multivariant analysis
confirmed the preliminary indication from the univariate
visualisation (Fig. 1) that treatment strategy did not
affect the exit levels of the quantifiable genes (T3 com-
pared to T1).

For prevalence of genes, which was calculated per
batch and employing backwards elimination on a model
including farm, time, and treatment effects, it was again
found that farm was a significant factor, and that a HD
treatment increased fet(A) and tet(B) to higher levels
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Fig. 1 Fold change of the relative quantity of five resistance genes following different treatment strategies. Fold change is displayed from before
treatment to two days after treatment (T1 to T2, top), from after treatment to exit from the weaner stable (T2 to T3, middle), and from start of
treatment to exit from the weaner stable (T1 to T3, bottom). The y-axis is on log2 scale meaning that a value of one equals that a gene is present
in twice the amount relative to the 165 gene at the later time compared to the prior time, a value of zero is no change, and minus one is half
the prior level. Boxes represent the interquartile range, whiskers represent the range of the data limited to 1.5 interquartile range

between T1 and T2 compared to the other treatment
regimens (p = 0.001/0.03). However, only tet(A) was sig-
nificant when taking repeated testing into account.

The overall level of some genes also changes over the
time in the nursery (from T1 to T3). For ermB a reduc-
tion of 48% (p = 0.004) was seen, and for tet(W) an in-
crease of 27% (P = 0.01) was seen. For tet(A), and overall
reduction of 19% points (p = 0.01), sull a reduction of
7% points (p = 0.03), and sulll a reduction of 12% points
(p < 0.0002) was observed.

In the PW and IM groups, not all animals were
treated. It was therefore possible to test whether treat-
ment with oxytetracycline had any effects on gene levels.
For tet(O) and tet(W), the relative change in gene copies
was significantly higher from T1 to T2 and from T1 to
T3 in treated pigs, also when employing a Bonferroni
correction. The treatment increased the levels of tet(O)
from T1 to T2 with 27% (p = 0.001), tet(W) from T1 to
T2 with 22% (p < 0.001); tet(O) from T1 to T3 with

24%, (p = 0.009) and tet(W) from T1 to T3 with 17% (p
= 0.006). There were too few whole batches pigs receiv-
ing no treatment to test the effect on prevalence of the
remaining genes.

Time effects antibiotic resistance gene composition at
farm level

To evaluate the change of AMR gene levels over time
longer than the single batch, the levels of ermB, tet(O),
and tet(W) at start of treatments, right after treatment
and at the exit from the nursery unit, irrespective of
treatment, were plotted over the full time of trial (Add-
itional file 7: Figure S7, Additional file 8: Figure S8, Add-
itional file 9: Figure S9, Additional file 10: Figure S10,
Additional file 11: Figure S11). All genes showed drift in
the level of abundance on one or more farms over the
course of the trial. For comparison, we compared T1 in
the first three and the last three batches including at
each farm: On Farms 2, 4, and 5 ermB was significantly
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Fig. 2 Fold change of the relative quantity of five resistance genes aggregated on the five participating farms. Fold change is displayed from
before treatment to two days after treatment (T1 to T2, top), from after treatment to exit from the wiener stable (T2 to T3, middle), and from start
of treatment to exit from the wiener stable (T1 to T3, bottom). The y-axis is on log2 scale meaning that a value of one equals a that a gene is
present in twice the amount relative to the 16 s gene at the later time compared to the prior time, a value of zero is no change, and minus one
is half the prior level. Boxes represent the interquartile range, whiskers represent the range of the data limited to 1.5 interquartile range

reduced with 37, 72, and 70% (all p < 0.001). On Farms
1 and 5 tet(O) decreased with 72, and 29% (both p <
0.001), while farm 2 had an increase of 117% (p < 0.001).
On Farms 1, 3, and 4 there was significant decrease of
tet(W) of 21, 16, and 17% (p = 0.003, p = 0.020, p =
0.004), while there was an increase at farm 2 of 21% (p =
0.05) (Additional file 8: Figure S8, Additional file 9:
Figure S9, Additional file 10: Figure S10, Additional file
11: Figure S11, Additional file 12: Figure S12).

Prevalence of AMR genes tet(A), tet(B), sull, and sulll
was also plotted over time (Additional file 13: Figure S13,
Additional file 14: Figure S14, Additional file 15: Figure
S15, Additional file 16: Figure S16, Additional file 17: Fig-
ure S17). These plots also showed changes over time. The
behaviour seems more erratic than the quantifiable genes,
likely because many of these genes were present in level
close to the limit of detection, and so the variation in the
results becomes high. Furthermore, when aggregating on
batch the number of data points decrease so low p-values

become rarer, and so there were no significant p-values
when correcting for repeated measurements. Though, the
closest to significance where the increase of tet(A) over
time (at T1) in farms 2 and 5.

Pigs from the same farm have more similar resistance
gene composition than pigs from different farms

A principal component analysis showed that the pigs in
farms 2 and 3 had very similar composition of resistance
genes (small clusters), while farm 4 had pigs with large
variation in gene composition and farms 1 and 5 had
medium variation (Fig. 3). When aggregating pigs per
batch at T1 (Fig. 4) all farms except farm 4 showed a
tendency that chronologically appearing batches clus-
tered close to each other.

Discussion
The purpose of this study was to investigate how treat-
ment dose and regimen with oxytetracycline affected the
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Fig. 3 Principal component analysis of gene composition of pigs at the five participating farms. Values used were Relative quantities of tet(0),
tet(W), ermB, and ermF compared to 165 prior to treatment at T1. Ellipses are normal data ellipses for each farm. Data was scaled and centred
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levels of nine AMR genes that are commonly found in
the microflora of nursery pigs (tet(A),(B), (M),(0),(W))
[39-44], erm (B) and (F) [44—46], sull and sulll [38, 47,
48]. These included genes that were directly selected by
the treatment (the tet genes), and genes that were not
expected to be selected by the treatment (the erm and

sul genes). Additional inclusion criteria were resistance
determinants towards antibiotic classes frequently used
of the in Danish pig production, and to be feasible to de-
sign qPCR assays having the same temperature profile.
The tetracycline resistance tet genes are broadly dissemi-
nated and have been found in a large number Gram

-
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Fig. 4 Principal component analysis of gene composition of pigs at the five participating farms. Numbers are chronologically per farm and
indicate the centre of each batch prior to treatment (T1). The PCA transformation is identical to Fig. 3
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negative, Gram positive, aerobic and anaerobic bacteria,
where they often are harboured on horizontally trans-
ferred genetic elements [49]. The erm genes are associ-
ated with transposons also widely distributed in many
bacterial genera and species where the tetracycline
resistance gene tet(Q) is often linked to erm(F) and
tet(M) to erm(B) [50, 51]. The study enabled a unique
incorporation of variation between farms and pigs in the
evaluation of the effect of different oxytetracycline
treatments.

A large number of studies have investigated the effect
of antibiotic therapy on antibiotic resistance. The major-
ity of these studies have concerned phenotypic resistance
in coliform indicator bacteria [52—55]. Recent develop-
ments in DNA based molecular technologies, however,
have enabled metagenomic surveillance of resistance de-
terminants in microbial communities [21, 24, 56—58]
which allow a much more comprehensive sampling of
the AMR gene prevalence [59]. Here we study the effects
of different oxytetracycline treatment strategies on the
levels of nine resistance genes under field conditions
using high capacity qPCR.

There was a significant decrease in the relative levels of
three out of four non-tet genes from T1 to T3 (Figs. S12-
S17). However, the use of oxytetracycline significantly in-
creased the relative levels of the four tetracycline resistance
genes; tet(A), tet(B), tet(O), and tet(W) (Figs. 1 and 2, S12-
S17) during treatment from T1 to T2, followed by a slight
decline after treatment from T2 to T3, but to an overall
increasing effect. Tet(O) and fet(W) encode closely related
tetracycline ribosomal protection proteins and are ubiqui-
tously found in gut and soil microbiomes [21, 22, 38, 60,
61]. tet(A), and tet(B), encodes proteins that belong to the
major facilitator superfamily (MFS) which export tetracyc-
line from the cell [62]. This effect of treatment correlates
well with the results of a phenotypic investigation of tetra-
cycline resistance in coliform bacteria from the same clin-
ical trial published elsewhere [55]. However, the increase of
abundance was not generally dose dependent (except for
tet(A)) or dependent on whether individual, pen-wise or
batch treatment regimens were used, and the overall
amount of all the AMR genes included in the study de-
creased over time in the nursery period, which confirms
previous observations [63]. Moreover, the abundance of
tet(M), which also encodes a Group-1 ribosomal protection
protein of same protein family as te£(O) and tet(W), did not
increase significantly during the trial, but followed the gen-
eral decreasing trend shown by genes not associated with
tetracycline resistance (Fig. 1 and Additional file 15: Figure
S15) [64]. The tetracycline resistance genes investigated in
the current study are examples of very abundant genes with
widespread distribution, and they can be situated both on
the chromosome and on horizontally transferred vectors
[64, 65]. Differences in genetic context may be a
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contributing factor in the differential response to oxytetra-
cycline treatment that was observed for tef(O) and tet(W)
compared to tet(M). A gene encoded on a plasmid or other
mobile genetic elements would be expected to have a more
dynamic response towards selection due to gene amplifica-
tion and changes in copy number. It has been recently
shown that Yersinia pseudotuberculosis regulate plasmid
copy number in response to environmental cues to increase
expression of plasmid borne virulence factors and a similar
regulatory mechanisms could be involved in the dynamic
regulation of AMR gene copy numbers of resistance genes
carried on plasmids [66]. However, this mechanism remains
to be shown to be important in an AMR context. More-
over, a resistance gene situated on a transferable element
can quickly transfer to a new host while a chromosomally
encoded gene mainly increases in numbers by following the
host proportion in the community. This possibility high-
lights a complication of using relative values of gene abun-
dance in whole community samples to study gene
abundance, because a gene can paradoxically increase in
prevalence within the host’s bacterial population, but de-
crease in relative abundance due to large changes in the
microbiome composition. This could have implications for
surveillance using DNA based methods, because zoonotic
pathogens, which frequently have small populations, could
have a proportionally high resistance level but a low over
all relative prevalence level. Oxytetracycline dose and use of
batch treatment as opposed to pen wise and single animal
injection treatment have previously been shown to improve
the clinical efficacy of treatment of Lawsonia intracellularis
infection [33, 36]. Therefore, batch treatment may in some
situations be considered a safe and effective treatment regi-
men for intestinal infection in pigs. In order to reduce
AMR a strategy for reducing the number of treatments ra-
ther than the treatment regimens (batch, penwise, injection)
should be preferred [64].

There was a large variation in the amount of AMR
genes between the farms included in the clinical trial
both in relative gene levels and change over time, (Fig. 2
and Additional file 7: Figure S7, Additional file 8: Figure
S8, Additional file 9: Figure S9, Additional file 10: Figure
S10, and Additional file 11: Figure S11) and pigs from
the same farm had a more similar resistance gene com-
position than pigs from different farms (Fig. 3). AMR
gene levels also fluctuated significantly over time in the
individual farms indicating that batch resistance-gene
composition play an important role in the overall AMR
gene abundance (Fig. 4). AMR is influenced by factors
such as animal husbandry, geographic location, and
trade connections. Interestingly it was recently shown
that the resistance composition of the sow’s bacterial
flora strongly influenced the resistance gene prevalence
in the offspring even though the piglets were moved to
other farms [37]. This observation could explain the
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similarity between pigs on the same farm due to the in-
creased probability that they have a similar origin and
disease/treatment history. Furthermore, the different
composition of genes on different farms (Figs. 3-4) may
be an explanatory factor of the different response seen
to treatment (Fig. 2).

When all factors were included in a mixed effect
model, only tet(A) showed effect of treatment dose, and
only tet(O) and tet(W) were significantly affected by oxy-
tetracycline. That treatment but not treatment mode
was significant is likely because the numbers of un-
treated pigs in the treatment groups IM and PW were
low, and non-treated animals in the IM group resided
inside the same pens as treated animals.

Conclusion

This study exemplifies the complexity of AMR gene
abundance in real life situations. Oxytetracycline resist-
ance gene levels were slightly but significantly increased
during treatment, but only for four out of nine resistance
genes included in the study. The analysis also shows that
non-treatment factors such as animal history and man-
agement procedures may strongly influence the resist-
ance levels on the individual farm and that the effect of
a single antibiotic treatment on resistance levels at the
weaning stage may have a minor influence on the overall
resistance gene abundance and prevalence. The study
also shows the utility of using DNA based analysis
methods that can cheaply and quickly analyse a large
number of samples: however, the study also illustrates
the large variability in gene levels under natural condi-
tions, which complicates analysis of the population gen-
etics and microbial ecology of resistance gene.

Methods

Clinical field trial

The randomized clinical field trial has previously been
described in two studies measuring the effect of varying
treatment-doses and treatment-routes on the effect of
oxytetracycline (OTC) treatment against L. intracellu-
laris induced diarrhoea [33, 36]. Briefly, five farms were
selected based on sampling to represent a typical prob-
lem with L. intracellularis (LI) induced diarrhoea
amongst the clients of two specialised veterinary pig
practices [33, 36, 55]. Farms vaccinated against LI or
high risk of acute medication were excluded. In each
farm, 15 batches were included in the study after being
weaned and followed until the end of the nursery period
seven weeks after they were introduced into the nursery
unit. A batch was defined as a group of nursery pigs all
weaned at the same time, housed into the same large
room, and sub-divided into smaller compartments, the
pens. The number of pigs per batch ranged from 240 to
600 and the number of pens per batch ranged from 8 to
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20 depending on which ‘room’ was used at the specific
farm. In each batch, 15 animals, randomly distributed
over pens, were selected as trial pigs [33, 36]. and all trial
pigs were ear tagged with a unique ID as previously de-
scribed in [33, 36].

Each batch was monitored once a week for outbreak
of diarrhoea. The estimation of diarrhoea was done by
trained veterinarians, responsible for initiating treat-
ment. When an outbreak was diagnosed, one of five
treatment protocols, each consisting of a treatment once
a day for five days was used: Oral batch-treatment in
water with a standard dose of 10 mg/kg OTC (Terramy-
cin®Vet. 20%, Orion Pharma) (ND), oral batch- treat-
ment in water with a high dose of 20 mg/kg OTC (HD);
oral batch-treatment in water with a low dose of 5 mg/
kg OTC (LD), oral pen-wise treatment in water with a
standard dose of 10 mg/kg OTC (PW) or individual intra
muscular treatment with a standard dose of 10 mg/kg
OTC (IM). For batch treatment, an outbreak was de-
fined as more than 0.5 deposits of stool on average per
pen floor or more than 25% of the pigs with clinical
diarrhoea. Pen-wise treatment was initiated when the
outbreak criteria was fulfilled for a pen (a smaller subset
of the batch housed in the same room), while individual
treatment was initiated when animals showed typical
signs of diarrhoea (loose to watery faeces or poor body
score). For batch and pen-wise treatment, it was ensured
that the medicine was consumed within 24h. Each
protocol was repeated 3 times on each farm, and the
order of treatment protocols was chosen at random to
avoid bias.

Sampling

Faecal samples were collected as previously described by
Graesboll et al. (2017) [55]: Briefly, samples were col-
lected from all trial pigs between October 2011 and
April 2013, either at defecation or per rectum. Samples
were collected from all pigs at three time points: Time
point 1 (T1) was the first day of treatment; immediately
before antibiotic administration, Time point 2 (T2) was
two days after the end of treatment, and Time point 3
(T3) was when pigs were moved from the nursery unit
to finisher stables. The clinical study was designed to be
able to measure differences in production parameters
during the time in the nursery unit, most importantly
growth rate. Samples were stored in 40 ml containers
and shipped to the laboratory in cooled boxes.

DNA extraction

Total DNA was extracted from the samples, using the Max-
well” 16 LEV Blood DNA Kit (Promega Corporation, Madi-
son, WI, USA) as described by Clasen et al. [25]. In short,
samples were homogenized in a cell and tissue disruptor
(Tissuelyser II, Qiagen, Hilden, Germany) with 5mm
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stainless steel beads (Qiagen, Hilden, Germany) and bead-
beated for 2min in a 25 mg/ml lysozyme (Sigma-Aldrich,
Denmark A/S)) buffer. Samples were then transferred to
Maxwell® extraction kit cartridges and DNA was extracted
in according to manufacturer’s instructions. DNA concen-
trations were measured and purity were assessed by the
260/280 nm-ratio using the NanoDropND-1000 spectro-
photometer (NanoDrop Technologies Inc., Wilmington, DE,
USA). Samples were diluted to 40 ng/pl in nuclease free
water (Qiagen, Hilden, Germany) and stored at — 20 °C until
further processing.

Real-time gPCR primers

qPCR amplifications for the quantification of tet(A),
tet(B), tet(M), tet(O), and tet(W), representing genes that
were directly selectable by the tetracycline treatment,
and ermB, ermF, sull and sulll representing genes
encoding resistances that were unrelated to the tetracyc-
line treatment, and 16S rRNA-gene as an approximation
for the number of bacteria in total DNA extracted from
pig faecal samples were performed using the Fluidigm
HD Biomark system (Fluidigm Corporation, South San
Francisco, CA, USA). Levels of the AMR genes, were
quantified using the high-capacity qPCR chip Gene Ex-
pression 192 x 24 (Fluidigm Corporation, South San
Francisco, CA, USA) with two technical replicates using
16S as reference gene as previously described [25].
Primers used are listed in Additional file 18: Table S1).

Statistics
Quantifiable genes was put on the form of relative abun-
dance (ACq = (Cq, 165)1x - (Cq, gene)Tx) OF relative fold
Change (AACq = (Cq, 16S'Cq, gene)Ty - (Cq, 165'Cq, gene)Tx)’
were Tx and Ty represent different time points. Test for
significant change in relative quantities (RQ = AAC,) be-
tween time points in treatment strategies or on farms
were performed using a two-sided t-test with the null
hypotheses being no change. To determine the effect of
treatment regime including all factors AAC, values were
also tested using farm and treatment strategy as fixed ef-
fects and batch as random effect. Furthermore, to deter-
mine the effect of treatment of the individual pig, AACq
values were tested using farm and treatment as fixed ef-
fects and batch as random effect. Changes reported in
percentages are equivalent to (2*4“% — 1)*100%. In case
of genes where low abundance resulted in difficulty of
quantifying, the genes were aggregated to prevalence per
batch and tested using linear regression using farm,
time, farm:time, and treatment:time as fixed effects.
Tests using fixed and random effects were performed
using lmer from the package Ime4, and backwards elimin-
ation was performed using step from the package ImerT-
est. Linear regression was performed using the function
glm with a Gaussian family. Principal component analysis
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was performed on the relative quantities using prcomp
with scaling and centering options enabled. All tests were
performed in R version > 3.2 (R Core Team, 2015).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512866-019-1619-2.

Additional file 1: Figure S1. Relative quantities (RQ) of tet(0), tet(W),
and ermB to 16S of all batches chronologically onfarm 1. Top graph is
values prior to treatment (T1), middle graph values two days after
treatment (T2), and bottom graph is values at exit from nursery unit (T3).
Dots are median values of each batch. Lines are smoothed values of the
data points. Coloured areas are smoothed areas of the interquartile
range.

Additional file 2: Figure S2. Relative quantities (RQ) of tet(0), tet(W),
and ermB to 16S of all batches chronologically farm 2. Top graph is
values prior to treatment (T1), middle graph values two days after
treatment (T2), and bottom graph is values at exit from nursery unit (T3).
Dots are median values of each batch. Lines are smoothed values of the
data points. Coloured areas are smoothed areas of the interquartile
range.

Additional file 3: Figure S3. Relative quantities (RQ) of tet(0), tet(W),
and ermB to 16S of all batches chronologically on farm 3. Top graph is
values prior to treatment (T1), middle graph values two days after
treatment (T2), and bottom graph is values at exit from nursery unit (T3).
Dots are median values of each batch. Lines are smoothed values of the
data points. Coloured areas are smoothed areas of the interquartile
range.

Additional file 4: Figure S4. Relative quantities (RQ) of tet(0), tet(W),
and ermB to 16S of all batches chronologically on farm 4. Top graph is
values prior to treatment (T1), middle graph values two days after
treatment (T2), and bottom graph is values at exit from nursery unit (T3).
Dots are median values of each batch. Lines are smoothed values of the
data points. Coloured areas are smoothed areas of the interquartile
range.

Additional file 5: Figure S5. Relative quantities (RQ) of tet(0), tet(W),
and ermB to 16S of all batches chronologically on farm 5. Top graph is
values prior to treatment (T1), middle graph values two days after
treatment (T2), and bottom graph is values at exit from nursery unit (T3).
Dots are median values of each batch. Lines are smoothed values of the
data points. Coloured areas are smoothed areas of the interquartile
range.

Additional file 6: Figure S6. Prevalence of sull, sulll, tet(A), and tet(B).
Stratified by sampling time and treatment.

Additional file 7: Figure S7. Prevalence of sull, sulll, tet(A), and tet(B).
Stratified by sampling time and farm.

Additional file 8: Figure S8. Relative quantities of ermB at times T1, T2
and T3. Stratified by treatment and farm.

Additional file 9: Figure S9. Relative quantities of ermF at times T1, T2
and T3. Stratified by treatment and farm.

Additional file 10: Figure S10. Relative quantities of tetM at times T1,
T2 and T3. Stratified by treatment and farm.

Additional file 11: Figure S11. Relative quantities of tet(O) at times T1,
T2 and T3. Stratified by treatment and farm.

Additional file 12: Figure S12. Relative quantities of tet(W) at times T1,
T2 and T3. Stratified by treatment and farm.

Additional file 13: Figure S13. Prevalence of tet(A), tet(B), sull and sulll
of all batches chronologically on farm 1. Top graph is values prior to
treatment (T1), middle graph values two days after treatment (T2), and
bottom graph is values at exit from nursery unit (T3). Dots are median
values of each batch. Lines are smoothed values of the data points.

Additional file 14: Figure S14. Prevalence of tet(A), tet(B), sull and sulll

of all batches chronologically on farm 2. Top graph is values prior to
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treatment (T1), middle graph values two days after treatment (T2), and
bottom graph is values at exit from nursery unit (T3). Dots are median
values of each batch. Lines are smoothed values of the data points.

Additional file 15: Figure S15. Prevalence of tet(A), tet(B), sull and sulll
of all batches chronologically on farm 3. Top graph is values prior to
treatment (T1), middle graph values two days after treatment (T2), and
bottom graph is values at exit from nursery unit (T3). Dots are median
values of each batch. Lines are smoothed values of the data points.

Additional file 16: Figure S16. Prevalence of tet(A), tet(B), sull and sulll
of all batches chronologically on farm 4. Top graph is values prior to
treatment (T1), middle graph values two days after treatment T2), and
bottom graph is values at exit from nursery unit (T3). Dots are median
values of each batch. Lines are smoothed values of the data points.

Additional file 17: Figure S17. Prevalence of tet(A), tet(B), sull and sulll
of all batches chronologically on farm 5. Top graph is values prior to
treatment (T1), middle graph values two days after treatment (T2), and
bottom graph is values at exit from nursery unit (T3). Dots are median
values of each batch. Lines are smoothed values of the data points.

Additional file 18: Table S1.
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