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Abstract

Background: Human gut microbiota are important for human health and have been regarded as a “forgotten organ”,
whose variation is closely linked with various factors, such as host genetics, diet, pathological conditions and external
environment. The diversity of human gut microbiota has been correlated with aging, which was characterized by
different abundance of bacteria in various age groups. In the literature, most of the previous studies of age-related gut
microbiota changes focused on individual species in the gut community with supervised methods. Here, we aimed to
examine the underlying aging progression of the human gut microbial community from an unsupervised perspective.

Results: We obtained raw 165 rRNA sequencing data of subjects ranging from newborns to centenarians from a
previous study, and summarized the data into a relative abundance matrix of genera in all the samples. Without using

the age information of samples, we applied an unsupervised algorithm to recapitulate the underlying aging
progression of microbial community from hosts in different age groups and identify genera associated to this
progression. Literature review of these identified genera indicated that for individuals with advanced ages, some
beneficial genera are lost while some genera related with inflammation and cancer increase.

Conclusions: The multivariate unsupervised analysis here revealed the existence of a continuous aging progression
of human gut microbiota along with the host aging process. The identified genera associated to this aging process
are meaningful for designing probiotics to maintain the gut microbiota to resemble a young age, which hopefully will
lead to positive impact on human health, especially for individuals in advanced age groups.
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Background

The human gut, as an eco-system embodying more than
100 trillion microbes, plays an important role in human
health [1]. The structure and composition of the gut flora
are the result of long-term natural selection acting on both
the microbes and host, which finally promotes mutual
cooperation and functional stability of this complex
ecosystem [2]. Factors such as diet, environment, host
genetics and pathological conditions are important factors
for explaining the variation of gut microbial community in
different individuals [3-7]. Aging process captures many
facets of biological variation of the human body, which
leads to functional decline and increased incidence of
infection in gut of elderly people [8]. Age-related changes
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of human gut microbiota have been revealed by several
studies [9-17]. Hopkins et al. found higher numbers of
Enterobacteria in children’s fecal than adults through
culturing microbes [9]. Using 16S rRNA sequencing,
Yatsunenko et al. found Bifidobacterium declined with
increasing ages [11]. Odamaki et al. revealed that aging
was accompanied by increasing proportion of Bacteroides,
Eubacterium and Clostridiaceae; Enterobacteriaceae were
enriched in infant and elderly; Bifidobacterium were
enriched in infants; Lachnospiraceae were enriched in
adults [10]. Using whole genome sequencing, Stewart et
al. discovered decline of L-lactate dehydrogenase (milk
fermentation) and increase of transketolase (metabolism
of fiber) over the first year of life [13]. In these studies,
various supervised machine learning methods have
been applied, including multi-group comparative analysis
with permutational analysis of variance (PERMANOVA)
[9, 10, 12, 17], Spearman rank correlation and Random
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Forest [11], as well as frequency-inverse document fre-
quency and minimum-redundancy maximum-relevance
[14], which effectively identified taxonomic or functional
signatures showed aging-related changes of gut micro-
biota.

In this study, we proposed to explore an unsupervised
machine learning approach for identifying aging-related
progression of microbiota community and bacteria gen-
era associated with the progression. The unsupervised
algorithm adopted here is called Sample Progression
Discovery (SPD), which was developed to identify pro-
gressive changing patterns of gene expression that reflect
the biological progression in various biological processes
and systems [18]. This idea was first applied to microar-
ray gene expression analysis [18], and then extended to
flow cytometry [19] and single-cell RNA-seq analysis [20].
Here, we applied SPD on community profiles extracted
from 16S rRNA sequencing data of human gut microbiota
samples in various age periods ranging from new-born
babies to centenarians. SPD recapitulated the underlying
aging progression in the data in an unsupervised fashion,
and sorted the gut microbiota samples in an order consis-
tent to the host ages. In addition, SPD identified bacteria
genera associated with the aging-related progression of
gut microbiota. These findings demonstrated the exis-
tence of an aging progression of human gut microbial
community, and points to important bacteria genera that
characterize the aging of gut microbiota.

Results
Data annotation and samples overview
We obtained a total of 3.2 million high-quality 16S rRNA
sequences from 368 samples [10], with 8734+ 2748 (mean
=+ deviation) reads per sample. The 16S rRNA sequences
were binned into 366 genera using the Mothur pipeline
[21] with SILVA [22] as reference database (see Methods).
We removed 119 genera with extremely low abundance,
the total amount of sequences annotated as these genera
only accounted for 0.01% of all the sequences. Also, we
excluded one sample with abnormally high proportion of
Pseudomonas, which is an indication of abnormal sam-
pling or pathological disorder of this individual ‘Japanese
320. Overall, we derived a relative abundance matrix of
the 247 genera across the 367 samples, which served as
the basis for further analyses. To reveal age-related pro-
gression of gut microbiota, we divided the samples into
14 age groups considering body transformation periods.
New-born babies were grouped according to their wean-
ing status and adults were grouped by decade (Table 1).
Except the centenarians, there were at least 10 samples in
each age group.

We performed PCA to visualize the taxonomic pat-
terns of these samples in a low-dimension space based on
the relative abundance matrix of the 247 genera across
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Table 1 Samples were grouped into 14 age-segment groups

Group  Age segmentation ~ Number of samples ~ Female  Male
1 (0,0.4] 10 6 4
2 04,1.2] 12 4 8
3 (1.2,3] 19 9 10
4 (3,9 14 8 6
5 9,19] 10 3 7
6 (19,29] 40 24 16
7 (29,39] 88 43 45
8 (39, 49] 34 21 13
9 (49, 59] 25 13 12
10 (59, 69] 28 17 1
1 (69, 79] 15 10 5
12 (79, 89] 48 32 16
13 (89,99] 19 15 4
14 > 100 5 5 0

The first three groups of new-born babies were classified regarding their weaning
status, i.e. before weaning, weaning and after weaning separately. Other samples
were grouped by decade

the 367 samples. The top three principle components
explained 33.17%, 15.09% and 10.32% of the original
data variance, respectively. As shown in Fig. 1, the sam-
ples from children younger than three years old scat-
tered loosely, and were quite different from each other.
This observation was consistent with previous litera-
ture [11], which concluded that intrapersonal variation
decreased as a function of age. Nevertheless, the samples
did not form distinct groups when visualized by this linear
approach.

Age-related variation of gut microbiota revealed by
supervised methods

We applied two previous statistical approaches to identify
the age-related variation of the gut microbiota in a uni-
variate fashion. First, we applied permutational one-way
ANOVA test [23] to the genus relative abundance matrix
to identify genera that significantly varied in different age
groups. The abundances of 43 genera showed significant
difference across the age groups with P < 0.001 (1000
randomizations), and the P values were adjusted using
Bonferroni correction (see more details in Additional file
1). We also applied Spearman correlation to find genera
that co-vary with age. There were 17 genera positively
correlated with aging and one genus negatively correlated
with aging (Additional file 2). These results were con-
sistent with multiple previous literatures, showing that
individual genus in the gut microbial community varied
during the host aging [9, 10, 12, 17]. Further question nat-
urally arose as to whether the gut microbial community as
a whole shift continuously during aging.
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Fig. 1 Sample overview using PCA. Using the relative abundance of
247 genera across all the 367 samples as input, we linearly
transformed and visualized the data in a three-dimensional space.
Each sample is represented by one dot, colored according to age.
Samples from children younger than three (the dark blue dots)
scattered most distantly, while older age groups were mixed together
in the PCA space

Aging progression of gut microbiota revealed by
unsupervised analysis

Different from the previous supervised univariate meth-
ods searching for features that co-varied with aging, we
applied an unsupervised method SPD to examine the
gut microbiota data in a multivariate fashion. The input
to SPD was the averages of genus relative abundance of
samples in each age group, which is a 247 x 14 matrix.
The relative abundance of each feature was normalized
across samples to release the scale effect. Based on each
of the genus features, a minimum spanning tree (MST)
was constructed according to Euclidean distance, which
represented a putative progression ordering among the
14 sample groups. The 247 genera and the 247 resulting
MSTs were cross compared to examine whether multiple
genera fitted well the same progression ordering among
the samples. Results of these comparisons were summa-
rized into a progression similarity matrix, where each
element counted the number of progression orderings
that two genera both fit well with. As shown in Fig. 2a
and magnified in Fig. 2b, the progression similarity matrix
revealed a subset of 35 genera (Additional file 3) that
fitted well with a common set of putative progression
orderings. Using this subset of genera, an overall minimal
spanning tree was constructed to represent the common
progression ordering, shown in Fig. 2c. Each node of the
tree represented one age group. Nodes were labeled and
colored according to their age groups to assist the visu-
alization. However, the age information was not used to
determine the structure of the tree. This overall minimal
spanning tree is what SPD aimed to identify, a progression
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ordering among the samples, with respect to which mul-
tiple features exhibited gradual changes. The overall min-
imal spanning in Fig. 2c recapitulated the age progression
ordering across the 14 sample groups. Especially, when
we further classify these sample groups into four larger
groups, i.e. Children and teenagers, Adults, Elderly and
Centenarians, the order of sample groups on this minimal
spanning tree perfectly matched with the ages of sample
groups. This is an interesting result, because SPD was able
to recover the correct ordering of aging progression based
on the genus relative abundance alone, which implied
that there existed an aging progression of the human gut
microbiota.

35 critical genera underlying the aging progression of gut
microbiota
We further examined the 35 selected genera that con-
tributed to the aging progression of gut microbiota, and
compared to previous methods. 11 of the 35 genera were
significant in the permutational one-way ANOVA analysis
with adjusted P < 0.001. Among the remaining 24 genera
detected by SPD only, a few were previously implicated
in the literature, such as Oxalobacter, Butyrivibrio, Lacto-
bacillus which have been experimentally demonstrated to
be associated with aging [24—26], as well as Prevotellaceae
which has been highlighted with lower presence in the
gut microbiota of centenarians [27]. Among the 35 genera
selected according to the progression similarity defined by
SPD, only 9 exhibited monotonic changes with respect to
aging, while the rest first increased and then descreased in
different age periods (Additional file 4: figure 1). This was
because SPD was designed to identify features that exhib-
ited gradual changes with respect to a common underlying
progression pattern, and the gradual changes were not
limited to be monotonic. Therefore, this analysis was able
to identify genera that gradually changed without abrupt
fluctuations during aging. We performed extensive litera-
ture review of these 35 genera, and found a lot of previous
reports of the functional relevance of these genera.
Genera shown in Fig. 3 shared one common feature.
Their abundances increased with respect to aging, but
decreased in the extremely elderly subjects. Among these
genera, Lactobacillus species are commonly used as pro-
biotics [28]. Oscillospira species have been frequently
reported as enriched in lean subjects compared to the
obese subjects [29-32], and are central to the human
gut microbiota for degrading fibers [33]. Oxalobacter
is responsible for degrading oxalate in the gut. It has
been experimentally demonstrated appearing in the gut
of almost all young individuals, but these bacterium may
later be lost during aging [24]. Prevotellaceae is commonly
found in the gastric system of people who maintain a
diet low in animal fats and high in carbohydrates [34]
and is lost in centenarians [27]. Researchers also found
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Fig. 2 SPD recovered aging progression with taxonomical composition of human gut microbiota. a Progression similarity matrix for all genera, with
each element counting the number of progression orderings the two corresponding genera shared. b We manually picked the highlighted area
from (a). These selected genera were consistent with a common set of putative progression orderings. € An overall minimal spanning tree of the 14
age groups based on the selected genera. Each node represents one age group

that there was an increased abundance of Prevotellaceae
in the guts of healthy people compared with people
with Parkinson’s disease [35]. Parascardovia is a genus of
Bifidobacteriaceae, which has been shown to provide
health-promoting benefits to the host [36]. Butyrivibrio
species have been experimentally proved as butyrate pro-
ducing bacteria, and butyrate is a preferred energy source
for colonic epithelial cells and is thought to play an impor-
tant role in maintaining colonic health in humans [37].
Overall, the decrease of these beneficial genera in the
elderly age groups, especially centenarians, maybe mani-
festation of or causial associations to decline of health in
those age groups.

In contrast, genera in Fig. 4 showed generally mono-
tonically increasing patterns with respect to aging.
Parvimonas has been reported to be enriched in colorec-
tal cancer [38—42]. Anaerotruncus was relatively enriched
in patients with age-related macular degeneration [43].
Corynebacterium was reported as more abundant in
the gut of autistic individuals (autism spectrum disor-
ders) [44]. Many Corynebacterium species were also
reported as involved in human and animal diseases [45].
GCA-900066225 is one genus in the Lachnospiraceae
family, which has been reported to be associated with
ulcerative colitis, Crohn’s and celiac disease, as well as
the stress of the host [46]. Desulfovibrio species produce
hydrogen sulfide using sulfate as the electron accep-
tor, and these sulfate-reducing bacteria are positively
associated with inflammation [47, 48]. A human stool-
derived Bilophila wadsworthia strain caused systemic

inflammation in specific-pathogen-free mice [49].
Tumor-bearing mice showed enrichment in species of
Odoribacter [50). Butyricimonas was enriched in the
subjects suffering from high rectal temperature, systolic
blood pressure, and heart rate and a significantly lower
physical activity score [51]. Overall, these monotonically
increasing genera were often linked to inflammation and
diseases.

All these prior literature of the identified genera pointed
to one interesting observation. Many of the genera that
first increased and then descreased were previously impli-
cated as health beneficial, whereas most of the mono-
tonically increasing genera were frequently reported as
disease-related. When individuals turn elderly beyond
90s, their guts tend to lose some of the beneficial genera
and gain potentially harmful genera.

Discussion

Since the variation of gut microbiota is closely linked
to the health status of the host body, an ideal dataset
for studying aging of human gut microbiota should be
collected from healthy subjects of various age groups.
Unfortunately, the health status of individuals included
in this study is unknown, because that the data were
obtained from a published paper [10] which did not pro-
vide the health information corresponding to the samples.
During our literature search on age-related changes of the
human gut microbiota, we found in multiple previously
published papers [10, 11, 14, 52, 53] that the health status
of individuals in such studies are often not reported.



Xu et al. BMC Microbiology (2019) 19:236

Page 50f 10

Lactobacillus
0.03
[0}
S 0.025
©
B 002
=
Ke)
®© 0.015
(]
-
£ 001
¥
& 0.005
12345678 91011121314
Group number
1 x10™ Oxalobacter
8os
j o
@®©
©
S 06
Qo
@
_g 0.4
©
& 02
12345678 91011121314
Group number
ie %107° Parascardovia
[0}
[S]
5
o 1
[ =
=
o)
@
2
B 0.5
©
14
12345678 91011121314
Group number

5 %107 Oscillospira
[0}
[S]
G
- 2
} =
= |
o)
(0]
2
%1
©
o
0—eo—e L
12345678 91011121314

Group number

g %10 Prevotellaceae_UCG-003

Relative abundance
w

12345678 91011121314
Group number

%107 Butyrivibrio

N
3

N

Relative abundance
e
- 3]

o
3

12345678 91011121314
Group number

Fig. 3 Genera that first increased and then decreased during aging, especially sharply decreased in the 13th or 14th age groups, or both

In order to gauge the health status of samples in the
dataset used in this paper, we performed additional anal-
ysis by referencing to multiple previous datasets on the
human gut microbiome of hosts suffering from different
diseases [4, 5, 7, 54—57]. In each of the previous datasets,
we obtained the relative abundance of the human gut
microbial genera, and visualized their distributions for
both healthy controls and disease samples.. Multiple gen-
era were significantly enriched in the diseases compared
to the healthy controls. Most of these genera have been
reported as opportunistic pathogens of the human gut
[58—-67]. These disease-enriched genera typically showed
higher abundance and higher variance in disease subjects
compared to the healthy ones (first and second columns of
Additional file 4: figure 2), while all of these genera exhibit
low abundance in the dataset used here (third column of
Additional file 4: figure 2). This observation indicated that
the samples in the current dataset are more similar to the

healthy samples in the previous datasets, and dissimilar to
the diseases samples. This comparison demonstrated that
majority of the samples in this dataset were derived from
healthy subjects.

For 16S rRNA sequencing data analysis, OTU (opera-
tional taxonomic unit) is another commonly used clas-
sification unit, which allows for binning sequences into
features at finer resolution compared to the genus level
features. To confirm the observations in our genus level
analysis, we applied the progression analysis to the
OTU level features. 4663 OTUs were defined by clus-
tering sequences with similarity threshold set as 0.97 for
species level classification. After filtering out OTUs with
extremely low abundances, the averages of the relative
abundances of the remaining 1229 OTUs were calcu-
lated for each age group. Progression analysis based on
OTU features was able to partially recapitulate the cor-
rect order of the age groups (Additional file 4: figure 3),
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but slightly worse compared to the result from genus level
analysis shown in Fig. 2c. It is reassuring that the progres-
sion analysis at both OTU level and genus level consis-
tently revealed aging related progression of the human gut
microbiota.

In the metagenomics literature, the alpha diversity and
the beta diversity are popular metrics for providing quan-
titative summaries of species diversity. We computed the
alpha diversity and the beta diversity based on the aver-
ages of genus relative abundance of samples in each age

group. The alpha diversity was quantified by the Shannon
index and the beta diversity was quantified by Bray-Curtis
dissimilarity between different age groups. Additional
file 4: figure 4 shows the alpha diversity computed for each
individual age group, which showed a steady increase of
the alpha diversity as a function of aging, except for the
steep drop in the extremely elderly age group [99, 110].
This is consistent with the results shown in Fig. 3, where
multiple aging-related genera showed significant decrease
in the extremely elderly age group. The beta diversity
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quantified the dissimilarity between different age groups
(Additional file 4: figure 5). Focusing on the beta diver-
sity between neighboring age groups, we observed that the
dissimilarity between groups [2, 3] and between groups
[13, 14] were notably larger than the dissimilarity between
other neighboring age groups. The distinction between
group 2 (weaning) and group 3 (weaned) is mainly due
to the transformation of weaning status, which is accom-
panied by drastic dietary changes. However, samples of
group 13 and group 14 are all elderly individuals with con-
tinuous ages, and the large dissimilarity between groups
13 and 14 cannot be explained by changes of dietary
habits. Therefore, we conjecture that the large dissimilar-
ity between groups 13 and 14 is due to the aging of gut
microbiota, manifested in the sudden decrease of multiple
genera in the extremely elderly samples. Overall, accord-
ing to both alpha and beta diversity, we can see indications
consistent to our observation of the sudden decrease of
multiple genera in extremely elderly age samples shown in
Fig. 3.

Conclusions

We applied an unsupervised machine learning approach
SPD on genera abundance profile of human gut micro-
biota quantified by 16S rRNA sequencing data. Without
using the age information of the samples, SPD sorted sam-
ple groups on a minimal spanning tree that recapitulated
the aging progression. This result indicated the existence
of an aging progression reflected in the human gut micro-
biota. In the meantime, we found 35 genera associated
with this age-related progression. Some of these genera
were not identified using the commonly-used statistical
approaches for metagenomics analysis. Literature review
of these 35 genera led to a lot of evidences of the functional
relevance of these genera. The evidences collectively indi-
cated an age-related decline of the beneficial functions of
gut microbiota, as well as increase of inflammation and
diseases, especially for the elderly people older than 90s.

Methods

Data and data annotation

Our study includes 371 samples of subjects ranging
from new-born babies to centenarians, which have been
described in publication [10]. We downloaded the 16S
rRNA data from DNA data bank of Japan with acces-
sion number DRA004160. Three samples were discarded
because of only one end of paired-end reads were released.
We performed 16S rRNA data processing using Mothur
[21]. Low quality reads with average quality score < 25
or read length < 150bp were filtered out. We set the
minimum length of reads as 150bp because the overlap
region of each pair of reads was about 150bp. The num-
ber of reads in each sample was Gaussian distributed
(8734+£2748), which implied that all the 368 samples were
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sequenced in normal depth. The high-quality reads with
both paired ends were merged as sequences. Those low-
quality reads or reads with only one end were discarded.
Then we aligned the sequences against Silva reference
database version 132 [22] to infer taxonomical composi-
tion of samples. Threshold for the alignment was set as
bootstrap confidence value 80% (80% identity) during 100
iterations. Based on the alignment result, we revealed the
taxonomic composition at genus level. There were 368
genera in all the samples.

Feature matrix

We defined the genus abundance matrix N = {n;}, where
n; is the number of reads of sample i binned into genus
j. One hundred nineteen genera were filtered out for
their extremely low abundance, and three genera were
combined into one genus cluster as “unclassified”, after
which 247 features were obtained for further analysis.
To normalize out the variation in sequencing depth of
different samples, the genus abundance matrix was trans-
ferred into a relative abundance matrix F = {f;;}, where
fii=n;;/ Z%fl nix . One sample from subject “Japanese
320” was discarded for its abnormally high proportion
of Pseudomonas. Finally, we have a 367 x 247 relative
abundance matrix F for further analysis.

With decent numbers of observations in different age
periods, we estimated the genus relative abundance of
population in each age group by calculating the mean
value of samples in corresponding group, which par-
tially reduced the variations across individual samples and
sparsity of the data matrix. Age segments were defined
concerning the physiological transition of the host bod-
ies, wherein the new-born babies were grouped according
to their weaning status and the adults were grouped by
decade. The number of samples in each age group was
depicted in Table 1.
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