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Abstract

Background: The Chinese believe that the meat of pigs reared in the past with free range tastes better than that
of the pigs reared indoor on a large scale today. Gastrointestinal microflora is closely associated with the main
factor of meat flavour, including fibre characteristics and lipid metabolism. Our method in this study involved
different raising patterns within the semi free-grazing farm (FF) or indoor feeding farm (DF), the measurement of fat
deposition and myofiber type by paraffin section and reverse transcription polymerase chain reaction and the
identification of microbiome and functional capacities associated with meat quality through metagenomic
sequencing.

Results: Results showed that the fat area in muscle and adipose tissue and the myofiber density significantly
increased in the pigs of the FF group. The relative abundance of bacteria associated with lipid metabolism, such as
g_Oscillibacter, in the feces of the FF group was higher than that in DF group, and the relative abundance of some
bacteria with probiotic function, including g_Lactobacillus and g_Clostridium, was lower than that in DF group. The
abundance of g_Clostridium was significantly positively correlated with the intramuscular fat area, whereas health-
related bacteria, such as g_Butyricicoccus, g_Eubacterium, g_Phascolarctobacterium and g_Qribacterium, was
significantly negatively correlated with abdominal fat area, myofiber density and adipose triglyceride lipase (ATGL)

metabolism.

mMRNA expression. KEGG analysis showed that pigs raised in semi free-grazing farm can activate the pathway of
inosine monophosphate (IMP) biosynthesis, glycolysis/gluconeogenesis and alanine, aspartate and glutamate

Conclusions: Free range feeding improves meat quality by changing the fibre type, myofiber density and
metabolic pathways related to flavour amino acids, IMP or glycolysis/gluconeogenesis in muscle. However,
prolonged feeding cycle increases fat deposition and associated microbial communities.
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Background

Except for the influences of nutrition, feeding manage-
ment and slaughter mode, muscle fibre and intramuscular
fat are the main factors affecting muscle quality, such as
tenderness, juiciness and flavour. The number and volume
of muscle fibres mainly determine the meat quantity, and
the type of muscle fibre is closely related to the pH
change, colour, and water-holding capacity of post-mor-
tem muscles [1-3]. The content of intramuscular fat is
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closely related to tenderness, juiciness and flavour of the
meat [4].

Intestinal flora and its metabolites are closely asso-
ciated with the immune system, bone, cardiovascular
system and nervous system and thus affect the phys-
ical and mental health [5, 6]. Most research on intes-
tinal microorganism and lipid metabolism focus on
metabolic disorders and obesity. Adult germ-free mice
with microbiota harvested from the distal intestine of
conventionally raised animals produces a 60% increase
in body fat content and insulin resistance despite re-
duced food intake [7]. Gut microbiota is an important
factor affecting energy harvest from the diet and
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energy storage of the host [8, 9]. Yan et al. (2016)
demonstrated significant difference of the gut micro-
biota, which contributed in regulating fibre character-
istics and lipid metabolism in skeletal muscle between
obese and lean pigs [10]. Specific gut microbiome in
obese individuals can enhance ectopic fat deposition
in skeletal muscle and inhibit muscle growth [10].
These findings provide new approaches to intervene
with host metabolism and animal phenotypes. Intes-
tinal flora is an independent environmental factor for
regulating host metabolism, and its changes are
closely related to the host phenotype. However, the
biological markers of intestinal microorganism related
to phenotypic traits, such as muscle fibre and fat,
have not been determined. A reference gene catalogue
of pig gut microbiome has been established by Xiao
et al. (2016) [11]. Their study would accelerate re-
search about the complex interactions between intes-
tinal microbiota and host physiological function.

Almost all the Chinese believe that pork raised in the
past with free range tastes much better than pork raised
indoor on a large scale today. On June 18, 2016, the
famous international media New York Times published
large-scale reports on Linan Sun Commune and China’s
rural construction. They followed past pig raising
model, where pigs were running in the yard, swimming
in the pool, rolling in the mud, and using their mouths
to arch the fruit tree fences. Hence, in this study, pigs
in the same litter were raised separately. One part of
the pigs was raised in traditional indoor farm, while the
others were raised above Linan Sun Commune with the
semi free-grazing model. The main factors affecting
meat flavour, including fibre characteristics and lipid
metabolism, and the correlation between porcine gut
microbiome and muscle fibre or fat deposition would
be tested, which will provide a theoretical basis for
regulating pork quality through intestinal microflora
and its metabolites.

Results

Measurement of fat deposition and myofiber type traits
The intramuscular fat area and fibre number in the
longissimus dorsi muscles of animals in the semi free-
grazing farm (FF) group were significantly (p <0.01)
bigger than that in the indoor feeding farm (DF) group
(Fig. 1a). Back, abdominal and lard fat area of pigs in
the FF group were significantly (p <0.01) bigger than
that in the DF group (Fig. 1b). The mRNA expression
of MyHC1, MyHC2b and MyHC2x in the longissimus
dorsi muscles of animals in the FF group was
significantly (p < 0.05) higher than that in the DF group
(Fig. 1d). The percentage of MyHC2x and MyHC1 in
FF group was higher than that in DF group (Fig. 1c). The
mRNA expression of adipocyte development genes,
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including FAS, ATGL and HSL, in the longissimus
dorsi muscles of animals in the FF group was signifi-
cantly (p<0.05) higher than that in the DF group
(Fig. le). The mRNA expression of MyOD1 and
SOSC3 in the longissimus dorsi muscles of animals in
the FF group was significantly (p <0.05) lower than
that in the DF group (Fig. 1e).

Taxonomic profiles in pig feces

Metagenome sequencing by using HiSeq Illumina plat-
form produced 64,035.32 Mbp of raw data from 10 fae-
cal samples (Additional file 4: Table S1). A total of 63,
409.46 Mbp clean data were obtained after quality con-
trol. A total of 1,282,750,898 bp scaftigs were obtained,
which were assembled from the single or mixed sample
assembly. MetaGeneMark software predicted 1,992,770
open reading frames (ORFs). A total of 1,069,209 ORFs
with 644.58 Mbp lengths, which include 348,172
complete genes, were obtained after redundanting.
MicroNR database was used to blast with no-redundant
gene catalogue, and 78.76, 75.37, 69.83, 69.35, 58.72,
55.00 and 41.31% at the kingdom, phylum, class, order,
family, genus, or species level, respectively, were
annotated using the lowest common ancestor (LCA)
method. The observed numbers of non-redundant genes
curves for all samples of FF and DF groups are shown in
Additional file 1 :Figure S1.

A total of 1646 annotated genera were found in all sam-
ples. Differences were observed at the genus level between
the DF and FF groups, indicating different microbial com-
munity profiles and abundances. The most dominant
genera in the DF group were Prevotella (8.59%), Clostrid-
ium (6.05%), Oscillibacter (3.74%), Lactobacillus (3.28%),
Ruminococcus (3.03%), Bacteroides (2.15%), Treponema
(1.84%), Streptococcus (1.44%), Alistipes (1.24%) and Metha-
nobrevibacter (0.68%), while those in the FF group included
Prevotella (8.64%), Oscillibacter (6.81%), Clostridium (4.72%),
Ruminococcus (2.90%), Bacteroides (2.65%), Streptococcus
(1.73%), Treponema (1.25%), Alistipes (0.60%), Lactobacillus
(0.48%) and Methanobrevibacter (0.10%) (Fig. 2a).

A total of 7016 species were annotated from the
MicroNR database, accounting for an average of 9.71%
or 11.40% of the total NR from the DF or FF group, re-
spectively (Additional file 5: Table S2). Firmicutes bacter-
ium CAG:110 exhibited high abundances and was
dominant in sample from DF (3.30%)) and FF (2.84%).
The species were followed in abundances by Lactobacil-
lus johnsonii (1.19%), Prevotella sp. P5-92 (0.89%) and
Prevotella sp. P2-180 (0.74%) in the DF group and by
Ruminococcus sp. CAG:177 (1.65%), Oscillibacter sp.
PC13 (1.35%) and Clostridium sp. CAG:138 (1.34%) in
the FF group (Additional file 2 :Figure S2).

Principal component analysis (PCA) and ANOSIM
distances were utilised to visualise the differences in taxa
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Fig. 1 Fibre number and the intramuscular fat area of longissimus dorsi muscles in the DF and FF groups (a). Back, abdominal and lard fat area of
pigs in the DF and FF groups (b). Gene expression of MyHC1, MyHC2a, MyHC2b and MyHC2x of pigs in the DF and FF groups (c). Myofiber type
as indicated by the percentage of different MyHC in the longissimus dorsi muscles of pigs in the DF and FF groups (d). Gene expression of the
fat deposition and meat quality of longissimus dorsi muscles in the DF and FF groups (e). * represents significant difference (p < 0.05), and **
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composition between groups. The PCA cluster showed
an obvious separation between the DF and FF group
(Fig. 2b), and the ANOSIM enhanced this dissimilarity
(R=0.373, p<0.05) in the species level (Fig. 2c),
wherein identical communities are given R statistic near
0, and completely distinct communities are given a
value of +1. LDA indicated that the bacteria were
significantly reduced in the DF group compared with
those in the FF group, which was composed of s_Succi-
natimonas_sp_CAG_777 in species level and g_

Megasphaera and g Anaerovibrio in genus level (Fig.
4c). The bacteria were significantly increased in the DF
group compared with those in the FF group, consisting
of s _Mycoplasma_sp_CAG_472, s_Eubacterium_sp_
CAG_841, s_Firmicutes_bacterium_CAG_176, s _Eubac-
terium_coprostanoligenes, s_Clostridium_sp_CAG_533,
s_Oscillibacter_sp_ CAG_241_62_21, s_Firmicutes_bac-
terium_CAG_83, s_Ruminococcus_flavefaciens, s_Lacto-
bacillus_reuteri and s_Lactobacillus_johnsonii in the
species level (Fig. 2d).
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Correlation between the phenotypic data and microbial
abundance
We used the canonical correlation analysis (CCA) to de-
tect the correlation between the eight selected environ-
mental variables and the overall microbial community
(Fig. 3a). CCA analysis showed that the abdominal fat area
(p <0.05), back fat area (p=0.1) and MyHC2b (p=0.1)
had the greatest effect on microbial community compos-
ition, followed by myofiber density, leaf fat area, intramus-
cular fat area, ATGL mRNA, SOSC3 mRNA and MyOD1
mRNA. After applying CCA, all significant correlation be-
tween the selected phenotypic data and gut microbial by
using the spearman rank correlation at the genus level are
shown as a heat map in Fig. 3b. The effect size and direc-
tion of the correlation was presented by the fold change
value and colour. In total, 27 significant correlations be-
tween individual variables and gut microbial were ob-
served in multivariate analysis, including 8 positive
correlations (red square) and 19 negative (blue square)
correlations.

At the genus level, a significant positive correlation
was observed in the intramuscular fat area of g

Clostridium (R=0.65, p=0.04), and a significant nega-
tive correlation was observed in the intramuscular fat
area of g Streptococcus (R=-0.93, p=0.0001) (Fig. 3b).
A significant positive correlation was observed in myofi-
ber density and the abdominal fat area of g Sphaero-
chaeta (R=0.72, p=0.01; R=0.64, p=0.04) and g_
Succinatimonas (R=0.70, p=0.02; R=0.66, p=0.04),
whereas a significant negative correlation was observed in
myofiber density and abdominal fat area of g Oribacterium
(R=-0.64, p=0.05 R=-0.72, p=0.02), g Phascolarcto-
bacterium (R=-0.72, p=0.02; R=-0.87, p=0.001), g Eu-
bacterium (R=-0.70, p=0.02; R=-0.68, p=0.03) and g_
Butyricicoccus (R =-0.76, p = 0.01; R = - 0.85, p=0.001). A
significant negative correlation was observed in ATGL
mRNA expression of g Oribacterium (R =-0.77, p =
0.009), g_Butyricicoccus (R = - 0.68, p = 0.03), g_Faecalibac-
terium (R = - 0.67, p =0.02) and g_Butyrivibrio (R = — 0.68,
p =0.03) (Fig. 3b). A significant positive correlation was ob-
served in the myofiber density of g Parabacteroides (R =
0.77, p=0.009) (Fig. 3b). A significant positive correlation
in MyOD1 mRNA expression (R=0.73, p =0.01) and a sig-
nificant negative correlation in leaf (R=-0.77, p=0.009)
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Fig. 3 Multi canonical correlation analysis of the relative abundance of the genus in pig feces samples and environmental parameters.
Environmental parameters include myofiber density, leaf fat area, abdominal fat area, back fat area, intramuscular fat area, MyODT mRNA and
ATGL mRNA. Arrow lengths indicate the strength of the relationship between the environmental parameters and the overall microbial
community (a). Heat maps of Spearman’s rank correlation coefficients between the myofiber density, leaf fat area, abdominal fat area, back fat
area, intramuscular fat area, MyODT mRNA, ATGL mRNA and the relative abundance of bacterial genus (b). The correlation abundant coefficients
are indicated by color, * represents significant correlation (p < 0.05), and ** represents significant correlation (p < 0.01)

and back fat area (R =-0.83, p =0.003) were observed on
g Angelakisella (Fig. 3b). A significant positive correlation
in MyOD1 mRNA (R =0.72, p = 0.02) expression and a sig-
nificant negative correlation in leaf (R=-0.72, p=0.02)
and abdominal fat area (R = — 0.68, p = 0.03) were observed
on g _Eubacterium (Fig. 3b).

Functional composition of the metagenome analysis

Functional classification of annotated NR genes by
using Kyoto Encyclopedia of Genes and Genomes
(KEGG) revealed a predominance of pathways related
to metabolism (carbohydrates, amino acid and nucleo-
tide metabolism), genetic information processing
(translation) and environmental information processing
(membrane transport) as shown in Additional file 3
:Figure S3. PCoA clustered the two feeding models (DF
vs. FF) distinctly with two PCoA axes describing 89% of
the total variation, wherein 81.33% of variation was in
the first principal axis (Fig. 4a). Chief differences be-
tween groups were reads that were functionally anno-
tated as being involved in carbohydrate and amino acid
metabolism. Interesting, samples from the FF group were
significantly enriched for pathway to alanine, aspartate and
glutamate metabolism by the action of glutamate dehydro-
genase (K00262, EC:1.4.14), glutamate synthase and
NADPH large chain (K00265, EC:1.4.1.13) and 2-oxogluta-
rate/2-oxoacid ferredoxin oxidoreductase subunit alpha
(K00174, EC:1.2.7.3, 1.2.7.11). Moreover, the samples re-
markably enriched pathway to glycolysis/gluconeogenesis
by the action of aldose 1-epimerase (K01785, EC:5.1.3.3)
and 2,3-bisphosphoglycerate-independent phosphoglycerate

mutase (K15633, EC:5.4.2.12) and remarkably enriched the
module to inosine monophosphate (IMP) biosynthesis by
the action of phosphoribosylformylglycinamidine synthase
(K01952, EC:6.3.5.3) and amidophosphoribosyltransferase
(K00764, EC:2.4.2.14) (Fig. 4b).

Discussion

Raising pattern alter fibre density, MyHC | proportion and
intramuscular fat area

The histological characteristics of muscle fibre are closely
related to meat quality (flavour, juiciness and tenderness).
Rearing conditions lead to substantial changes in the
MyHC transformation as evidenced by the different pro-
portions of myofiber types and differences in their myofi-
ber numbers. Muscle tissue is composed of myofibers that
can be subdivided into four interchangeable types, marked
by the expression of four myosin heavy chain (MyHC) iso-
types: one slow (MyHC I) and three fast MyHC isoforms
(MyHC Ila, IIx and IIb) [12]. The shortening velocities in-
crease in the following order: I <Ila < IIx < IIb [13] Muscle
MyHC composition can be influenced by additional fac-
tors, such as animal nutrition, physical activity, age and
environmental temperature [14]. Transition between
MyHCs expressions follows reversible obligatory rules: I
2 [[a=2]Ixe211b, and the type of muscle fibres changes to
left or right with the external conditions [15].

In comparison with the DF group, percentage changes
of MyHC:s in the FF group were only found between oxi-
dative myofibers: I« Ila— IIx, whereas no changes
were observed in the percentage of MyHC IIb. The main
reason for the increased percentage of slow-twitch type I
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myofibers in the FF group in our study may be explained
by the different raising condition. As a comprehensive
factor, raising pattern had a substantial influence on
muscle fibre composition. In our study, pigs in the DF
group were kept under indoor breeding conditions and
fed with a conventional commercial diet ad libitum,
while the pigs in FF group were raised in a large yard
and were highly physically active daily. This result was
consistent with the report of Fazarinc et al. (2017) [16],
wherein the percentage of MyHC-I was higher in wild
pigs breeding outside, which were physically active than
domestic pigs indoors. Higher percentage of slow-twitch
type I myofibers was also found in wild pigs kept in
group housing with diminished activity and was fed ad
libitum [17] or was obtained from a zoological garden
[18]. MyHC differentiation was accompanied by the
myofiber density. Fazarinc et al,, (2017) [16] found myo-
fiber hypertrophy in domestic pig of all myofiber types,
which was especially more intense than in the wild pig
feeding outside. The same results were found in our
study, wherein the fibre number in the longissimus dorsi
muscles of animals in the FF group was significantly
higher than that in the DF group.

The composition of skeletal muscle fibre type was re-
lated to meat quality, lipid content and distribution in
muscle, which directly affects muscle quality [19]. The
small muscle fibre area and high density are consistent
with the prominent meat quality. The diameter of type I
muscle fibres is small, and the number of muscle fibres
per unit area is large. Hence, the intramuscular fat (IMF)
content is high, and IMF affects the tenderness and fla-
vor of muscle. The expression of MyHC I and Ila was
positively correlated with IMF, whereas the expression of

MyHC IIb was negatively correlated with IMF [20].
Hence, an increase in IMF can enhance the eating qual-
ity of pig meat [21], and MyHC I myofibers and fibre
density are beneficial to pork quality [22].

Intramuscular accumulation of lipids and myofiber
type of skeletal muscles is the result of interactions be-
tween genetical background and environmental factors.
Other explanation for increasing IMF and levels of type
I fiber in longissimus dorsi muscles of animals in FF
group maybe influence by some bioactive compounds in
diet, the longer feeding cycle. For example, the bioactive
compounds in mulberry leaves may play a regulatory
role in fat deposition and muscle fiber types, like resver-
atrol, anthocyanin or 1-deoxynojirimycin [23]. A de-
creased expression of fast and an increased expression of
slow MyHC occurred in many physiological situations
including ageing was demonstrated in studies in variety
of species [24]. Prolonged feeding cycle of pigs in the FF
group increased fat deposition, as indicated by increas-
ing back, abdominal, lard and intramuscular fat area in
the longissimus dorsi muscles. In brief, pigs reared in
semi free-grazing farm increased fibre density, the
MyHC 1 proportion and intramuscular fat area in this
study, which could partly explain the better taste of free
range pork.

Raising pattern alter intestinal microbial

The effect of feeding pattern on intestinal microorgan-
isms was studied. Prolonged of feeding cycle of pigs in
the FF group increased fat deposition. The ratio of Fir-
micutes/Bacteroidetes (F/B) was associated with the en-
ergy harvest and fat deposition of host [8], and the F/B
ratio seemed as a biomarker indicative to obesity.
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However, with the rapid accumulation of data by meta-
analyses, a clear trend between the F/B ratio and obesity
status could not be found [25], which suggested that the
complexity of how gut microbiome modulates obesity is
way more than a simple imbalance in the status of these
phyla. The abundance of Oscillibacter was the major de-
terminant of obese or normal status [26], when Bacter-
oides and Faecalibacterium were equally abundant. As a
conditional pathogenic bacterium, Oscillibacter was
positively associated with obesity-related metabolic path-
ways [27]. Consistent with our study, g Oscillibacter in
feces was relative higher in higher fat deposition group.
In the top 10 genera, the relative abundance of g Lacto-
bacillus was relative higher in the DF group. Linear dis-
criminant analysis effect size (LEfSe) analysis found that
s_Lactobacillus_johnsonii and s_Lactobacillus_reuteri
were significantly higher bacterial species in the DF
group. Lactobacillus is recognised probiotics in animal
husbandry, which compete for nutrients with existing
gut microbiota, which reduce body weight and fat mass
[28]. The relationship of g Lactobacillus and obesity are
controversial. Among the bacterial genera, Lactobacillus
increased after a weight loss program in adolescents
[29], but it was also abounded in obese and overweight
children [30]. Million et al. (2012) [31] demonstrated
that s_Lactobacillus_reuteri was associated with obesity
in adults. These findings suggest a possible role of Lacto-
bacillus at the species level in body weight and obesity.
From the LEfSe analysis at the species level, significantly
higher bacterial species was found in the FF group s_Fir-
micutes_bacterium_CAG_176, s_Oscillibacter_sp_CAG_
241 62 21 and s_Firmicutes_bacterium_CAG_83, which
all belong to Clostridium cluster IV. Clostridium cluster
IV is a dominant bacterial group known as butyrate-pro-
ducing bacteria [32], which have beneficial functions, in-
cluding nutrient absorption, epithelial cell maturation,
production of short chain fatty acids and maintenance in
human [33]. The abundance and diversity of Clostridium
cluster IV decreases in vegetarians [34]. s_Ruminococ-
cus_flavefaciens was another higher bacterial species in
the DF group. Ransom-Jones et al. (2012) [35] found
that R. flavefaciens and Clostridium cluster IV degraded
dietary fibre. Above all, bacteria related probiotic func-
tion, including g Lactobacillus and Clostridium cluster
IV abound in DF group, and the relative abundance of
g Oscillibacter, which was associated with obesity, was
higher in the FF group.

Relationship between faecal microbial and myofiber types
or fat deposition

Reports about the relationship between faecal microbial
and muscle fibre types or fat deposition were rare. Yan
et al. (2016) demonstrated abundance levels of major
bacteria that produce butyrate and acetic acid, such as
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species from Roseburia and Blautia, were higher in
obese Rongchang pigs and its mouse recipients [10]. In
our study, bacterial genera g Butyricicoccus, g _Eubac-
terium, g Phascolarctobacterium and g Oribacterium
had significant negative correlation with abdominal fat
area, myofiber density and ATGL mRNA expression.
Butyricicoccus is a butyrate-producing clostridial cluster
IV genus. The abundance of Butyricicoccus increased
significantly with age [36]. Genera Eubacterium of the
gut microbiota belongs to Clostridium clusters XIVa,
and are known for polysaccharide fermentation and bile
acids dehydroxylation [37]. Patients with poorer nutri-
tional status revealed a much lower abundance of Clos-
tridium cluster XIVa compared to healthy siblings with
poorer nutritional status [38]. Many Clostridium clusters
IV and XIVa bacteria produce butyrate, a metabolite that
acts as a primary source of energy for colon cells, helps
eliciting an anti-inflammatory response, establishment
and maintenance of the GI barrier, and reduction of in-
testinal permeability [39, 40]. Clostridial cluster XIVa
bacteria have potential beneficial effects with respect to
the development of obesity and associated metabolic dis-
orders [41]. Clostridium cluster IV, which has been asso-
ciated with both obesity and weight loss [29, 42]. The
higher levels of Clostridium cluster IV were detected in
the Swedish with a high consumption of fish and meat
[43], and lower abundance of Clostridium cluster IV in
faecal microbiota of vegetarians [34]. g_Oribacterium is
a health-associated genus [44], which decreased in
chronic obstructive pulmonary disease patients. Phasco-
larctobacterium may exert a beneficial role in the human
gastrointestinal tract and can produce short-chain fatty
acids, including acetate and propionate [45, 46]. Besides,
Phascolarctobacterium spp. specialise in the utilisation
of succinate produced by other bacteria. The abundance
of Parabacteroides, which is a major producer of succin-
ate, was increased by high fat diet and was positively
correlated with body weight [47]. Phascolarctobacterium
faecium-like bacteria in younger individuals were main-
tained at a high level with a gradual increase with in-
creasing ages (between 1 and 60 years old) but with a
decrease in elderly individuals (> 60 years old) [45]. In
brief, health related bacteria had negative correlation
with abdominal fat area, myofiber density and ATGL
mRNA expression. The report about relationships be-
tween relevant microbiota and phenotypes of meat qual-
ity is rare, further research is needed.

Semi free-grazing feeding activated metabolic pathway
related with meat flavour

Sixteen functional KO were detected to be differentially
abundant in at least one of the two raising patterns. Ten
of these KO were significantly enriched in FF group com-
pared with the DF group. Interestingly, two metabolic KO
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(K01952 and K00764) were involved in the modules of
IMP biosynthesis (M00048), which is the pathway module
for phosphoribosyl pyrophosphate + glutamine =>IMP
[48]. Additionally, five KO detected in FF group were re-
sponsible for alanine (Ala), aspartate (Asp) and glutamate
(Glu) metabolism (K00262, K00265 and K00174) and gly-
colysis/gluconeogenesis (K01785 and K15633). ABC
transport pathway (K16785 and K19350), deoxyribo-
nucleic acid (DNA)-damage-inducible protein (K07473)
and transposase (K07483) were significantly overrepre-
sented in the DF group. They are all associated with DNA
repair processes.

Glu, Asp and Ala are important flavour amino acids,
which can act on the precursor amino acid as a funda-
mental substance forming delicate flavour of meat; espe-
cially, Glu is the most pivotal amino acid affecting meat
flavour and acid-base buffering capacity [49, 50]. By the
KEGG pathway analysis, the Clostridium butyricum
-treated group enriched alanine, aspartate and glutamate
metabolism provided supporting evidence for the in-
creased meat quality in breast muscle of ducks [51, 52].
Significant alterations were observed in the alanine, as-
partate and glutamate metabolism pathway with the
treatment off-Methylamino-l-alanine [53]. IMP is the
key indicator for meat flavor [54—56]. IMP and inosine
degrade into active ribose and ribose phosphate, which
participate in the Maillard reaction in meat during cook-
ing and produce various volatile flavour compositions
[57]. IMP and sodium glutamate can co-participate in
the regulation of meat flavour [58]. The genes encoding
the modules of IMP biosynthesis (M000438) in the cells
of Se-enriched C. utilis were up-regulated according to
KEGG pathway modules analysis [59]. More sequences
related to inosine monophosphate (required for the de
novo synthesis of purines) were identified from O. flex-
uosa transcripts than from the nearly-complete genome
of B.malayi [60]. Glycolysis/gluconeogenesis is also a
muscle-development-related pathway, which is strongly
connected and belongs to the most important energetic
processes that influence the muscle-to-meat conversion
[61]. Drip loss strongly depends on post mortem ener-
getic processes in the muscle. Julia et al. (2016) [62]
found that glycolysis/gluconeogenesis significantly influ-
ences drip loss. Glycolytic potential can also predict
meat quality, which is related with high drip loss and
low pHsgy, [63]. A report aimed to examine the specific
genetic contribution of each breed to meat quality found
that most of the differentially expressed genes were
grouped in the Glycolysis/Gluconeogenesis pathway,
which was over-expressed in Maremmana and down-
expressed in Chianina [64]. They hypothesized that the
high expression levels of genes involved in Gluconeogen-
esis due to that the Maremmana is a breed, which
adapted to the harsh environment o and to poor forage.
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The glycolytic pathway was enhanced in oysters with
high-glycogen content, and these oysters have a high-en-
ergy metabolism, as well as an increased antioxidant
capacity and stress resistance [65]. Notably, the enrich-
ment of KO involved in flavour amino acid metabolism,
IMP biosynthesis and glycolysis/gluconeogenesis path-
way in the longissimus dorsi muscle provides supporting
evidence for the increased porcine meat quality in the
FF group. However, more metagenome samples are
needed for accurately statistical validation of these char-
acterised KO as promising biomarkers for meat quality.

Conclusions

In conclusion, pigs reared in semi free-grazing farm in-
creased myofiber density, MyHC I proportion and intra-
muscular fat area. It also activated the metabolic
pathways related to meat flavour, including flavour
amino acid metabolism, IMP biosynthesis and glycolysis/
gluconeogenesis. These findings provide evidence for the
good taste of free range pork. Prolonged feeding cycle of
pigs in the FF group increased the conditional patho-
genic bacteria associated with obesity.

Methods

Animal sample collection

Animal studies were conducted in accordance with the
guidelines of the Zhejiang Farm Animal Welfare Council
of China and approved by the ethics committee of Zhe-
jiang Academy of Agricultural Sciences. Twenty Bajiazhe
black piglets from Jicheng Animal Husbandry Co., Ltd.
were divided into two groups of 10 at 3 months of age
with equal representation of littermates and sex. Piglets
in the group of the indoor feeding farm (DF) was fed
with general compound feed (Additional file 6 :Table S3)
as recommended by National Research Council (NRC,
1998) and were housed in Jicheng Animal Husbandry
Co., Ltd. Piglets in the semi free-grazing farm (FF) group
were fed with compound feed with seasonal pastures
and vegetables (Additional file 6 :Table S4) and were
housed in Hangzhou Sun Commune. Faecal samples in
the DF group and FF group were collected from each
animal at 7 and 10 months of age respectively. Feces was
collected rectally in each animal by using a sterile cotton
swab wet, and then the tube with feces were rapidly fro-
zen in liquid nitrogen and stored at — 80 °C until DNA
extraction. Animals in the DF group or the FF group
were slaughtered in the fixed-point slaughter house ac-
cording the operating procedures of pig slaughtering
(GB/T 17236-2008) with approximately 100kg body
weight at 7 or 10 months of age, respectively. Approxi-
mately 1 m® back fat or abdominal fat was collected
from the junction of the sixth and seventh thoracic ver-
tebra. Approximately 1 m> leaf fat was collected from
perirenal fat. Exactly 5-cm-thick longissimus dorsi
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muscle from the last third or fourth rib backwards was
collected from the carcass within 30 min after exsan-
guination. One piece of longissimus dorsi muscle was
placed in the RNA locker immediately for RNA isola-
tion. The other piece of longissimus dorsi muscles, back
fat, abdominal fat and leaf fat were fixed in 10% formalin
for histology.

Paraffin section

The muscle and fat samples were placed into 10% for-
maldehyde (pH7.4) for 12-24h and then dehydrated
and subjected to routine haematoxylin eosin staining.
The muscle tissue was randomly selected at 5-10 visual
fields at 100x (intramuscular fat area measurement) or
200x magnification (muscle fibre number and single
muscle fibre area measurement) visual field. Then, the
intramuscular fat area and single muscle fibre area were
measured using Image-ProPlus 5 image analysis soft-
ware. The adipose tissue was randomly selected at five
visual fields at a 50x magnification visual field. Then, the
Image-ProPlus 5 image analysis software was used to
measure the adipocyte diameter of each sample (15 cells
per specimen), as well as the area of the single fat.

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was extracted according to the RNAiso
Plus instructions. According to the PrimeScript® RT-
reagent Kit manual, the total RNA was used for first
strand ¢cDNA synthesis. The primers used are shown
in Table S5. Real-time PCR was carried out with ABI
plus one (Life Technologies, Carlsbad, CA, USA) by
using SYBR Premix Ex TagTM. Two-step PCR ampli-
fication was performed under the following condi-
tions: 95°C for 30s, 40cycles of 95°C for 5s and
62°C for 34s. Melting curve analysis was performed
to verify the single-product generation at the end of
the assay. Standard curves were generated based on
the data obtained from the standards of the 2~2~° di-
lution series template. The amplification efficiency
ranged from 90%~ 110%. Therefore, the relative level
of gene expression between different groups can be
calculated using the 2°°““* method.

DNA extraction

Total genomic DNA from was extracted using the hexa-
decyltrimethylammonium bromide method. The con-
centration of the extracted DNA was measured using 1%
agarose gel electrophoresis. DNA purity was checked
using Nano Photometer® spectrophotometer (IMPLEN,
CA, USA). OD260/0OD280~1.8 was a qualified DNA
sample. Then, the sample was diluted to 1ng/uL by
using sterile water.
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DNA library construction and sequencing

Exactly 1 ug DNA per sample was used as input material
for the DNA sample preparations. Sequencing libraries
were generated using NEBNext® UltraTM DNA Library
Prep Kit for Illumina (NEB, USA) following the manu-
facturer’s recommendations, and index codes were
added to attribute sequences to each sample. Briefly, the
DNA sample was fragmented by sonication to a size of
350bp. Then, DNA fragments were end-polished, A-
tailed and ligated with the full-length adaptor for Illu-
mina sequencing with further PCR amplification. At last,
PCR products were purified (AMPure XP system), and
libraries were analysed for size distribution in an Agi-
lent2100 Bioanalyzer and quantified using real-time
PCR. Index-coded samples were clustered on a cBot
Cluster Generation System according to the manufac-
turer’s instructions. After cluster generation, the library
preparations were sequenced on an Illumina HiSeq plat-
form, and paired-end reads were generated.

Quality control of reads

Clean data were obtained from raw data through quality
control by using Readfq (V8, https://github.com/cjfields/
readfq). To prevent host DNA contamination, it needs
to be compared with the host database to filter out the
reads that may originate from the host by using SoapA-
ligner software (soap2.21, https://omictools.com/soapa-
ligner-tool) with parameters [66] ‘identity 290%, -1 30, -v
7, -M 4,-m 200,-x 400’.

De novo assembly of the short reads. Clean data were
assembled using the SOAPdenovo software [67] (V2.04,
https://omictools.com/soapdenovo-tool) with parameters
[68] ~-d 1, -M 3, -R, -u, -F, -K 55. Scaftigs without N
were obtained by interrupting assembled scaffolds from
the joint of N. Unused reads were obtained by mapping
clean data against scaftigs by using SoapAligner software
(soap2.21) with parameters ‘identity >90%, —-m 200 -x
400’ [53]. Then, unused data were pooled using SOAP-
denovo software (V2.04) with the same parameters of
single sample [69]. Mixed assembled scaffolds were split
into scaftigs, and scaftigs of lengths less than 500 bp
were discarded.

Gene prediction and gene abundance profiling

MetaGeneMark(V2.10,  http://topaz.gatech.edu/Gene-
Mark/) was used to predict ORFs in scaftigs from the
single or mixed sample (>=500bp) [69]. Information
was screened using a 100 nt cut-off with default parame-
ters. Non-redundant initial gene catalogue was obtained
using the CD-HIT software (V4.5.8, http://www.bioinfor-
matics.org/cd-hit/) from predicted ORFs with parame-
ters -c 0.95, -G 0, -aS 0.9, -g 1, -d 0’ [70]. SoapAligner
(soap2.21) was used to align paired-end clean data
against the initial gene catalogue with parameters ‘-m


https://github.com/cjfields/readfq
https://github.com/cjfields/readfq
https://omictools.com/soapaligner-tool
https://omictools.com/soapaligner-tool
https://omictools.com/soapdenovo-tool
http://topaz.gatech.edu/GeneMark/)
http://topaz.gatech.edu/GeneMark/)
http://www.bioinformatics.org/cd-hit/)
http://www.bioinformatics.org/cd-hit/)

Qi et al. BMC Microbiology (2019) 19:181

200, —x 400, identity =95’ [68]. Unigenes were obtained
from paired-end reads by removing genes with reads <2.
We counted the gene abundance according to both
numbers of paired-end reads and gene length, which
was calculated as follows:

Tk 1
Ly Iy
L;

G

i=1

Core-pan gene analysis, correlation analysis and Venn
diagram of gene numbers were employed based on the
gene abundance in each sample.

Population stratification

Bacteria, fungi, archaea and viruses in the non-redun-
dant (NR) library (Version: 20161115, https://www.ncbi.
nlm.nih.gov/) of NCBI were used as reference database,
and DIAMOND software (V0.7.9, https://github.com/
bbuchfink/diamond/) [71] was used in sequence blast
with parameters ‘blastp,-e le-5". Results of evalue >
minimum evalue*10 were removed [72]. To avoid mul-
tiple alignment results, we used the LCA (https://en.
wikipedia.org/wiki/Lowest_common_ancestor) was used
to identify species annotation of the sequence. Then, the
species abundance and gene numbers of the six-level
taxonomic classification from phylum to species of each
sample were obtained. Then, Krnoa analysis [73], relative
abundance profile, heat map of abundance clustering,
PCA (R ade4 package, Version 2.15.3) [74] and NMDS
(R vegan package, Version 2.15.3) [75]. Dimension re-
duction analysis was conducted based on the abundance
of each classification. Difference between groups were
found using ANOSIM analysis (R vegan package, Ver-
sion 2.15.3). Differential species were found using Meta-
stat and LEfSe statistical analysis. The p value of
Metastat statistical analysis was obtained using permuta-
tion test of each classification between groups; then, the
q value was obtained by the correcting p value by using
the Benjamini and Hochberg false discovery rate method
[76]. LEfSe software was used for LEfSe statistical ana-
lysis with the LDA score 2 [77].

Gene functional classification

DIAMOND software (V0.7.9) was used to blast unigenes
with function databases with parameters ‘blastp, -e le-5".
The function databases included the KEGG database
(Version 201,609, http://www.kegg.jp/kegg/). Best blast
hit (one HSP > 60 bits) from above blast was selected for
subsequent analysis. The relative abundance of different
function levels (five levels in KEGG database) was
counted. Based on the abundance of different function
levels, the numbers of annotated gene, relative abun-
dance profile and heat map of abundance clustering
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were obtained, and PCA and NMDS dimension reduc-
tion analysis, ANOSIM analysis, metabolic pathway ana-
lysis and Metastat and LEfSe statistical analysis were
carried out.

Correlation between the phenotypic data and micro-
bial abundance. The correlation and p value between the
phenotypic data and microbial alpha diversity or species
were obtained using the Spearman correlation model.
Windrose figures were constructed using the correlation
data between phenotypic data and the top 35 genus or
species abundance. Count value in figure was correlation
coefficient 7. r<0 indicates significant negative correl-
ation, whereas r >0 indicates significant positive correl-
ation. The absolute value of ‘r was found in the
windrose figure. p<0.05 was considered statistically
significant.

Statistical analysis

Data of the paraffin section and real-time PCR were
expressed as mean + standard deviation. Statistical differ-
ences between groups were determined by Analysis of
Variance with Duncan’s multiple comparison. p < 0.05
was considered statistically significant.

Additional files

Additional file 1: Figure S1. Observed number of non-redundant
genes of the 10 total samples. (TIFF 168 kb)

Additional file 2: Figure S2. Relative abundances of the bacteria in the
top 10 species level taxa of the DF and FF groups. (TIF 275 kb)

Additional file 3: Figure S3. Functional classification of annotated NR
genes by using KEGG analysis. (TIF 304 kb)

Additional file 4: Table S1. Total statistic information of the
metagenome sequencing by using HiSeq lllumina platform from 10
faecal samples. (XLS 57 kb)

Additional file 5: Table S2. Absolute abundance of unigenes in species
level. (XLS 1105 kb)

Additional file 6: Table S3. Composition of the basal diets in the
traditional feeding farm. Table S4. Composition of the basal diets the
semi free-grazing farm. Table S5. Primer sequences (5'to 3') used for the
quantitative polymerase chain reaction. (DOC 59 kb)
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