
RESEARCH ARTICLE Open Access

Comparative diversity of microbiomes and
Resistomes in beef feedlots, downstream
environments and urban sewage influent
Rahat Zaheer1 , Steven M. Lakin2, Rodrigo Ortega Polo1, Shaun R. Cook3, Francis J. Larney1, Paul S. Morley2,
Calvin W. Booker4, Sherry J. Hannon4, Gary Van Domselaar5, Ron R. Read6 and Tim A. McAllister1*

Abstract

Background: Comparative knowledge of microbiomes and resistomes across environmental interfaces between
animal production systems and urban settings is lacking. In this study, we executed a comparative analysis of the
microbiota and resistomes of metagenomes from cattle feces, catch basin water, manured agricultural soil and
urban sewage.

Results: Metagenomic DNA from composite fecal samples (FC; n = 12) collected from penned cattle at four
feedlots in Alberta, Canada, along with water from adjacent catchment basins (CB; n = 13), soil (n = 4) from fields in
the vicinity of one of the feedlots and urban sewage influent (SI; n = 6) from two municipalities were subjected to
Illumina HiSeq2000 sequencing. Firmicutes exhibited the highest prevalence (40%) in FC, whereas Proteobacteria
were most abundant in CB (64%), soil (60%) and SI (83%). Among sample types, SI had the highest diversity of
antimicrobial resistance (AMR), and metal and biocide resistance (MBR) classes (13 & 15) followed by FC (10 & 8), CB
(8 & 4), and soil (6 & 1). The highest antimicrobial resistant (AMR) gene (ARG) abundance was harboured by FC,
whereas soil samples had a very small, but unique resistome which did not overlap with FC & CB resistomes. In the
beef production system, tetracycline resistance predominated followed by macrolide resistance. The SI resistome
harboured β-lactam, macrolide, tetracycline, aminoglycoside, fluoroquinolone and fosfomycin resistance
determinants. Metal and biocide resistance accounted for 26% of the SI resistome with a predominance of mercury
resistance.

Conclusions: This study demonstrates an increasing divergence in the nature of the microbiome and resistome as
the distance from the feedlot increases. Consistent with antimicrobial use, tetracycline and macrolide resistance
genes were predominant in the beef production system. One of the feedlots contributed both conventional (raised
with antibiotics) and natural (raised without antibiotics) pens samples. Although natural pen samples exhibited a
microbiota composition that was similar to samples from conventional pens, their resistome was less complex.
Similarly, the SI resistome was indicative of drug classes used in humans and the greater abundance of mercury
resistance may be associated with contamination of municipal water with household and industrial products.
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Background
Antimicrobials have played an important role in control-
ling bacterial infectious diseases in both humans and an-
imals. In livestock, antimicrobials are used mainly for
the treatment and prevention of disease as label claims
for their use at sub-therapeutic levels to promote growth
are being removed [1]. The worldwide consumption of
antimicrobials in food animal production has been re-
ported at ≥57 million kg with a projected increase to
≥95 million kilogram by 2030 [2]. In North American
beef feedlots, a number of antimicrobials are adminis-
tered to cattle, with macrolides and tetracyclines ac-
counting for the majority of antimicrobial use (AMU)
[3]. Bacteria residing in the bovine gastrointestinal tract
may become resistant to these antibiotics and, once re-
leased into the environment, they may transfer anti-
microbial resistance (AMR) genes (ARGs) to other
bacteria including potential human pathogens [4, 5].
Furthermore, residual antibiotics may enter the environ-
ment through runoff from manure, where they may
select for antimicrobial resistant bacteria [6, 7]. Conse-
quently, it is not surprising that for almost every live-
stock-associated bacterial pathogen, resistance to at least
one antimicrobial from each antimicrobial class has been
reported [8].
Antimicrobials are not fully metabolized when admin-

istered to either humans or livestock. Gao et al. [9] esti-
mated that up to 90% of many of the antibiotics used in
livestock are excreted in urine or feces. Sewage treat-
ment plants (STP) receive waste streams that contain a
mixture of nutrients, metals, antibiotics, and industrial/
household chemicals from a variety of sources [10]. An-
timicrobials, antimicrobial resistant bacteria (ARB) and
ARGs are frequently detected in STP [11, 12] and as a
result these facilities have been identified as a potential
hotspot for antibiotic resistance, where ARGs spread
among bacteria via horizontal gene transfer. These bio-
logical pollutants are also released into the environment
in STP effluent [13–15].
Knowledge of the microbiome and resistome within

and between the environmental interface between
animal production systems and urban centres is lacking.
Information gained from an understanding of this inter-
face could help support more prudent use of antimicro-
bials in livestock, more specifically, in defining targeted
treatment options and distinguishing between essential
and non-essential AMU to ensure safer food production
practices.
Culture independent techniques, such as next gener-

ation sequencing (NGS) can be used to quantitatively
assess the microbiota composition and its associated
resistome. Advances in high-throughput NGS technolo-
gies have enabled rapid understanding of overall micro-
bial ecology as well as occurrence and diversity of ARGs

from diverse environments. Whole-metagenome shot-
gun analyses are accomplished by unrestricted sequen-
cing of the genomes of most microorganisms present in
a sample, including currently uncultured organisms. The
present study describes the microbial metagenomes and
resistomes of a variety of environmental samples from
beef production to human-associated wastes (urban sew-
age). We utilize a NGS approach to inform surveillance
as well as to improve the current understanding of the
microbial community structure, the prevalence of ARGs
within these microbial communities and to investigate
overlaps between various components of the environ-
mental spectrum.

Results and discussion
All 35 samples (FC = 12, CB = 13, soil = 4 and SI = 6)
were sequenced to an average of ~ 54 million reads per
sample. This sequencing depth was found appropriate,
as indicated by the saturation of novel taxa and ARGs in
our previous study which investigated the microbiota
and resistome of bovine fecal samples [16]. The average
read quality score for samples in the present study
ranged from 33 to 37, indicative of high quality reads.
Of the total number of reads generated, 94–97% sur-
vived quality filtering and trimming across all datasets.

Each sampling group exhibited distinct composition of
microbiota
Across all samples 5.9% of total reads aligned to bacter-
ial and archaeal species, representing 816 genera and 35
phyla. The proportion of prokaryote-associated (bacteria
and archaea) raw (trimmed and quality filtered) reads
arising from the total metagenomic raw reads varied
among various sample types. Sewage influent (SI) had
the highest number of prokaryote-associated reads,
followed by soil, catch-basin (CB) water, and bovine
feces (FC). For SI, 24.5% of the sequence reads were as-
sociated with bacteria and archaea, whereas soil, CB and
FC had a much smaller proportion of prokaryote-associ-
ated reads (3.4, 4.5 and 2.1%, respectively), as revealed
by the taxonomic classification via Kraken. The majority
of remaining read fractions in these samples were
uncharacterized, most likely originating from uncharacter-
ized prokaryotes as well as eukaryotic organisms including
algae, plants, small eukaryotes, avian or mammalian
sources that are absent from the Kraken database. The
comparatively high proportion of prokaryote-associated
reads in SI is reflective of the very high density (2–10 g
dry weight/L) of microorganisms within sewage [17].
Comparison of normalized data across all samples also
supported the largest abundance of microbial taxa reads
in SI, being 6.2, 6.7, and 2.4 fold higher than in FC, CB
and soil, respectively (Fig. 1).
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In FC, Firmicutes were the most abundant (39%)
followed by Bacteroidetes (32%), Proteobacteria (11%),
Actinobacteria (7%), Spirochaetes (5%) and Euryarch-
aeota (4%). These six phyla constituted 98.5% of the FC
microbial community with Firmicutes and Bacteroidetes
accounting for over 70% of the community. Predomin-
ance of Firmicutes and Bacteroidetes in livestock
gastrointestinal tract microbiota is in agreement with
other studies [18–21]. The most abundant classes of Fir-
micutes and Bacteroidetes in FC included Clostridia and
Bacteroidia, respectively (Fig. 2) corresponding to 59% of
prokaryotic reads, whereas Bacteroidaceae, Prevotella-
ceae, Methanobacteriaceae, Flavobacteriaceae, Clostridia-
ceae, Enterobacteriaceae were among the most abundant
families (relative abundance range 12.6–7.5%). The five
most predominant bacterial genera included Prevotella,
Bacteroides, Treponema, Bifidobacterium and Clostrid-
ium (Table 1). Methanobrevibacter was the most preva-
lent genus from the archaeal phylum Euryarchaeota
(Table 1). This genus has been previously characterized
as hydrogenotrophic rumen methanogens [22]. Metha-
nobrevibacter accounts for 80–85% of all methanobac-
terial reads in the cattle fecal methanogenic community
[21, 23]; it is also the dominant methanogen in the
rumen [24, 25].

The catch basin water community was dominated by
Proteobacteria (67.4%), Actinobacteria (9.3%), Firmicutes
(7.9%), Bacteroidetes (5.9%), Euryarchaeota (3.3%) and
Spirochaetes (3.3%), accounting for 97% of prokaryotic
microbiota reads (Fig. 1). Bacterial classes ɣ-proteobac-
teria and β-proteobacteria were abundant (Fig. 2) and
constituted 45% of the prokaryotic reads, while Rhodo-
cyclaceae and Moraxellaceae were the most abundant
families in CB. Within these families, Thauera and
Psychrobacter were the most abundant Proteobacterial
genera in catch basin samples (Table 1). Psychrobacter
are salt-tolerant, chemoheterotrophic, cold-adapted
bacteria, which oxidize ammonia in high concentration
under saline conditions [26]. Species from genus
Thauera are frequently found in wet soil and polluted
freshwater and have been considered important for
industrial wastewater treatment systems as they play a
key role in refractory aromatic hydrocarbon (e.g., indole
and toluene) degradation under anaerobic and denitrify-
ing conditions [26, 27]. Thauera were also observed in
sewage influent. Occurrence of species from this genus
in these polluted waters indicates the potential presence
of aromatic hydrocarbons in these environments and as
a result these functional species are of great significance
for wastewater management.

Fig. 1 Abundance and relative proportion of microbial phyla in sample types. Abundance (a) is a measure of read counts aligning to various
phyla (indicated by different colors) and normalized across samples whereas proportion (b) indicates percentage of each phylum in a sample
type. The category ‘Other’ includes the rest of the low abundance phyla for each sample type
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The soil microbial community was predominated by
Proteobacteria (60.3%) and Actinobacteria (35.2%), con-
stituting 95.5% of the prokaryotic microbiota (Fig. 1).
North American and European agroecosystems studies
have also identified a high abundance of Proteobacteria
and Actinobacteria associated with rhizosphere and
rhizoplane [28, 29]. Wang et al. [30] have reported a 27
and 14% abundance of these two phyla respectively, in
Chinese soils, followed by Acidobacteria (14%), Chloro-
flexi (8%) and Firmicutes (6%). In our soil samples, Bac-
teroidetes was the third most abundant phylum (1.6%),
whereas Acidobacteria, Chloroflexi and Firmicutes were
only present at 0.45, 0.41 and 0.13%, respectively. Lower
abundance of Acidobacteria, and higher abundance of
Proteobacteria, Actinobacteria, Firmicutes and Bacteroi-
detes has been associated with healthy agricultural soils
with higher available phosphorus content [30]. Soil
microbial communities can be highly diverse due to
heterogeneity of soils, manure application as well as the

nature of the rhizosphere [31]. In our soil samples,
plant-associated species belonging to family Rhizobea-
ceae (α-Proteobacteria) were most prevalent (Table 1).
Healthy soils generally have higher abundances of bene-
ficial microbes including nitrogen-fixing and plant
growth-promoting bacteria [32]. Interestingly, in present
study, the soil collected 6months after manure applica-
tion had a higher number of Bacteroidetes (> 5 fold) and
Euryarchaeota (> 3 fold) compared to non-manured and
not recently manured fields. This likely reflects the
presence of residual fecal bacteria from manure. Lupwayi
et al. [33] also reported a higher proportion of Bacteroi-
detes in soils receiving composted beef feedlot manure
in southern Alberta. While acknowledging the low
number of soil samples originating from two agricultural
fields in the vicinity of feedlot C over two years, inclu-
sion of these samples in the analysis presents a snapshot
of the influence of the feedlot manure on the soil micro-
biota and resistome.

Fig. 2 Heat map of prevalent taxonomic classes across all samples grouped by phyla. As described in methods section, fecal composite (FC)
samples were obtained from four feedlots a, b, c and d. The subscript letters C and N denote conventional and natural practices, respectively
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Proteobacteria (83.5%), Bacteroidetes (10.4%) and Fir-
micutes (3.8%) represented the majority of sewage mi-
crobes with Acinetobacter (29%) and Aeromonas (16%)
being the most abundant of the Proteobacteria. Others
have found Proteobacteria to be among the most
abundant bacteria in urban wastewater followed by Bac-
teroidetes and Firmicutes [34]. Acinetobacter johnsii and
Acinetobacter baumannii accounted for the majority of
the Acinetobacter identified. The former species rarely
causes human infections, whereas the latter is an emer-
ging hospital pathogen. In addition to being frequently
recovered from patients during hospital outbreaks, A.
baumannii have been reported in untreated as well as in
biologically or chemically treated hospital and municipal
wastewaters [35–38]. Our normalized species richness
data indicated that SI harbored on average 2000 or more
A. baumannii sequence reads as compared to FC, CB
and soil (only 4, 15 and 1 respectively; Additional file 1)
This suggests that the risk to human health from A.
baumannii is far greater with SI than with the other
environmental samples examined. In addition to Acine-
tobacter spp., the most abundant bacterial taxa detected
in SI by others are Campylobacteraceae (Arcobacter
spp.), Aeromonadaceae and Carnobacteriaceae [39–42].
Consistent with these studies Arcobacter and Aeromonas
were among the most abundant genera in SI samples in
our study, followed by Acinetobacter. Among Aeromonas
spp. A. hydrophila, A. media, A. veronii, A. salmonicida,
and A. schubertii were prevalent in SI. Most of these
species are emerging human pathogens and have been
associated with gastroenteritis, wound and soft tissue in-
fections, necrotizing fasciitis, urinary tract infections,
pulmonary infections in cystic fibrosis, and septicemia
[43, 44]. Aeromonas spp. produce an array of virulence
factors including cytolytic toxins with hemolytic activity

and enterotoxins. Prevalence of these pathogens in FC,
CB and soil was negligibly low as compared to SI.
Although 793 of the total 816 prokaryotic genera

detected across all samples were represented in all sam-
ple types, their relative distribution was very unique
between matrices (Fig. 2; Additional file 1). The non-
metric multidimensional scaling (NMDS) plot formed
distinct sample type-specific clusters (Fig. 3) with sig-
nificant separation at all taxa levels (ANOSIM R: 0.9–
0.98, P < 0.05; Fig. 3). As expected, the distinct micro-
bial composition of each sample matrix appears to be a
reflection of the unique composition of nutrients, phys-
ical, physicochemical and other biotic and abiotic fac-
tors within each niche.
The SI microbiome exhibited the highest richness of

microbial genera as indicated by the number of unique
taxonomic (genus) assignments corresponding to discov-
ery of new species, but the lowest α-diversity and even-
ness as depicted by low inverse Simpson and Pielou’s
evenness indexes respectively, across all sample types
(Fig. 4). Wastewater biosolids are a rich source of nitro-
gen, phosphorus, potassium and organic matter as well
as micro-nutrients [45]. This nutrient-rich environment
may allow certain resident bacteria to thrive and there-
fore promotes richness over diversity. Although the me-
dian α-diversity of phyla was higher for fecal samples
than for any other matrices, soil had the largest (p <
0.05) median α-diversity at the lower taxonomic ranks.

Distinct resistome composition of each sample matrix
with predominance of tetracycline resistance in the beef
production system
Across all samples, ~ 0.12% of total reads aligned to 35
mechanisms of antimicrobial resistance (AMR), coding
resistance to 15 classes of antimicrobials, and ~ 0.04% of

Fig. 3 Comparative microbiota and resistome compositions of various sample types. Non-metric multidimensional scaling (NMDS) ordination plot
indicate microbiota and resistome composition differences between fecal, catch basin, soil and wastewater (SI) samples at (a) genus (ANOSIM
P = 0.001, ANOSIM R = 0.9804) and (b) AMR group (ANOSIM P = 0.001, ANOSIM R = 0. 9767) levels
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all reads corresponded to 15 classes of metal and biocide
resistance (MBR) spanning 32 mechanisms. The propor-
tion of AMR-MBR associated raw reads to the corre-
sponding total reads was highest in conventional FC
(0.25%) followed by SI (0.12%), CB (0.03%) and soil
(0.002%), indicating a high prevalence of resistance genes
in bovine feces. The proportion of AMR-MBR associated
reads to the corresponding prokaryote-microbial reads
was highest in conventional FC (11.3%) followed by CB
(0.8%), SI (0.5%) and soil (0.07%) indicating that a higher
fraction of bacteria and archaea in bovine feces har-
boured ARGs compared to other sample types. Com-
parison of normalized data across all samples also
supported the larger abundance of ARG-associated reads
in FC compared to soil, CB and SI (Fig. 5).
At the class level, tetracycline resistance was the most

prevalent (82%) in FC followed by macrolide (14%), ami-
noglycoside (2.2%) and β-lactams (1.3%), respectively.
Sequence reads aligned to 120 ARG and MBR gene
(MBRG) groups collectively, belonging to 41 mecha-
nisms within 18 classes. The tetracycline resistance
ribosomal protection protein mechanism was most
abundant (81%) predominantly represented by: TETQ,>
TETW,> TET40,> TETO,> TET32 > TET44. Other
tetracycline resistance genes including TET(X, M, A, B,
G, 36, Z) were also present, but in lower abundance. Re-
sistance to macrolides followed tetracycline resistance
abundance, conferring lincosamide nucleotidyltrans-
ferases and efflux pump genes belonging to the LNUC
and MEFA groups, respectively (Additional file 1). Previ-
ous studies reported a high prevalence of tetracycline re-
sistance genes in cattle feces, with ~ 98% of reads
aligning to ribosomal protection proteins represented in
TETQ and TETW groups [46–48].
Overall, the CB resistome was represented by 84 ARG

and MBRG groups. Similar to FC, in the CB resistome

tetracycline resistance (59%) was the most abundant
followed by resistance to macrolide (17.5%), aminoglyco-
sides (7.2%) β-lactams (4.2%), sulfonamides (3.3%), mer-
cury (2.8%) and multidrug resistance (MDR; 2.8%) (Fig.
5). This likely reflects the surface runoff of manure-asso-
ciated tetracycline resistant ARB from feedlot pen floors
into the catch basins. Miller et al. [49] quantified a run-
off depth of 54 mm during a major rainfall event at a
southern Alberta feedlot. Feedlots A, B, C and D shared
24, 31, 28 and 38 ARG groups between FC and their as-
sociated CB, respectively. The shared ARG groups were
members of the tetracycline, macrolide and aminoglyco-
side resistance classes (Additional file 2). Among the
tetracycline resistance groups, TETQ, TETM, TETW,
TET36, TETT and TET44 were most prevalent. How-
ever, the relative abundance profile of these ARG classes
differed between CB and FC reflecting the niche specifi-
city of bacteria harboring these ARGs, considering that
Proteobacteria were predominant in the CB microbial
community as compared to Firmicutes and Bacteroidetes
in FC. Among macrolide resistance ARG groups, MEFA,
MEFB and MSR were more abundant in CB. Interest-
ingly, MEFB was not detected in FC, but was present in
SI samples. This gene has been found to be generally
hosted by Proteobacteria [50], whereas MEFA and MSR
genes have been associated with a wide variety of enteric
bacterial phyla including Proteobacteria, Bacteroidetes,
Actinobacteria and Firmicutes [51]. The high relative
abundance of these genes could reflect their common
presence in enteric bacteria, and/or due to co-selection
with other ARGs as many tetracycline ARGs are linked
to macrolide ARGs through common mobile genetic ele-
ments [52].
In North America, the use of in-feed tetracycline and

macrolides to prevent liver abscesses and other bacterial
diseases is a common management strategy in beef cattle

Fig. 4 Quantitative comparisons of microbiota between various sample types. Richness (a) as indicated by number of unique taxa (genus
discovery) assignments, α-diversity (b) as measured through inverse Simpson index, and evenness (c) of microbiota as Pielou’s evenness index at
the genus level among various sample matrices are depicted by box-and-whisker plots. Boxes represent the interquartile ranges (upper line is the
75% quantile, and the lower line is the 25% quantile), the lines inside the boxes are the medians, the whiskers span the range of the 25%
quantile or the 75% quantile plus 1.5 times the interquartile range, and dots are outliers
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production. Macrolides are also used to treat and man-
age Bovine Respiratory Disease (BRD). Conventional
feedlots in the present study administered ionophores in
combination with chlortetracycline or tylosin in-feed on
a daily basis throughout the feeding period. Occasionally,
therapeutic doses of antimicrobials were also
administered to clinically ill cattle within a pen. It is ac-
knowledged that the physical presence of a resistance
gene may not always be interpretable as functional pres-
ence in the absence of gene expression data. However,
the presence of an abundant gene is generally associated
with some degree of its functional expression within a
particular environment. The high prevalence of both
tetracycline and macrolide resistance gene classes in FC
and CB, therefore is likely a reflection of the ubiquitous
use of these antibiotics in beef production [53, 54].
Soil samples originating from agricultural fields adja-

cent to feedlot C had a small and unique resistome with
only 9 ARG groups belonging to 6 classes and did not
align with the feedlot resistome (Fig. 5; Additional file
1). Tetracycline ARG TETL was only found in recently
manured soil. Compared to soil, this ARG group had a
9–17 times lower prevalence in FC and CB and was
completely absent in SI. It may be that TETL harboring

bacterial species from manure survived better in soil
compared to other tetracycline ARG carrying bacteria.
Tetracycline was the most widely used antibiotic class
in the feedlots enrolled in this study. Glycopeptide
resistance associated genes were present across all soil
samples, but were absent from any other sample type.
Specifically, VanO-type regulators (VANRO) [55] were
the only glycopeptide-related genes detected in soil
samples. The vanO operon initially identified in Rhodo-
coccus equi [55], harbors a vanHOX resistance gene
cluster transcribed convergent to that of the vanS-vanR
two-component regulatory system. The vanO locus in
Rhodococcus equi exhibits similarity to genera Amycola-
topsis and the nitrogen fixing, root nodule-forming
Frankia [55] and to the teicoplanin producer Actino-
planes teichomyceticus [56]. The Amycolatopsis and
Actinoplanes were among the most prevalent genera in
soil samples from our study (Table 1). Other than
vanO-type regulators no other vancomycin resistance
operon-associated reads (Vancomycin D-alanyl-D-ala-
nine dipeptidase and/or ligase etc.) were detected,
which may be due to low homology or absence of the
vanO operon associated genes in soil bacteria. The sec-
ond most abundant ARGs in soil were multidrug

Fig. 5 Abundance and relative proportion of antimicrobial resistance gene (ARG) and metal and biocide resistant gene (MBRG) classes in different
sample types. Abundance (a) is a measure of read counts aligning to ARG-MBRG database and normalized across samples whereas proportion
(b) indicates percentage of each class in a sample type. The category ‘Other’ includes the rest of the low abundance ARG/MBRG classes for each
sample type
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resistance (MDR) efflux pump coding genes. The or-
ganisms with the largest number of MDR pumps are in
fact found in the soil or in association with plants [57].
Along with their potential roles as multidrug efflux
pumps, these are important for detoxification of intra-
cellular metabolites, bacterial virulence in both animal
and plant hosts, cell homeostasis, and intercellular sig-
nal trafficking [58]. Therefore, bacteria harboring MDR
pumps are not always associated only with high anti-
biotic load environments.
The SI from two urban municipalities in Southern

Alberta exhibited similar resistome composition. Across
all sample matrices SI had the largest number of ARG
groups (229) belonging to 28 classes of ARGs and
MBRGs. The most prevalent resistance classes in SI
included multi-drug resistance (28%), β-lactam (15.28%),
mercury (11.83%), tetracycline (11.16%) macrolide
(10.72%) and aminoglycoside resistance (5.78%) (Fig. 5).
Historically, mercury contamination of wastewater oc-
curs from a variety of sources including dental practice
wastes, lawn fertilisers, landfill leachate, paints, domestic
waste inputs, groundwater infiltration and storm water
drainage. Of the 2000 tonnes per year of global atmos-
pheric mercury that is discharged into the air and water
from anthropogenic sources, Canada’s atmospheric mer-
cury share account for <0.5% of the world’s emissions
(https://www.canada.ca/en/environment-climate-change/
services/pollutants/mercury-environment.html).
Among β-lactam ARGs, cephalosporin resistance

groups OXA and CTX were predominant, with 8 fold
more richness of OXA in SI compared to CB, and its
complete absence in FC and soil. Conversely, CTX was
71 fold more abundant in SI compared to FC and absent
in CB and soil (Additional file 1). QNRD, a plasmid-me-
diated quinolone resistance (PMQR) gene group was
only present in SI, likely reflecting its use in human
medicine. Among all sample types, only the SI resistome
contained a large variety of metal and biocide resistance
genes (Additional file 1). Recently, Gupta et al. [42] re-
ported a similar relative abundance of ARGs and a high
prevalence of heavy metal resistance genes (HMRGs) in
samples from a wastewater treatment plant.
Thirty four ARG groups belonging to tetracycline

(TET32, TET40, TET36, TETA, TETG, TETM, TETO,
TETS, TETQ, TETW, TETX,), macrolide (ERMA,
ERMB, ERMF, ERMG, LNUC, MEFA, MEL, MPHB,
MPHE, MSR, MSRD), aminoglycoside (ANT6, ANT9,
APH3’ APH3”, APH6, SAT, ANT3”), class A beta lacta-
mase (CFX & CARB), sulfonamide (SULII), mercury re-
sistance (MERA), and drug and biocide small multidrug
resistance (SMR) efflux pump (qacEΔ1) were shared in
FC & CB and SI sample groups at varying abundances
(Additional file 1). For tetracycline resistance TETQ,
TETW, TET40, TETO, TET32 and TET44 were among

the most abundant tetracycline ARG groups in beef
production. TETQ, TETW, TET40, TETO and TET32
have also been identified among the most prevalent
groups in fecal samples collected from humans in
China, Denmark and Spain [59, 60], suggesting their
high abundance in both cattle and human microbiota.
Studies across diverse agricultural ecosystems have also
demonstrated the ubiquity of tetracycline resistance
genes [61, 62].
Sewage wastewater is an effective source of fecal

bacteria and provides a unique opportunity to monitor
fecal microbes from large human populations without
compromising privacy [63]. Wastewater treatment
plants are considered hotspots of ARB and ARGs [15,
64, 65], as they receive wastewater from households
and hospitals where antimicrobials are administered.
The persistent selective pressure posed by sub-inhibi-
tory concentrations of antimicrobial residues in waste-
water combined with the high density [17] and diversity
[66] of microorganisms could promote horizontal
transfer of ARGs and HMRGs [67–69]. Co-selection of
ARGs and HMRGs in SI [70, 71] is favoured when
these genes are carried on the same mobile genetic
element [72]. Furthermore, leachate from wastewater
sludge disposed of in landfills may promote the spread
of ARGs into sub-soils and ground water [73].
A heat map of prevalent ARGs groups across all samples

grouped by AMR classes (Fig. 6) indicated that the majority
of AMR/MBR classes represented in FC, CB and SI resis-
tome were absent in soil. Tetracycline, β-lactam and multi-
drug efflux ARGs were present among all sample types,
whereas ARGs for fluoroquinolones, fosfomycin and
metronidazole were only present in SI (Additional file 1),
suggesting that use of these antimicrobials in humans se-
lected for these genes. The NMDS analysis showed that
the resistome from different sample types differed at the
AMR gene group (ANOSIM P = 0.001, ANOSIM R= 0.
98) level (Fig. 3B) and all other levels of ARG categories
(ANOSIM P < 0.05, R: 0.92–0.98) confirming the unique-
ness of resistome in each sample type. Across sample types,
5, 9, 98 and 5 resistance gene groups were uniquely present
in FC, CB, SI and soil respectively (Fig. 6; Additional file 2).
In addition to the microbial source and the microbial niche
specificity in different environments the distinct resistome
composition of each sample matrix could also be a reflec-
tion of the specific antimicrobial residues in each environ-
ment. Recent studies have identified a link between
community structure and antibiotic resistance gene dy-
namics [74]. Future metagenomics-based microbiome and
resistome studies that include bacterial genome assemblies
from deep metagenomics sequencing data will shed light
on the association of ARGs with their host bacteria.
The SI wastewater resistome exhibited the highest

richness of ARG mechanism types among sample
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types (Fig. 7). In addition to having high richness, SI
contained the most diverse and even resistome
among all sample types as indicated by high inverse
Simpson index of α-diversity and Pielou’s evenness
index (Fig. 7B), which reflects the diverse classes of
antimicrobials used in human medicine [75] as com-
pared to those used in cattle. After ionophores,
tetracycline and macrolides are among the most fre-
quently used antimicrobials in livestock [76, 77].

Natural feedlot FC samples harboured relatively similar
microbiota but smaller resistome compared to
conventional samples
The microbial composition of fecal samples from ‘nat-
ural’ and ‘conventional’ beef production systems had
comparable richness, diversity, and similar prevalence of
microbial phyla. The exception was that the composition

of natural FC microbiota had a lower abundance of two
bacterial (Bacteroidetes, Spirochaetes; log FC values −
0.7 and − 2.3 respectively; p < 0.05) and one archaeal
(Euryarchaeota; log FC value − 3.8; p < 0.001) phyla in
natural, compared with conventional FC. A 17-fold in-
crease in the methanogenic archaeal genus Methanobre-
vibacter (Phylum Euryarchaeota) was observed in the
samples originating from conventional pens as compared
to the natural pens (Additional file 1). Considering that
the animal diets between the natural and conventional
feedlot practices were similar, these differences in fecal
microbiota may be related to antimicrobial use. Given
the small number of samples compared between natural
and conventional feedlots, further studies are needed to
more thoroughly investigate this phenomenon.
The proportion of AMR-MBR associated raw reads to

the corresponding total reads for feedlot D conventional

Fig. 6 Heat map of prevalent antimicrobial resistant gene groups across all samples grouped by antimicrobial resistance class. As described in
methods section, fecal composite samples were obtained from 4 feedlots a, b, c and d. The subscript letters C and N denote conventional and
natural practices, respectively
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FC samples was higher (0.23%) compared to natural FC
samples (0.09%) indicating high prevalence of resistance
genes in bovine feces. The average number of ARG-asso-
ciated reads identified was higher for the conventional
FC compared to natural FC (Fig. 8). This trend was
observed across the top three abundant ARG classes
including tetracycline, macrolide and aminoglycoside
(p < 0.05). Regardless of higher ARG abundance in con-
ventional samples, diversity of resistomes between
natural and conventional pen samples was similar
(Additional file 1). Prior studies have concluded no
correlation between the presence of antimicrobial resist-
ance genes in the gut microbiota and the administration
of antibiotic feed additives [78–81]. However, in contrast
to our study, most of these studies either did not quan-
tify comparative prevalence of ARGs in production sys-
tems managed with and without using antimicrobials or
their comparative investigation was limited to a few bac-
terial species and ARGs. Single-colony subcultures do
not recover the actual AMR reservoir of a microbial
community.
Phenicol and sulfonamide were the only resistance

classes absent in the natural samples. Other groups be-
longing to tetracycline (TETA, TETB, TET32, TETW,
TET40, TET44, TETO, TETQ, TETX), macrolide
(MEFA, LNUC), aminoglycoside (APH3’, ANT6) and β-
lactams (CFX, ACI) resistance were present in both nat-
ural and conventional FC, whereas tetracycline (TETH,
TET36, TETZ, TETS, TETT), macrolide (APH6, MPHE,
MPHB, MSRD ERMA, MPHE, MEL, ERMR, ERMC,
ERMT), aminoglycoside (ANT3”), β-lactamase (CARB),
phenicol (FLOR, CMXAB) and sulfonamide (SULII)
were absent in natural samples, but were present in at
least one of three conventional samples. The ARG
groups MSR and TETM belong to macrolide and tetra-
cycline drug classes respectively, and were present in all

conventional FC pen samples from feedlot D, but were
absent in all natural pen samples. Assuming that the
presence of a gene means that it is being expressed, their
presence may be associated with the use of these drug
classes in the conventional feedlot. Genes belonging to
this family have been shown to be associated with trans-
posons and integrative conjugative elements [82, 83],
which may contribute to their ubiquitous prevalence
through intra- and inter-species mobility under the
added selective pressure of antimicrobial use. Consider-
ing that ARGs are ancient [84] their diverse presence in
natural production systems is not surprising. The occur-
rence of certain ARGs within bacterial populations is
likely a reflection of their association with fitness traits
that enable bacteria to persist within a particular envir-
onment. While antibiotic resistance and its spread by
horizontal gene transfer are ancient mechanisms, the
rate at which these processes occur and the proliferation
of certain ARG-harboring bacteria has increased tremen-
dously over the last decades due to the selective pressure
exerted through anthropogenic administration of antimi-
crobials. We argue that a holistic approach of identifying
ARGs and microbiota, and quantitating their prevalence
as undertaken in our study is necessary for informing
surveillance and to understand the evolution and trans-
mission of AMR in an environmental spectrum.

Conclusions
Consistent with its abundant use in feedlots, tetracycline
resistance was predominant in the beef production sys-
tem followed by macrolide resistance. Regardless of pos-
sessing a comparable composition of microbiota, fecal
samples collected from cattle raised without antibiotics
exhibited a smaller resistome as compared to fecal sam-
ples collected from conventionally raised cattle. This
study enhances our understanding of the microbial

Fig. 7 Quantitative comparisons of resistome between various sample types. Richness (a) as indicated by number of unique gene groups (gene
group discovery) assignments, α-diversity (b) as measured through inverse Simpson index, and evenness (c) of resistome as Pielou’s evenness
index at the resistance gene group level among various sample matrices are depicted by box-and-whisker plots. Boxes represent the interquartile
ranges (upper line is the 75% quantile, and the lower line is the 25% quantile), the lines inside the boxes are the medians, the whiskers span the
range of the 25% quantile or the 75% quantile plus 1.5 times the interquartile range, and dots are outliers
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composition and the occurrence of ARGs and identifies
common elements between those components of the en-
vironmental spectrum and indicates a distinct separation
of associated microbial communities. The specific resist-
ance profiles across various sample matrices were
dependent upon the microbial community composition
as well as differences in the nature and prevalence of
drug, metal and biocide contaminants.

Methods
Sample collection, DNA isolation, quantitation and quality
assessment
Composite fecal samples analyzed in this study (n = 12)
were collected from four different beef cattle feedlots (A,
B, C, D) within the province of Alberta Canada (sampling
locations in Additional file 6: Fig. S1). Feedlot sampling
was conducted from April – June 2014. The feedlots had
operating capacities of ∼15,000–30,000 head of cattle. Pro-
duction conditions were typical of western Canadian com-
mercial feedlots, with animals housed in open-air, clay-
floor pens arranged side-by-side with central feed alleys.
Feedlot D had two separate wings for hosting natural
(raised without antibiotics) and conventional (with

antibiotics) cattle pens. Samples in Feedlot D were col-
lected from both natural (n = 3) and conventional (n = 3)
pens. The rest of the fecal composite samples (n = 6 of a
total of 12) originated from conventional feedlots A, B and
C (Supplementary data_3), where antimicrobials were
used in a routine manner similar to the conventional wing
in Feedlot D. Within a feedlot, samples were collected on
the same day from pens containing 150–300 animals.
Sampling procedures were reviewed and approved by the
Lethbridge Research Centre Animal Care and Use
Committee (AC# 14–0029), and were conducted accord-
ing to the Canadian Council of Animal Care Guidelines.
Each composite fecal sample comprised ~ 20 g aliquots
collected from 20 individual fresh fecal pats within each
pen. Fecal samples were thoroughly mixed, placed
in 532 mL Whirl-Pak bags, flash frozen in liquid
nitrogen and stored at -80 °C. The antimicrobials used
in the sampled conventional feedlots are listed in
Additional file 4. The in-feed antimicrobials (iono-
phores, chlortetracycline or tylosin) were administered
to all cattle in the conventional feedlot throughout the
feeding period with the therapeutic parenteral drugs
administered to clinically ill cattle as required.

Fig. 8 Comparisons of microbiota and resistome between samples from conventional and natural feedlot pens. Relative abundance of microbial
phyla (a) and antimicrobial resistance classes (b) among fecal composite samples from conventional and natural feedlot pens are indicated as
read counts on the X-axis
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Natural resources legislation in Alberta stipulates that
feedlots must have catch basins (also known as retention
or runoff holding ponds) for containment of surface run-
off water from pens or manure storage areas generated
by rainfall or snowmelt. At each feedlot, surface water
was sampled from a catchment basin adjacent to the
sampled feedlot pens. Water samples (2, 3, 4 and 4 sam-
ples were collected from catch basins at feedlots A, B, C,
and D respectively, n = 13) (Additional file 3). One liter
of water was collected at a depth of 0.5 m into a 1.3 L
polyethylene bottle attached to a telescopic pole. Water
was collected from four different locations within the
catchment basin and the samples were combined to gen-
erate a single composite sample which was immediately
transferred to the lab on ice. To complement the cattle
production and associated environmental sampling, two
wastewater treatment plants in Southern Alberta (Add-
itional file 1: Fig. S1) provided sewage influent samples
(n = 6) to represent the urban element of the environ-
mental spectrum. One liter of sewage influent water was
collected from post-grit tanks of the wastewater treat-
ment facility.
Catchment basin or sewage influent water samples

(n = 13, up to 100mL each) were filtered through
0.45 μm pore size nylon filters (MilliporeSigma, Etobi-
coke, ON, Canada) using a water filtration manifold and
membrane filtration units (Pall Corporation Ltd. Missis-
sauga, Canada). The membrane filter was aseptically re-
moved from the filter base using sterile forceps and
stored at − 20 °C in a sterile 5 ml OMNI Bead Ruptor
tube (Cole-Parmer, Montreal, Canada) for later DNA ex-
traction. If the membrane filter became plugged, samples
were centrifuged at 10,000 x g in 50 mL tube to obtain a
pelleted biomass for DNA extraction.
Composite core soil samples (n = 4) were collected

from agricultural fields adjacent to feedlot C and in-
cluded the following sample types: field with no history
of manure application, from the same field as above but
~ 6months after manure application, and from a field
with a continuous history of manure application, but not
within 1–2 year prior to sampling. Soil samples were col-
lected twice over two years (see Additional file 3 for de-
tails). Soil sampling was carried out using a soil coring
kit (5 cm diameter) to a depth of 10 cm and samples at
10 points along a 100 m transect were collected and
pooled for each field to constitute a composite sample.
Metagenomic DNA isolation from the bovine fecal

samples was performed as previously described [16]. The
DNA was extracted from soil and pelleted biomass from
water samples in a manner similar to feces, with the
nylon filters subject to bead-beating and incubation
steps at 70 °C [16]. The DNA concentrations were mea-
sured using the Quant-iT™ PicoGreen (Thermo Fisher
Scientific, Mississauga,ON, Canada) and the DNA purity

was determined by measuring the ratios of absorbance
at 260/280 and 260/230 using a NanoDrop spectropho-
tometer (Thermo Fisher Scientific). The DNA extracts
with a 260/280 ratio between 1.8–2.0 and a 260/230 ra-
tio between 2.0–2.2 were regarded as pure. The presence
of PCR-inhibitors was also evaluated by amplifying the
16S rRNA gene using the universal 16S rRNA gene
primers 27F and 1492R [85] with undiluted and diluted
samples [16].

Metagenomic DNA sequencing and data processing
All library preparations, next generation sequencing and
quality control steps were performed by the McGill Uni-
versity and Genome Quebec Innovation Centre (Mon-
tréal, QC, Canada). TruSeq DNA libraries were prepared
and samples were run on an Illumina HiSeq2000 plat-
form, with 4 samples multiplexed per sequencing lane to
generate 2 × 100 base paired-end (PE) sequences [16]. As
a quality control for cluster generation and sequencing,
each HiSeq2000 sequencing lane was spiked with the
PhiX174 sensu lato virus genomic DNA library at ~ 1%
concentration of the total DNA loaded per lane.
Trimmomatic version 0.36 [86] was used to remove

adapter contamination and low quality reads using the
following parameters: trimming leading and the trailing
low quality or N bases (below quality 3) from sequence
reads; performing quality score filtering using a sliding
window at every four bases with a minimum Phred
score of 15; discarding sequences with < 36 nucleo-
tides; removing adapters supplied in the TruSeq3
adapter sequence file using a maximum of 2 mis-
matches in the initial seed, and clipping the adapter if
a match score of 30 was reached. Singleton reads,
whereby the other pair was discarded were also in-
cluded in downstream analysis.

Determination of the taxonomic and ARG composition of
microbiota
Taxonomic classification of microbiota and determin-
ation of AGR assignments for resistome analysis of the
sequence data were performed using previous methods
and parameters [16]]via a Galaxy Web server instance
(https://galaxyproject.org/) supported by the National
Microbiology Laboratory, Public Health Agency of
Canada (PHAC NML Galaxy). The Kraken taxonomic
classification tools (version 0.10.5 beta) and the resis-
tome analysis tools were integrated in a workflow to ob-
tain output for both the resistome and microbiome
analyses (workflow details in Additional file 6: Fig. S2).
In that workflow, the trimmed paired reads that passed

the quality assessment criteria from the pre-processing
step with Trimmomatic were aligned to the genome of
the enterobacteria phage phiX174 (GenBank accession
NC_001422.1) using the minimum exact match (MEM)
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algorithm of the Burrows-Wheeler aligner (BWA) [87].
The sorted alignments were then processed with samtools
[88] to filter out reads that did not map to the PhiX 174
bacteriophage genome. This was done using a flag value
of 4 to extract the unmapped reads in binary alignment
map (BAM) format. The paired reads that did not map to
PhiX 174 bacteriophage were then extracted from the
alignment using the bamToFastq tool of BEDTools [89].
The PhiX-filtered reads were then classified with Kraken v
1.2.3 [90] using the custom Kraken database bvfpa [16].
Kraken results were filtered using a confidence threshold
of 0.05 to select for taxonomic assignments with high
precision and sensitivity and thus high accuracy at the
genus rank [http://ccb.jhu.edu/software/kraken/MAN-
UAL.html; 16]. Resistome analysis was conducted in paral-
lel with the taxonomic classification as follows: Trimmed
paired reads were mapped to the ARG sequences in the
MEGAREs database v1.01 [91] combined with a custom
metal and biocide resistance (MBR) database (MegaBio;
P.S. Morley’s lab; Additional file 5) using BWA-MEM v
0.7.17.1 [87] alignments in BAM format followed by con-
version to sequence alignment map (SAM) format and
post-processing with the Coverage Sampler tool (https://
github.com/cdeanj/coveragesampler) using a 75% gene
fraction threshold and other parameters [15].

Data analyses
The microbiome and resistome data reports from individ-
ual samples were aggregated into corresponding matrices
using R for downstream analyses. Microbiome and resis-
tome matrices were normalized using the data-driven ap-
proach of Cumulative Sum Scaling normalization (CSS)
with the metagenomeSeqR package [92]. This method cal-
culates a scaling threshold that is the quantile after which
the distribution of raw counts among samples is invariant.
The method calculates the sum, up to and including that
quantile threshold for re-scaling. In this study, a CSS
normalization quantile threshold of 0.5 (the median) was
used. The cumulative sum scaling method has been previ-
ously reported for normalization of comparative metage-
nomic sequencing data from various environments [93].
CSS has greater sensitivity and specificity compared to
other normalization methods and it corrects the bias in
the assessment of differential abundance introduced by
total-sum normalization therefore improving sample clus-
tering [94]. Other methods such as rarefaction analysis
can lead to higher false discovery rate while comparing
differentially abundant genes [95]. The exploratory ana-
lyses performed in this study included: relative abundance
analysis for microbiome and resistome for all sample
matrix types, assessment of α-diversity and richness for all
sample types, ordination using nonmetric multidimen-
sional scaling (NMDS), and comparative visualization of
data with heatmaps and barplots. Observed richness, the

Shannon’s and Inverse Simpson’s α -diversity indices, and
Pielou’s evenness were calculated using functions of the
vegan package version 2.5.1 [96] and their distributions
were plotted for each sample type as box-and-whisker
plots using ggplot2 [97]. Heatmaps were constructed
using the log2 transformed CSS-normalized counts which
were plotted using white to orange gradient scale.
A zero-inflated Gaussian (ZIG) mixture model was ap-

plied to evaluate differentially abundant features in the
resistomes and microbiomes between sample matrix
types. This model has been reported to increase sensitiv-
ity and specificity when working with datasets with high
sparsity (abundance of zero counts). Ordination plots
were generated using NMDS and statistical inference
was made using the analysis of similarity (ANOSIM)
with the vegan R package version 2.5.1 [96]. ANOSIM
R-values ranged from 0 (total similarity) to 1 (total dis-
similarity). The Kruskal–Wallis test [98] was performed
to compare the distributions of richness and the Inverse
Simpson’s indices of α--diversity for both ARGs and mi-
crobial taxa among the various sample types. Nemenyi
post-hoc comparisons [99] were conducted for inci-
dences where differences were declared significant at
P < 0.05 as per the Kruskal-Wallis analysis. The R code
for the data analysis is available at https://github.com/
ropolomx/one_health_continuum.

Additional files

Additional file 1: Microbiota and AMR stats – Ten Excel sheets
describing raw and normalized read count data for microbiome and
resistome of studied samples. (XLSX 3121 kb)

Additional file 2: Shared and Unique ARG groups – Two Excel sheets
with lists of shared and unique ARG groups among various sample types.
(XLSX 17 kb)

Additional file 3: Sample metadata and sequencing stats – Two excel
sheets describing details of sample collection metadata and Illumina
HiSeq read counts of studied samples. (XLSX 12 kb)

Additional file 4: Antibiotics used in feedlots – Excel sheet describing
antibiotics used in the feedlots enrolled in present study and their mode
of administration. (XLSX 9 kb)

Additional file 5: Excel file describing accession and annotation details
of genes included in metal and biocide database, MegaBio. (XLSX 28 kb)

Additional file 6: Figure S1. Sampling locations in the province of
Alberta, Canada. Figure S2. Galaxy workflow for antimicrobial resistance
(AMR) and taxonomic profiling of metagenomics sequencing read data.
(DOCX 1067 kb)
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