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metabolite milieu of the gut
Yoshihisa Wakita1, Yumi Shimomura2, Yusuke Kitada2, Hiroyuki Yamamoto3, Yoshiaki Ohashi3

and Mitsuharu Matsumoto2*

Abstract

Background: 16S rRNA gene amplicon sequencing analysis (16S amplicon sequencing) has provided considerable
information regarding the ecology of the intestinal microbiome. Recently, metabolomics has been used for
investigating the crosstalk between the intestinal microbiome and the host via metabolites. In the present study, we
determined the accuracy with which 16S rRNA gene data at different classification levels correspond to the metabolome
data for an in-depth understanding of the intestinal environment.

Results: Over 200 metabolites were identified using capillary electrophoresis and time-of-flight mass spectrometry (CE-
TOFMS)-based metabolomics in the feces of antibiotic-treated and untreated mice. 16S amplicon sequencing, followed
by principal component analysis (PCA) of the intestinal microbiome at each taxonomic rank, revealed differences
between the antibiotic-treated and untreated groups in the first principal component in the family-, genus, and
species-level analyses. These differences were similar to those observed in the PCA of the metabolome. Furthermore, a
strong correlation between principal component (PC) scores of the metabolome and microbiome was observed in
family-, genus-, and species-level analyses.

Conclusions: Lower taxonomic ranks such as family, genus, or species are preferable for 16S amplicon sequencing to
investigate the correlation between the microbiome and metabolome. The correlation of PC scores between the
microbiome and metabolome at lower taxonomic levels yield a simple method of integrating different “-omics” data,
which provides insights regarding crosstalk between the intestinal microbiome and the host.
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Background
The metabolic system of the microbiome is intricate, and
the microbiome exerts a major influence on the host via
the metabolome. A previous study comparing the colonic
metabolome between germ-free (GF) and ex-GF mice har-
boring intestinal microbiota from specific pathogen-free
mice showed that the intestinal microbiome strongly
influenced the low-molecular-weight metabolites in the
colonic lumen [1]. Few studies have elucidated the rela-
tionship between the metabolome produced by the intes-
tinal microbiome and the host, although metabolomic

studies on intestinal microbiome have increased and the
association of the metabolome with the host have been
suggested [2]. Only few specific metabolites produced by
the intestinal microbiome have been reported to possess
bioactive functions; for example, acetic acid improves the
barrier function of intestinal epithelial cells [3], and bu-
tyric acid influences the differentiation of Treg cells [4].
With significant advancements in DNA sequencing tech-

nology, metagenomic analysis [5, 6] and 16S rRNA gene
amplicon sequencing analysis (16S amplicon sequencing)
[7, 8] have been developed over the last decade, which
allow comprehensive phylogenetic assessment of the intes-
tinal microbiome. Assessment of the human intestinal
microbiome has revealed that approximately 1200 species
inhabit the human intestine and that individual differences
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are significantly large [9]. Ecological studies on the intes-
tinal microbiome have elucidated the relation between the
Firmicutes/Bacteroidetes ratio and obesity [10] and re-
vealed the existence of enterotypes among countries [11].
The former study used phylum-level analysis, whereas the
latter used genus-level analysis. Furthermore, microbiome
researchers are now using database-independent oper-
ational taxonomic unit (OTU)-based methods [12–14].
Hence, most microbiologists use wide taxonomic levels for
studies that encompass comprehensive intestinal micro-
biome analyses and discuss the effects of the intestinal
microbiome on the host [7, 9–11, 14–26]. However, reli-
able reports describing the accuracy with which the 16S
amplicon sequencing data at different taxonomic classifica-
tion levels correspond to metabolome data are lacking.
Under these circumstances, we attempted to determine

appropriate classification levels to understand the relation-
ship between the intestinal microbiome and metabolome
using 16S amplicon sequencing. A decision regarding the
appropriate levels of taxonomic classification that correlate
with the differences in the metabolome will contribute to a
detailed understanding of the crosstalk between the intes-
tinal environment and host health. In this study, we ana-
lyzed feces derived from antibiotic-treated mice and
untreated mice using 16S amplicon sequencing and meta-
bolomics. These two omics data were analyzed using prin-
cipal component analysis (PCA) to identify the appropriate
taxonomic classification levels. In addition, we attempted
to integrate the PCA of both omics data to ascertain the
relationship between specific metabolites and bacteria.

Results
Fecal metabolome
>In this study, mice purchased from three breeders
were divided into two groups (antibiotic-treated group
and untreated group) and analyzed. The purpose of
using antibiotics was to mimic a dysbiosis-like intes-
tinal environment with less diverse microbiome,
which is a significantly negative alteration of the com-
position and function of the gut microbiome. In
addition, mice from three different sources were used
to obtain data from the normal intestinal microbiome,
in which the differences between individuals were
smaller than those between intestinal microbiomes
treated and not treated with antibiotics. Capillary elec-
trophoresis and time-of-flight mass spectrometry
(CE-TOFMS) identified 174, 154, 164, 148, 162, and
176 metabolites from the fecal metabolome of un-
treated mice obtained from Clea Japan Inc. (Clea),
Charles River Laboratories Japan, Inc. (Cr), and Japan
SLC Inc. (Slc), as well as their antibiotic-treated coun-
terparts (CleaA, CrA, and SlcA, respectively); 205 me-
tabolites were identified from the combined sample
(Additional file 1). The PCA results showed that the

metabolic profile was clearly divided into two groups—
antibiotic-treated mice and untreated mice—based on
PC1 scores (Fig. 1). In contrast, there were no clear differ-
ences among breeders between untreated mice, although
CleaA clusters were observed among antibiotic-treated mice
based on PC2 scores. Forty-one (~ 20%) out of 205 metabo-
lites were selected when the absolute value of principal
component loading (PCL) was > 0.7 (Additional file 2). One
hundred and twenty-one (~ 60%) metabolites were selected
when the absolute value of PCL was > 0.4. Statistical hy-
pothesis testing of the PCL in PC1 was performed, and the
correlation between the PC1 score and each metabolite
level was observed to be statistically significant at p < 2.43 ×
10− 4. The relative area of metabolites with an absolute PCL
value > 0.7 is shown in Additional files 3 and 4.

Fecal microbiome
There were no remarkable differences between total bac-
terial numbers per g of feces for the 6 groups (Fig. 2a).
Therefore, on the 4th day after the antibiotic treatment
was stopped, the effects of antibiotics on cell numbers of
the intestinal microbiome were limited. In total, 1,838,586
reads (13,943–35,878 reads per sample) were obtained by
16S amplicon sequencing and selection using the QIIME
pipeline. Blank data such as “g_” were interpreted as un-
identifiable data due to the possibility that no-named
OTUs are assigned same genus despite including several
unknown genera. The identification percentages (the
number of identified reads/the total number of reads) of
each taxonomic level—phylum, class, order, family, and
genus—were 99.9%, 99.8%, 99.8%, 82.9%, and 37.5%,

Fig. 1 Principal component analysis (PCA) of the profiling data from
the intestinal metabolome. C57BL/6 mice from three breeders were
divided into two groups: untreated mice (Clea, Charles river (Cr), and
Slc) and antibiotic-treated mice (CleaA, CrA, and SlcA). CE-TOFMS-
based metabolomics was performed
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respectively (Fig. 2b). The low percentage of identified
bacterial genera was probably because of the dearth of
identified bacteria in mice intestinal microbiome com-
pared to that in the human microbiome [27]. Moreover,
the percentage of assignable reads at the genus level was
82.9% including data pertaining to blanks, which was simi-
lar to identification percentage at the family level. Nine
phyla, 15 classes, 22 orders, 40 families, and 59 genera

were detected (Additional files 5, 6, 7, 8 and 9). Dif-
ferences between the antibiotic-treated and untreated
groups in PC1 were recognized in the family- and
genus-level analyses of the PCA result of each taxo-
nomic rank (Fig. 2c). In the untreated group, subclus-
ters, which reflected each breeder, were recognized in PC2
in the case of genus- or family-level analyses, although
these subclusters were not observed in the metabolome

a

c

d

b

Fig. 2 PCA of the profiling data from the intestinal microbiome. Microbiome analysis was performed using amplicon sequencing of the V1 and
V2 regions of the 16S rRNA gene. Quantification of total bacterial was performed using real-time PCR. a Total bacterial numbers calculated using
real-time PCR. b Rates of classifiable reads by RDP classifier. c PCA of classification data by RDP classifier. Differences between the antibiotic-treated and
untreated groups in PC1 were recognized in the family- and genus-level analyses, although this was not recognized in the case of phylum, order, or
class (d) PCA of family-, genus-, and species-level classification data after OTU-based analysis
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PCA. There was no difference between groups in the
antibiotic-treated mice.
Owing to the lower identification percentage of fam-

ilies and genera than that of phyla, classes, and orders
(Fig. 2b), the OTU-based classification was investigated
at the family and genus levels according to a previously
described method [28]. In addition, OTU-level (99%
similarity analysis, i.e. species-level) analysis was per-
formed to investigate the whole microbiome structure,
including the unidentified bacteria at the level of family
and genus using the RDP classifier. The value of similar-
ity at the species level classification of OTUs was de-
cided by referring to a previous study by Kim et al. [29].
The similarity of the 16S rRNA gene sequences in the
OTUs that were classified as different families within the
same order was 71.3% (Additional files 10 and 11). The
similarity among 16S rRNA gene sequences in the OTUs
that were classified as different genera within the same
family was 77.1% (Additional files 11, 12 and 13).
OTU-based family, genus, and species-level classification
resulted in 76, 318, and 21,966 OTUs, respectively. Spe-
cies level distribution of OTUs among the 6 groups is
shown in Additional file 14. When the results of the
PCA were assessed based on proportions of these OTUs,
differences between antibiotic-treated and untreated
groups were recognized in PC1 (Fig. 2d) for family, genus,
and species-level classification. These differences at family
and genus-level analysis were similar to those obtained
from the PCA based on RDP data. In the untreated mouse
group, subclusters that reflected each breeder were recog-
nized in PC2, similar to the PCA of RDP data.
Four (10%) of 40 families and four (about 7%) of 59

genera were identified using an absolute PCL value of >
0.7 for each PC1 (Additional file 15). Fourteen (35%)
families and 12 (about 20%) genera were identified using
an absolute PCL value of > 0.4. Statistical hypothesis
testing of the PCL in PC1 was performed, and these cor-
relations in families and genera were statistically signifi-
cant at p < 1.25 × 10− 3 and 8.47 × 10− 4, respectively.
Relative abundance of the genera (the lowest taxonomic
rank detected by RDP) with an absolute value of PCL >
0.7 for PC1 and higher taxonomic ranks of these genera
are shown in Fig. 3. Levels of the genera Ruminococcus
and Oscillospira in the untreated group were higher than
those in the antibiotic-treated group. The family Rumi-
nococcaceae and the higher taxonomic ranks of these
genera were similar between the two groups. However,
this similarity was not observed at the level of phylum
(Firmicutes), class (Clostridia), or order (Clostridiales).
On the contrary, levels of the genus Adlercreutzia in the
untreated group were higher than that in the antibiotic-
treated group, and this trend continued till the class
level (Coriobacteriia). Levels of the genus Trabulsiella in
the antibiotic-treated group were higher than those in

the untreated group, and this trend continued till the
phylum level (Proteobacteria).

Correlation between the PC1 score of the metabolome
and microbiome
Figure 4 shows the X-Y axis plots of the PC1 score for the
metabolome and microbiome. The correlation coefficients
at phylum, class, order, family, and genus level using RDP
data were 0.463 (p = 1.98 × 10− 5), 0.456 (p = 2.76 × 10− 5),
0.631 (p = 5.94 × 10− 10), 0.901 (p = 3.26 × 10− 29), and
0.897 (p = 1.33 × 10− 28), respectively (Fig. 4a). At the
genus and family levels, a strong correlation (r > 0.7) be-
tween the PC1 of the metabolome and microbiome was
observed. In addition, the correlation coefficients at the
levels of family, genus and species using OTU-based clas-
sification were 0.875 (p = 1.16 × 10− 25), 0.920 (p = 1.40 ×
10− 32), and 0.718 (p = 1.38 × 10− 13) (Fig. 4b), respectively,
showing results similar to those obtained from RDP
classification.

Correlation between metabolite concentration and
relative abundance of the microbiome
The level of correlation between taxa at different taxo-
nomic levels and metabolites is summarized in Table 1.
As the taxonomic level descended from phylum to
genus, the proportion of metabolites correlating to any
of the taxa increased. In contrast, the proportion of taxa
correlating to any of the metabolites remained almost
unchanged. An overall relation between metabolite and
microbiome was evaluated using heat maps based on the
correlation coefficient between metabolite concentration
and relative abundance of the microbiome at different
taxonomic ranks (Additional file 16). We observed that
several bacterial groups, for example, Ruminococcaceae,
Coriobacteriaceae, Enterobacteriaceae, and Enterococca-
ceae at the family level correlated to several metabolites.
Subsequently, metabolites that were strongly (r > 0.7 or
r < − 0.7) influenced by these families were selected
(Additional file 17). From this list, we focused on the
correlation between the relative area of hypoxanthine and
relative abundance of the family Ruminococcaceae and its
lower and higher taxonomic ranks (genus Ruminococcus,
order Clostridiales, class Clostridia, phylum Firmicutes)
(Fig. 5). Strong correlations (r > 0.7) between hypoxan-
thine concentration and the abundance of Ruminococca-
ceae (family) or Ruminococcus (genus) were observed.

Discussion
PCA is frequently used to analyze both the fecal metab-
olome [1, 30, 31] and microbiome [7, 15, 16, 19, 20]. In
this study, we searched for the taxonomic classification
level of the intestinal microbiome that correlated with
the metabolome profile using PCA. This study is also an
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example of simple integrated omics for interpreting
omics data from the fecal metabolome and microbiome.
The PCA profiles of 16S amplicon sequencing were

similar to those of the metabolomics analysis at the
family and genus levels, but not at the phylum, class, or
order levels, indicating that family and genus are the
appropriate taxonomic levels to study the relationship
between the intestinal microbiome and the host’s health
using 16S amplicon sequencing. The results of the level
of correlation between the taxa observed at the differ-
ent taxonomic levels and the metabolites (Table 1) sup-
ported this observation. Considering the phylogenetic

evolution of bacteria, it can be assumed that the phy-
logenies of bacteria branch out as the taxonomic level
is segmented from phylum to species, and each
phylogeny-divided bacterial group possesses a particu-
lar metabolic pathway. To the best of our knowledge,
this is the first study to demonstrate that family, genus,
or species are more strongly associated with the metab-
olome than higher taxonomic levels. The phylum Fir-
micutes and its class Clostridia include a variety of
bacterial genera. This is probably one of the reasons
why correlation between the metabolome and micro-
biome in the analysis conducted at the levels of order,
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Fig. 3 Relative abundance of genera with an absolute value of PCL > 0.7 for PC1 and higher taxonomic ranks of these genera. Data represent
mean ± SD. Levels of the genera Ruminococcus and Oscillospira in the untreated group were higher than those in the antibiotic-treated group.
Members of the family Ruminococcaceae were similarly represented in the two groups. However, this similarity was not observed at the level of
phylum (Firmicutes), class (Clostridia), or order (Clostridiales). Levels of the genus Adlercreutzia in the untreated group were higher than in the
antibiotic-treated group, and this trend continued till the class level (Coriobacteriia). Levels of the genus Trabulsiella in the antibiotic-treated group
were higher than that in the untreated group, and this trend continued till the phylum level (Proteobacteria)
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class, and phylum was low. This is supported by the re-
sults shown in Fig. 3.
Although the PC2 scores of the metabolome and 16S

amplicon sequencing-based microbiome partially reflected
the differences in breeder (Figs. 1, 2c, and d), obvious correl-
ation was not observed for the PC2 of the metabolome and

microbiome at any taxonomic level (see Additional file 18).
The extent of difference in the microbiome between
each group in untreated mice was higher than that in
the metabolome, indicating that a difference in the
microbiome under normal conditions, which is smaller
than that under dysbiosis, does not significantly influence

Genus

r = 0.920

Family

r = 0.875

Genus

r = 0.897

Family

r = 0.901

Order

r = 0.631

Phylum

r = 0.463 r = 0.456

Classa

b Species

r = 0.718

Fig. 4 Correlation between the PC1 score of the metabolome and that of the microbiome. Scores for each principal component 1 (PC1) of the
metabolome and microbiome were plotted in the X-Y axis, followed by calculation of Pearson’s product-moment correlation coefficient. a PC1 of
classification data by RDP classifier. At the genus and family levels, a stronger correlation (r > 0.7) between the PC1 of the metabolome and
microbiome was observed compared to the case of phylum, order, or class. b PC1 of family-, genus-, and species-level classification data after
OTU-based analysis

Table 1 Level of correlation between taxa at different taxonomic rank and the metabolites

Taxonomic rank

Phylum Class Order Family Genus Speciesc

Number of metabolitesa 10 (4.9%) 21 (10.2%) 22 (10.7%) 51 (24.9%) 44 (21.5%) 121 (59.0%)

Number of taxab 4/9 (44.4%) 6/15 (40.0%) 8/22 (36.4%) 16/40 (40.0%) 19/59 (32.2%) 2889/21,966 (13.2%)
aNo. of metabolites which correlate to the any of taxa (r > 0.7)
bNo. of taxa which correate to the any of metabolites (r > 0.7) / No. of taxa observed
cSpecies level classification of OTUs
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the metabolome. In contrast, despite no obvious differ-
ences in the microbiome in the antibiotic-treated mice, a
subcluster of CleaA in the metabolome was observed
based on PC2, indicating that the intestinal metabolome
might be influenced by the host, including by intestinal
absorption, in mice with dysbiosis. The metabolome is not
only a product of bacteria but also of co-metabolic path-
ways between the host and bacteria. In this regard, not
only the microbiome, but also the host’s condition, can be
used to investigate the crosstalk between the microbiome
and host via the metabolome.
The correlations of PC1 between the metabolome and

microbiome at the family and genus levels suggest a
strong likelihood that both key metabolites and bacteria,
which play important roles in the metabolism of the gut
microbiome, can be detected by integrating PCA data
from the fecal metabolome and the 16S amplicon
sequencing-based microbiome. In fact, we observed cor-
relations between hypoxanthine and the genus Rumino-
coccus and family Ruminococcaceae. Figure 5 reveals
that the regression line passed near the origin, indicating
that the hypoxanthine concentration depends on the
numbers of these bacteria. Furthermore, the levels of
fatty acids and nucleotide catabolites in untreated mice

were higher than those in the antibiotic-treated mice
(Additional file 3). The relative abundance of the families
Ruminococcaceae and Coriobacteriaceae was high, but
that of the families Enterobacteriaceae and Enterococca-
ceae was low (Additional file 8), suggesting that the
presence of fatty acids and nucleotide catabolites is in-
fluenced by these families. It is interesting that Rumino-
coccus, which belongs to the family Ruminococcaceae, is
a key player in the degradation of resistant starch and
butyric acid production [32, 33]. Interestingly, hypoxan-
thine, spermidine, and 4-guanidinobutyric acid, which
have been reported to be beneficial or toxic for mamma-
lian cells, were affected by the antibiotic-treatment, and
the relative area of each of these metabolites was related
to the relative abundance of the family Ruminococca-
ceae. Hypoxanthine modulates energy metabolism in in-
testinal epithelial cells and is critical for intestinal barrier
function [34]. Spermidine is known to reinforce the in-
testinal mucosal barrier function [35] and promote au-
tophagy [36]. Interestingly, the genus Ruminococcus has
been suggested to be associated with polyamine produc-
tion in humans [37]. It is noteworthy that the known re-
lationship between intestinal bacteria and bioactive
metabolites was observed in our study by integrating the

a

d e

b c

Fig. 5 Correlation between hypoxanthine and each taxonomic classification rank. With respect to hypoxanthine, for which the principal
component loading for the metabolome PC1 score was high (0.893), correlations between the relative area of hypoxanthine and the relative
abundance of the genus Ruminococcus and its higher taxonomic class (family Ruminococcaceae, order Clostridiales, class Clostridia, phylum
Firmicutes) were compared. The correlation coefficients at (a) phylum-, (b) class-, (c) order-, (d) family-, and (e) genus-levels were 0.148 (p = 0.20),
0.316 (p = 4.81 × 10− 3), 0.316 (p = 4.85 × 10− 3), 0.822 (p = 2.71 × 10− 20), and 0.762 (p = 5.09 × 10− 16), respectively
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PCA data. 4-Guanidinobutyric acid causes convulsive
toxicity [38]. In addition, 4-guanidinobutyric acid level
correlated positively with the families Enterococcaceae
and Enterobacteriaceae (Additional file 17). Increasing
levels of these families have been reported to be an indi-
cation of dysbiosis [39, 40]. Our results indicated the
possibility that Enterococcaceae and Enterobacteriaceae
are involved in 4-guanidinobutyric acid production,
thereby contributing to the adverse effect of dysbiosis.
In summary, we suggest that lower taxonomic levels

such as family, genus, or species are useful for investigat-
ing the crosstalk between the intestinal microbiome and
the host based on the results of 16S amplicon sequencing.
We expect that new information regarding the relation-
ship between the intestinal conditions and host will be re-
vealed in the future by combining metabolome and lower
taxonomic level microbiome analysis. In addition, we
demonstrated that the novel method of integrated omics
successfully represented the intestinal conditions by inte-
grating the PCA data from the fecal metabolome and 16S
amplicon sequencing of the microbiome.

Conclusions
Lower taxonomic ranks such as family, genus, or species
are preferable for 16S amplicon sequencing to investi-
gate the correlation between the microbiome and metab-
olome. The correlations of PC scores between the
microbiome and metabolome at the family-, genus-, and
species-levels provide a simple method of integrating
different “-omics” data, which can elucidate the crosstalk
between the intestinal microbiome and host.

Methods
Mice
Eight-week-old male C57BL/6 mice were purchased
from Clea Japan Inc. (Tokyo, Japan), Japan Charles River
Inc. (Yokohama, Japan), and Japan SLC Inc. (Shizuoka,
Japan). These mice were bred at the Dairy Science and
Technology Institute, Kyodo Milk Industry, Co. Ltd.,
Tokyo, Japan. Immediately after their arrival, mice from
each breeder were divided into two groups: untreated
mice [Clea: n = 14, Charles River (Cr): n = 13, and Slc: n
= 13] and antibiotic-treated mice (CleaA: n = 12, CrA: n
= 13, and SlcA: n = 13). Six to seven animals were
housed per cage (depth, 41 cm; width, 26 cm; height,
21 cm) and were provided water and commercial CL-2
pellets (Clea Japan, Inc.) ad libitum. After 5 days of pre-
liminary breeding, the antibiotic-treated mice were ad-
ministered water containing antibiotics (1 g/L ampicillin,
1 g/L neomycin, 1 g/L metronidazole, and 0.5 g/L vanco-
mycin) ad libitum for 3 days, which have been reported
to be sufficient for depleting almost all detectable com-
mensal bacteria [41]. Feces from the antibiotic-treated
mice were collected on the 4th day after the antibiotic

treatment, and that from the untreated group were col-
lected at the same time. The protocols were approved by
the Kyodo Milk Animal Use Committee (permit number:
2013–01). All the experimental procedures were per-
formed according to the guidelines of the Animal Care
Committee of Kyodo Milk Industry Co. Ltd., and were in
accordance with the Guide for the Care and Use of Labora-
tory Animals published by the National Academies Press.

Preparation of the fecal metabolome
Fresh samples (approximately 100 mg) were diluted
nine-fold using Dulbecco’s phosphate-buffered saline
(D-PBS; Gibco, Palo Alto, CA, USA) and extracted thrice
by intense mixing for 1 min and resting for 5 min on ice.
The upper aqueous portion, without the precipitate at the
bottom, was collected and centrifuged (12,000×g for
10 min at 4 °C) 1 min after the extraction, and 200 μL
supernatant was centrifugally filtered through a 5 kDa cut-
off filter (Ultrafree-MC; Millipore, Bedford, MA, USA).
The filtrate was stored at − 80 °C until use.

Capillary electrophoresis and time-of-flight mass
spectrometry
The metabolomics measurement and data processing
were performed as described previously using an Agilent
capillary electrophoresis system (Santa Clara, CA, USA)
[1] based on the method of Ooga et al. [42]. All process-
ing was performed by personnel at Human Metabolome
Technologies, Inc.

Fecal bacterial DNA extraction
The precipitate obtained after the first centrifugation
during the preparation of the fecal metabolome was used
for microbiome analysis. This bacterial DNA was iso-
lated using the methods described by Matsuki et al. [43]
with some modifications [1].

Microbiome analysis
The number of total bacteria was quantified using quanti-
tative real-time PCR as described previously, with some
modification [44]. Briefly, PCR was performed with a Ste-
pOne Real-Time PCR System (Applied Biosystems) using
SYBR Premix Ex Taq II ROX Plus (Takara Bio Inc., Otsu,
Japan), and the Total F (TCCTACGGGAGGCAGCAGT)
and Total-R (GGACTACCAGGGTATCTAATCCTGTT)
primers specific for total bacteria [45]. The DNA was ex-
tracted from Bacteroides uniformis JCM5828T, which is
the most common bacterial species in the human micro-
biome [9], was used as the real-time PCR standard.
Primers for the amplification of the V1 and V2 regions

of the 16S rRNA gene reported by Kim et al. [46] were
used with some modifications. The following primers
were used: forward primer (5′-CCATCTCATCCCTG
CGTGTCTCCGACTCAGNNNNNNNNNNGTagrgtttga
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tymtggctcag-3′) containing the Ion PGM sequencing
primer A-key, a unique error-correcting 10~ 12 bp bar-
code sequence (indicated by N), “GT” spacer, and
27Fmod (agrgtttgatymtggctcag); the reverse primer
(5′-CCTCTCTATGGGCAGTCGGTGATtgctgcctcccgtag
gagt-3′) contained the Ion PGM primer P1 and 338R
(tgctgcctcccgtaggagt). PCR was performed in a 25 μL re-
action volume. Each reaction mixture contained 22.5 μL
platinum PCR mix, 2 μL template DNA (~ 4 ng), and
0.5 μL 10 μM primer mix. The amplification reaction
was performed in a Veriti thermal cycler (Applied Bio-
systems, Foster City, CA, USA) using the following pro-
gram: 3 min at 94 °C, followed by 25 cycles of 30 s each
at 94 °C, 45 s at 55 °C, and 1 min at 68 °C. After each re-
action, the mixture was purified using PureLink Quick
PCR purification kit (Invitrogen, Carlsbad, CA, USA).
The concentration of each purified sample was mea-
sured using the Qubit 2.0 fluorometer (Life Technolo-
gies, Carlsbad, CA, USA). Purified samples were mixed
at equal concentrations. The mixed sample was visual-
ized by electrophoresis on a 2% agarose gel and purified
by gel extraction using the FastGene Gel/PCR extraction
kit (Nippon Genetics Co. Ltd., Tokyo, Japan). Subse-
quently, emulsion PCR and sequencing were performed
using Ion PGM sequencing (Life Technologies). All se-
quence data were deposited in the DDBJ sequence read
archive database under accession number DRA004549.
After sequencing, the obtained reads were analyzed

using the QIIME pipeline (http://qiime.org/) [13] for
taxonomic classification. The reads, which included pre-
cise primer sequences (27Fmod and 338R), were se-
lected, and those with an average quality value > 20 were
used for further analysis. The reads were grouped into
OTUs with a sequence identity threshold of 97%, and
chimeric OTUs were removed using ChimeraSlayer. The
proportion of the intestinal microbiome at each taxonomic
rank, such as phylum, order, class, family, and genus, was
determined using the RDP classifier and the greengenes
database (gg_13_8_otus / taxonomy / 97_otu_taxonomy).
On the basis of the OTUs and classification obtained

from RDP, the distances among OTUs, which classified
different families or genera among the same orders or
families, respectively, were calculated using Mothur [47].
The average of each distance was used to set the cutoff
parameter for differentiating among families or genera.
Next, the OTUs that reflected the family or genus were
obtained from representative sequences using an average
neighbor algorithm. The 99% identity threshold was
used for species-level analysis. Singleton OTUs were ex-
cluded for OTU-based classification.

Statistical analysis
PCA of the metabolome (peak area of each metabolite)
and intestinal microbiome (relative abundance of each

taxonomic rank) data was performed with auto scaling
using SPSS Statistics version 22 (IBM, North Castle, NY,
USA) and/or R statistical software ver.3.4.2. Statistical
hypothesis testing of the PCL in PCA was performed
using Excel 2010 (Microsoft, Redmond, WA, USA)
based on the R package mseapca described elsewhere
[48]. The significance level was corrected for multiple
comparisons using Bonferroni’s correction. The thresh-
old for statistical significance in the metabolome was set
at p < 2.44 × 10− 4. The thresholds for statistical signifi-
cance in microbiomes using family and genus were set
at p < 1.25 × 10− 3 and p < 8.47 × 10− 4, respectively.
(Significance level ÷ n (number of metabolites) = 0.05

÷ 205 = 0.0002439)
(Significance level ÷ n (number of families) = 0.05 ÷

40 = 0.00125)
(Significance level ÷ n (number of genera) = 0.05 ÷ 59

= 0.0008474)
Scores for each principal component 1 (PC1) of the

metabolome and microbiome were plotted on the X-
and Y-axis, respectively, followed by calculation of Pear-
son’s product-moment correlation coefficient using SPSS
statistics. Pearson’s correlation coefficient for hypoxan-
thine and the microbiome was also calculated. The level
of correlation between the taxa observed at the different
taxonomic levels and the metabolites was evaluated
using Pearson’s correlation.
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